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ABSTRACT Multiview learning is concerned with machine learning problems, where data are represented
by distinct feature sets or views. Recently, this definition has been extended to accommodate sequential data,
i.e., each view of the data is in the form of a sequence. Multiview sequential data pose major challenges for
representation learning, including i) absence of sample correspondence information between the views, ii)
complex relations among samples within each view, and iii) high complexity for handling multiple sequences.
In this article, we first introduce a generalized deep learning model that can simultaneously discover sample
correspondence and capture the cross-view relations among the data sequences. Themodel parameters can be
optimized using a gradient descent-based algorithm. The complexity for computing the gradient is at most
quadratic with respect to sequence lengths in terms of both computational time and space. Based on this
model, we propose a second model by integrating the objective with reconstruction losses of autoencoders.
This allows the second model to provide a better trade-off between view-specific and cross-view relations in
the data. Finally, to handle multiple (more than two) data sequences, we develop a third model along with a
convergence-guaranteed optimization algorithm. Extensive experiments on public datasets demonstrate the
superior performances of our models over competing methods.

INDEX TERMS Multiview learning, dynamic time warping, smooth approximation, deep learning,
sequential data.

I. INTRODUCTION
In many real-world applications, data are often collected
from various perspectives, each of which presents a view
of the same data and has its own representation space and
relation characteristics. Multiview learning methods aim to
exploit consistency and complementary information between
these views to learn new representations for the data. There-
fore, these methods often have better generalization abil-
ity. Recently, the definition of multiview learning has been
extended to accommodate sequential data, i.e., each view of
the data is in the form of a sequence. For instance, human
actions can be presented by several video sequences with dif-
ferent features, such as binary, Euclidean distance transform,
and Poisson equation solutions [55] (see Figure 8).

Multiview sequential learning has posed major challenges
that are difficult for conventional methods to accommodate.
First, most multiview learning methods essentially rely on an
assumption that all views of the data are equal in size and
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sample-wise matching. Here, we take canonical correlation
analysis (CCA) [1] and its variants [2]–[4] as representatives.
These methods project data samples from two different views
into a shared subspace and then minimize the squared differ-
ence between the projections subject to whitening constraints.
Thus, the two-view training data must have the following
form: X = [x1, . . . , xn] ∈ Rdx×n and Y = [y1, . . . , yn] ∈
Rdy×n, where (xi, yi) is a matching pair (1 ≤ i ≤ n). However,
these requirements are likely to be violated in sequential
settings. For example, sample deletion and/or insertion often
occurs when collecting data sequences because of the tempo-
ral failures of devices and other man-made reasons. In addi-
tion, the asynchronization of data collection devices, e.g.,
sensors have dissimilar sampling frequencies, also induces
misalignment among the collected sequences. A widely used
alignment algorithm, dynamic time warping (DTW) [5], can
be used to match samples in correspondence as a preprocess-
ing step before performing conventional multiview learning
methods. Unfortunately, DTW fails when the dimensions
of the two sequences vary (dx 6= dy). Second, in addition
to the ambiguous cross-view relations mentioned, multiview
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sequential data also involve complex view-specific relations
that span through the length of the sequences. CCA-based
methods capture these relations through linear [1] and non-
linear [2]–[4] projection functions. However, they ignore the
sequential order that naturally exists among samples within
each view. Finally, in practice, the input data often com-
prise more than two sequences. Handling multiple sequential
views is a difficult task that certainly involves high resource
requirements. In addition, the discriminative properties of the
learned representation might be degenerated because of the
absence of label information and the presence of irrelevant
information from multiple views.

In this article, we first propose generalized sequential
correlation analysis (GSCA)—a novel deep neural net-
work (DNN)-based method—to tackle the aforementioned
challenges. Our method parameterizes the projection func-
tions that map data sequences into the shared subspace by
DNNs. Various types of DNNs can be selected regarding
the relations among samples within each view. In this work,
we use feed-forward neural networks and recurrent neural
networks (RNNs) for implementation. In the shared subspace,
our method minimizes the generalized smooth DTW dis-
tance between projections of the two views subject to soft
whitening constraints. This allows GSCA to discover the
sample correspondences and capture the relations between
the views simultaneously. Because the generalized smooth
DTW is a differentiable approximation of the original DTW,
parameters of our model can be optimized in a unified
manner using gradient descent-based algorithms. Computing
the gradient generally takes a quadratic time and requires a
quadratic memory space with respect to (w.r.t.) the sequence
lengths. We can further increase the computation speed and
reduce the space requirement by selecting squared `2 norm
for regularization, which induces sparsity in the gradient
of the generalized smooth DTW. Second, to provide a bet-
ter balance between view-specific and cross-view relations,
we combine our objective function with the reconstruction
losses of autoencoders [6]. This forms generalized sequen-
tially correlated autoencoders (GSCAE), which are a new
variant of the proposed model. Finally, we further develop
the third model called generalized multiple sequences anal-
ysis (GMSA) to handle multiple data sequences. Slightly
differing from the two first proposed methods, GMSA uses
DNNs to map input data sequences directly into the label
space. Thereby, we expect that the learned representation
can have cluster interpretability and better discriminability.
Because no supervised information is given, we introduce a
consensus label sequence that is then aligned with projections
of all the input sequences. An efficient algorithm with a
convergence guarantee is also provided to optimize both the
consensus and the DNNs’ parameters.

This article includes materials from [7] with signifi-
cant expansion. First, GSCA and GSCAE are expanded
versions of deep sequential correlation analysis (DSCA)
and deep sequentially correlated autoencoders (DSCAE),
which are proposed in the preliminary work, respectively.

Efficiencies of GSCA and GSCAE are much better than those
of DSCA and DSCAE. By taking advantage of the gener-
alized smooth DTW distance, complexities in both terms
of time and space for computing the gradients when train-
ing GSCA and GSCAE are reduced significantly.1 Second,
while [7] introduced the two deep models based only on feed-
forward neural networks, in this article, we further extend
the model concept to RNNs, i.e., long short-term memory
(LSTM) [8], to better capture the sequential relation within
each view. Finally, we propose the GMSA model to handle
multiple data sequences simultaneously, which was not con-
sidered in [7], and learn a more interpretable representation.
Experiments using both two- andmultiple-view datasets were
designed carefully to provide a fair comparison with existing
competitors. In summary, the contributions of this article are
as follows:
• Introduces a novel deep multiview model that can dis-
cover sample correspondence implicitly while learning
the representation from sequential data.

• Extends the proposed model based on the reconstruc-
tion loss regularization of autoencoders, which allows
a trade-off between information within each view and
information in the correlation across the views.

• Derives a third model that can handle multiple (more
than two) data sequences and learn more interpretable
and discriminative representation.

• Extensive experiments on various public datasets
demonstrate the superior performances of the proposed
models over existing methods.

The remainder of this article is organized as follows:
Section II briefly presents some background for the meth-
ods proposed in this article. The GSCA model and its
autoencoder-based variant are introduced in Sections III
and IV, respectively. The third model for handling multiple
data sequences along with a convergence-guaranteed opti-
mization algorithm is described in Section V. After reviewing
the related works in Section VI, we present the experimental
results in Section VII. Section VIII concludes this article.
Notations. Throughout this article, scalars, vectors, and

matrices are denoted by lower-case, bold lower-case, and bold
uppercase letters, respectively. An element at position (i, j) of
amatrixA is denoted by ai,j or [A]i,j.We denote the Frobenius
inner product between A and B as 〈A,B〉 :=

∑
i,j ai,jbi,j. 0d

is a vector of dimension d whose all elements are zeros.
The expression x ∈ Rd

+ indicates that vector x has d ele-
ments, each of which is greater than or equal to zero. The
norm `p of a vector x, where p ∈ {1, 2} in this article,

is ||x||p = (|x1|p + . . . |xd |p)
1
p .

II. BACKGROUND
A. DYNAMIC TIME WARPING
The DTW [5] algorithm measures the similarity between two
sequences whose lengths are possibly different and whose
sample correspondences are probably unknown. Given two

1More discussions are given in III-C
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FIGURE 1. A toy example of DTW and its smooth approximation: (a) two example sequences, (b) the distance matrix, (c) the cumulative sum matrix,
(d) the cumulative sum matrix of DTW�=entropy and (e) the cumulative sum matrix of DTW�=squared `2

. The red line depicts the optimal warping path,
which encodes the sample correspondences between the two sequences.

sequencesX = [x1, . . . , xn] ∈ Rd×n andY = [y1, . . . , ym] ∈
Rd×m, a distancematrixD(X,Y ) ∈ Rn×m is defined such that
the element at position (i, j), denoted by di,j, is the squared
distance, i.e., di,j = ||xi − yj||

2
2. The DTW algorithm con-

structs a cumulative sum matrix S(X,Y ) using the following
recursive formulas:

s1,1 = d1,1 (1)

si,j = di,j +min(si−1,j, si,j−1, si−1,j−1), (2)

The DTWdistance between the two sequences is then defined
as DTW(X,Y ) := sn,m. By backtracking from the last ele-
ment sn,m to the start element s1,1, an optimal warping path

π∗ = 〈(i∗1, j
∗

1), . . . , (i
∗
p, j
∗
p)〉, (3)

that satisfies: i) boundary condition: (i1, j1) = (1, 1) and
(ip, jp) = (n,m); ii) continuous condition: (ir+1 − ir , jr+1 −
jr ) ∈ {(0, 1), (1, 0), (1, 1)}, where 1 ≤ r ≤ p − 1; and
iii) monotonic condition: if 1 ≤ r ≤ t ≤ p, then ir ≤ it
and jr ≤ jt is formed. This path has the smallest cumulative
sum sn,m = di∗1,j∗1 + · · · + di∗p,j∗p and encodes the sample
correspondences between the two sequences. A toy example
of DTW is shown in Figure 1.

B. GENERALIZED SMOOTH DTW
The optimal warping path can be discovered by minimizing
DTW; however, original DTW is not differentiable because
of the nonsmoothness of min operator in equation (2), which
makes it difficult to minimize using gradient-based methods.
To alleviate this issue, [9], [10] studied a smooth min operator
that serves as an essential basis to develop the differentiable
approximations of DTW.

Let η = [η1, . . . , ηk ]> ∈ Rk , the smooth min operator is
defined as follows:

min�(η) := min
γ∈1k
〈γ , η〉 +

1
β
�(γ ), (4)

where 1k
:= {γ ∈ Rk

+ : ||γ ||1 = 1} is a (k − 1) unit
simplex, 〈., .〉 denotes an inner product,� is a strictly convex
function on1k , and β is a nonnegative regularization param-
eter. Because (4) is strictly convex, its minimum is unique and

equal to the gradient (based on Danskin’s theorem [11]):

∇min�(η) = argmin
γ∈1k

〈γ , η〉 +
1
β
�(γ ). (5)

The equation shows that the smooth min operator also
depends on the selection of the regularization function
�(γ ). Shannon entropy (

∑k
i=1 γi ln γi) or squared `2 norm

( 12
∑k

i=1 γ
2
i ) are often chosen. While the former induces

closed-form solutions for both smooth min and its gradient,
the latter forces the gradient to be sparse. More details are
given in Appendix A.

As the definition of the smooth min operator is already
given, we can arrive at the following recursive formulation:

s′1,1 = d1,1
s′i,j = di,j +min�(s′i−1,j, s

′

i,j−1, s
′

i−1,j−1), (6)

where the generalized smooth approximation of DTW is
defined by DTW�(X,Y ) := s′n,m. Note that we can
have different versions of DTW�, e.g., DTW�=entropy or
DTW�=squared `2 , depending on selection of the regulariza-
tion �(γ ). Figure 1 (d) and (e) show the cumulative sum
matrices of DTW�=entropy and DTW�=squared `2 , respec-
tively. The generalized smooth DTW distance is different
from the original DTW because it is differentiable. Further-
more, by minimizing DTW�, the optimal warping path is
discovered implicitly instead of specified directly, as in the
original DTW.

III. GENERALIZED SEQUENTIAL CORRELATION ANALYSIS
In this section, we propose Generalized sequential correla-
tion analysis (GSCA) for learning representation from two-
view sequential data.We first present the model and its objec-
tive function. We then describe the optimization algorithm
and compare the proposed method with DSCA, which was
proposed in our preliminary work [7].

Given two data sequences X = [x1, . . . , xn] ∈ Rdx×n and
Y = [y1, . . . , ym] ∈ Rdy×m from different representation
spaces (dx 6= dy), our method maps them into a shared
subspace: Zx = [zx1, . . . , z

x
n] = fx(X, θx) ∈ Rd×n and Zy =

[zy1, . . . , z
y
m] = fy(Y , θy) ∈ Rd×m, where fx(·, ·) and fy(·, ·) are

projection functions and θx and θy denotes their parameters.
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FIGURE 2. Diagrams of GSCA, where the projection functions are parameterized by (a) deep feed-forward neural networks or (b) deep RNNs
(unfolded deep LSTM networks are shown). The symbol ↔ denotes the sample correspondences that are discovered implicitly by minimizing
the objective LGSCA. Note that each deep network includes a batch normalization (BN) layer at the output, which is not shown in the diagrams

The projection functions are parameterized by deep feed-
forward neural networks or RNNs. If the former is selected,
each sample xi of the sequence X is passed through several
fully connected feed-forward layers to compute the output zxi .
These outputs are then assembled into columns of the matrix
Zx following the increasing order of the index i. The second
view is processed in the same manner. Note that we use batch
normalization (BN) [12] as the final layer. Thus, the output
features empirically have zeromean and unit variance. For the
latter, we stack several LSTM units to form two deep LSTM
networks. Each network is also equipped with a BN layer to
perform the normalization. The representation sequences Zx

and Zy are then computed by feeding the input sequence X
and Y , respectively, to the networks. Note that the parameters
θx and θy are now equivalent to collections of all the weights
matrices of the corresponding DNNs. Figure 2 shows the
diagrams of the proposed method.

A. OBJECTIVE
Because the input sequences are unaligned, the sample-wise
correspondence information between their representations
Zx and Zy is also absent. Our method aims at minimizing
the generalized smooth DTW distance between Zx and Zy.
This allows the method to implicitly discover the optimal
warping path, which encodes the sample correspondences as
mentioned in Section II. In addition, the squared distances
between the corresponding representation samples from the

two views are also reduced simultaneously, pulling them
closer in the shared subspace. The objective function of our
method is as follows:

LGSCA = DTW�(Zx ,Zy)+ λ1Lx(Zx)+ λ2Ly(Zy), (7)

where the two regularization terms are of the following form:

Lv(Zv) =
d∑
i=1

d∑
j6=i

|cvi,j|, (8)

where v ∈ {x, y} and cvi,j is the element at the (i, j) position of
the matrix Cv

= ZvZv>. These regularization functions are
smooth approximations of the whitening constraints in CCA-
based methods. More specifically, the whitening constraints
enforce the features of the representations to be pairwise
uncorrelated (Cv

= I). They are used to prevent trivial solu-
tions, e.g., all the data samples are mapped into a single point
in the shared subspace. In our method, because the represen-
tation sequences are normalized by BN layers, we further
use the l1−norm to encourage sparsity in the off-diagonal
elements of Cv. λ1 > 0 and λ2 > 0 are regularization
parameters that control the trade-off between whitening and
warping the two representation sequences.

B. OPTIMIZATION
The parameters θx and θy can be trained using the gradient-
based method. To compute the gradient of LGSCA w.r.t. all

VOLUME 8, 2020 217931



D. Phong Tung, A. Takasu: Deep Multiview Learning From Sequentially Unaligned Data

the parameters θx and θy, we compute its gradients w.r.t.
the outputs Zx and Zy and then use backpropagation [13] in
the case of feed-forward neural networks or backpropagation
through time (BTT) [14] if the RNNs are used. We have

∂LGSCA
∂Zx

=
∂DTW�(Zx ,Zy)

∂Zx
+ λ1

∂Lx(Zx)
∂Zx

. (9)

The gradient of the generalized smooth DTWw.r.t. Zx can be
computed as

∂DTW�(Zx ,Zy)
∂Zx

=

[
∂s′n,m
∂zx1

, . . . ,
∂s′n,m
∂zxn

]
, (10)

where

∂s′n,m
∂zxi

=

m∑
j=1

∂s′n,m
∂di,j

∂di,j
∂zxi

(11)

= 2
m∑
j=1

ei,j
(
zxi − z

y
j

)
for i = 1, . . . , n. (12)

In equation (12), we abused the notations defined
in Section II, where s′n,m := DTW�(Zx ,Zy) and

di,j := ||zxi − zyj ||
2
2. The derivative ei,j =

∂s′n,m
∂di,j

can be
computed efficiently using a forward-backward algorithm.
The details of the algorithm and its complexity are given in
Appendix C. The gradient of Lx w.r.t. Zx can be computed as

∂Lx(Zx)
∂Zx

= HxZx , (13)

where Hx
∈ Rd×d , whose elements are defined as

hxi,j =


1 if cxi,j > 0

0 if i = j or cxi,j = 0

−1 if cxi,j < 0.

(14)

The gradient ∂LGSCA
∂Zy can be computed in a similar man-

ner. Our model can be trained using a full-batch algorithm
(L-BFGS) [15], as in [2]. For large datasets, however, this
algorithm is both time and memory inefficient. An alternative
is based on stochastic gradient descent (SGD) [16], [17]
where the gradient is estimated based on amuch smaller num-
ber of training samples (a minibatch). The details are shown
in Algorithm 1. Note that we use a stochastic estimate of the
covariance matrix for each view because at each iteration,
t , the algorithm can access only a small number of samples
instead of the whole training set.

C. COMPARISON WITH DSCA
GSCA is expanded on DSCA, which was proposed in our
preliminary work [7]. Because of the exploitation of the
generalized smooth DTW distance, GSCA is more gener-
alized and efficient than DSCA. More specifically, depend-
ing on the selection of the regularization function �(γ )
in DTW�, we have different versions of the proposed
method. We denote the version with the Shannon entropy as
GSCA-e and the other where the squared `2 norm is selected
as GSCA-s. In fact, the objective of GSCA-e is equivalent

Algorithm 1 Stochastic Algorithm for GSCA
Input: Batch size ratio α ∈ [0, 1], time constant ρ ∈ [0, 1],

momentum µ ∈ [0, 1), and learning rate ε.
Output: Optimal DNNs parameters θ∗ = [θ∗x , θ

∗
y ].

1: for t = 1, . . . ,T do
2: random sample subsequence Zx(t) of length nα;
3: random sample subsequence Zy(t) of length mα;
4: Cx

(t) = ρC
x
(t−1) + (1− ρ) 1

α
Zx(t)Z

x
(t)
>;

5: Cy
(t) = ρC

y
(t−1) + (1− ρ) 1

α
Zy(t)Z

y
(t)
>;

6: compute ∂LGSCA
∂Zx(t)

and ∂LGSCA
∂Zy(t)

;

7: compute gradient ∇θ using backpropagation;
8: 1θ (t) = µ1θ (t−1) − ε∇θ ;
9: θ (t) = θ (t−1) +1θ (t);

10: end for

to that of DSCA because DTW�=entropy is equal to DTWβ ,
i.e., a smooth approximation of DTW employed in the pre-
liminary work. The proof is given in Appendix B. Despite
that, computing the gradient of DTW� w.r.t. the represen-
tation sequences is more efficient because its complexity is
only O(nm) in terms of both time and space. In contrast,
the gradients of DTWβ w.r.t. Zx and Zy associate with a
summation over all feasible alignment matrices2 requires
O(n2m2) in both computational time and memory storage.
Note that by selecting squared `2 norm as the regularization,
the complexity of GSCA can be reduced further because of
the sparsity of the gradient. However, this advantage pos-
sibly comes at a cost of lower alignment accuracy because
DTW�=squared `2 is a nonexact approximation of the origi-
nal DTW [10]. DTW�=entropy, instead, can exactly approx-
imate DTW. It converges to the original warping distance
as β →∞.

IV. GENERALIZED SEQUENTIALLY
CORRELATED AUTOENCODERS
In this section, we develop GSCAE as a variant of the
proposed method. The objective of GSCAE is formed by
integrating reconstruction losses of autoencoders with the
objective of GSCA. Let gx(Z

x ,8x) and gy(Z
y,8y) denote

the functions that map the representation sequences Zx and
Zy back to the original spaces, where 8x and 8y are their
corresponding parameters. Then, the objective of GSCAE is
as follows

LGSCAE = LGSCA + λ
(
1
n
||X − gx(Z

x ,8x)||22

+
1
m
||Y − gy(Z

y,8y)||22

)
, (15)

where λ > 0 is a trade-off parameter. Similar to projection
functions in GSCA, gx(·, ·) and gy(·, ·) can also be
parameterized by deep feed-forward neural networks or
RNNs. Diagrams of GSCAE are illustrated in Figure 3.

2Equation (13) in [7]
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FIGURE 3. Diagrams of generalized sequentially correlated autoencoders (GSCAE), where the projections functions and reconstruction
functions are parameterized by (a) deep feed-forward neural networks or (b) deep RNNs. X̂ = [x̂1, . . . , x̂N ] and Ŷ = [ŷ1, . . . , ŷM ] denote
the reconstructed inputs.

By minimizing LGSCA, the correspondences of samples
between the views are discovered implicitly and their corre-
sponding squared distances are also reduced. This amounts to
maximizing mutual information, which presents the relation
between the views. The view-specific relation, on the other
hand, is expressed via minimizing the reconstruction errors.
This is equivalent to maximizing a bound on the mutual
information between the input and output of each view. Thus,
GSCAE provide us a better trade-off between information
within each view and cross-view information.

The advantages of GSCAE over GSCA come at some
costs. For a specific application with a particular dataset,
we need to carefully tune the trade-off parameter λ for
GSCAE to achieve optimal performance. In addition, train-
ing GSCAE certainly requires more computational resources
than those for GSCA. Specifically, when training GSCAE
using a stochastic-based algorithm, we need to compute the
gradients w.r.t. θx and θy, which are associated with both
LGSCA and autoencoder parts. Furthermore, we also need
to compute the gradients w.r.t. 8x and 8y, which are only
dependent on the reconstruction losses. We note that simi-
lar to GSCA, GSCAE have different versions depending on
the selection of the regularization function �(γ ) in DTW�.
We denote them as GSCAE-e if�(γ ) is Shannon entropy and
GSCAE-s when squared `2 norm is selected.

V. GENERALIZED MULTIPLE SEQUENCES ANALYSIS
In this section, we propose generalized multiple sequences
analysis (GMSA), which is an extended variant of GSCA
for learning representation from multiple data sequences.
Slightly differing from the previously proposed method,
GMSA directly projects all the data sequences into the label

subspace to learn more interpretable and discriminative rep-
resentations. The projection functions are parameterized by
DNNs, as in GSCA. To accommodate sequential mismatch-
ing, we introduce a consensus label sequence that is then
aligned to all the output sequences of the DNNs. An alter-
nating optimization algorithm is finally derived to solve the
objective function w.r.t. parameters of the DNNs and the
consensus label sequence.

A. OBJECTIVE
Given v data sequences X (k)

∈ Rdx(k)×n
(k)

for k = 1, . . . , v,
we assume that each sample of these sequences belongs to
one of c disjoint classes. The cluster assignment is often
denoted by a matrix F(k)

= [f (k)1 , . . . , f
(k)
n(k)

] ∈ Rc×n(k) , where

f (k)i is the cluster indicator vector 3 of sample x(k)i in the
sequence X (k). As in [18]–[20], for each view, we define a
scaled cluster indicator matrix

F̃(k)
= [̃f (k)1 , . . . , f̃

(k)
n(k) ] = (F(k)>F(k))−

1
2F(k)>. (16)

It turns out that

F̃(k)
≥ 0 and F̃(k)F̃(k)>

= I. (17)

In GMSA, each input data sequence is passed through a
DNN to compute its output sequence Z(k) = fk (X (k), θ (k)) ∈
Rc×n(k) , where θ (k) is a collection of all parameters of the
k th network. The dimension of the new subspace is exactly
the number of the classes, indicating that the input sequences
are mapped into the same space with the labels. Because

3f (k)i ∈ {0, 1}
c×1 such that f (k)j,i = 1 if x(k)i belongs to the jth class and

zero otherwise.
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the representation sequences in the new space are possibly
unequal in length and sample-wise mismatched, we introduce
a consensus label sequence Z ∈ Rc×n of a prespecified length
n and minimize its DTW distances with all sequences Z(k).
The optimization problem of GMSA is as follows:

min
Z,θ (1),...,θ (v)

v∑
k=1

DTW�(Z,Z(k))+
v∑

k=1

λkLk (Z(k)),

subject to Z ≥ 0 and ZZ> = I, (18)

where λk is the weighted parameter for soft whitening reg-
ularization of the k th view, which is similar to GSCA. The
nonnegative and orthogonal constraints are derived from (17),
enforcing Z to satisfy the cluster indicator conditions.
By introducing the consensus label sequence, we can avoid
minimizing the sum of all pairwise DTW distances between
output sequences, which is computationally demanding and
prone to errors. We note that deep discriminant analysis
with time warping in [21] also utilizes the idea of map-
ping the input data sequences into the label space. How-
ever, the authors assumed that the supervised information
was already available. In our model, the sequential labels
are not given in advance. Therefore, GMSA is completely
unsupervised and its optimization problem is more difficult
to solve.

B. OPTIMIZATION
In this section, we propose an alternating algorithm to
solve the optimization problem of GMSA. More specifically,
we update all the parameters of the DNNs iteratively when Z
is fixed and then optimize the consensus label sequence after
recomputing all output sequences of the DNNs.

LetLGMSA denote the objective function in (18). When fix-
ing the consensus label sequence, we can compute gradients
of LGMSA w.r.t. Z(k) for k = 1, . . . , v as follows:

∂LGMSA(Z(k))
∂Z(k)

=
∂DTW�(Z,Z(k))

∂Z(k)
+ λk

∂Lk (Z(k))
∂Z(k)

. (19)

Similar to optimization for GSCA, these gradients are then
backpropagated to compute the gradients of LGMSA w.r.t. the
parameters θ (k) for k = 1, . . . , v.

When all parameters θ (k) are fixed, the output sequences
Z(k) are recomputed and the optimization problem in (18)
reduces to

min
Z

v∑
k=1

DTW�(Z,Z(k))

subject to Z ≥ 0 and ZZ> = I. (20)

By adding an extra penalty term ξ ||ZZ>−I||2F to the objective
of problem (20), we can remove the orthogonal constraint.
Denote G =

∑v
k=1

∂DTW�(Z,Z(k))
∂Z(k)

; then, the update rule for Z
is as follows:

zi,j← zi,j
[4ξZ]i,j

[G+ 4ξZZ>Z]i,j
. (21)

Algorithm 2Alternating Optimization Algorithm for GMSA

Input: Input data sequences X (k) for k = 1, . . . , v.
Output: The optimal DNNs’ parameters θ∗ and consensus

sequence Z∗.
1: for k = 1, . . . , v do
2: Run k-means on X (k) to generate cluster indicator

matrix F(k);
3: Initialize Z(k) = (F(k)>F(k))−

1
2F(k)>;

4: Initialize θ (k) = argmin
2

||Z(k) − fk (X (k),2)||2F .

5: end for
6: repeat
7: Update the consensus Z using equation (21);
8: Update the DNNs’ parameters θ using a stochastic

algorithm;
9: Recompute Z(k) = fk (X (k), θ (k)) for k = 1, . . . , v;

10: until convergence

To guarantee the orthogonality of Z, we set ξ to a relatively
large value, ξ = 106, in our experiments. The deriva-
tion of equation (21) is given in Appendix D. Because we
use the Karush–Kuhn–Tucker (KKT) condition to update Z ,
the objective value of GMSA can be ensured to decrease
monotonically. However, note that the objective function is
not jointly convex w.r.t. all the variables and that the alter-
nating optimization algorithm is not guaranteed to converge
to the global optimum. Therefore, a good initial guess can
help the algorithm to achieve a better optimal solution and
converge faster. In this work, we separately run k-means
algorithm on the input sequencesX (k) to generate their cluster
indicator matrices F(k) for k = 1, . . . , v. The initial value
of Z(k)’s output of the DNNs are then computed using equa-
tion (16). Afterward, Algorithm 2 summarizes the alternating
optimization procedure of GMSA.

VI. RELATED WORKS
To capture the relations between data samples among the
views, conventional methods such as CCA and its variants
implicitly assume that data of the views are equal in size
and sample-wise matching. However, these assumptions are
likely to be violated in sequential settings because data
sequences often have different lengths and the sample corre-
spondence information is also absent. One major approach to
solve the aforementioned problem is directly combining CCA
with DTW [22], [24]–[27]. These methods find a subspace
such that projections of the two sequences are aligned and
the learned representations of the two views are maximally
correlated. Recently, [21] has proposed to combine deep
CCA [2] with DTW. More complex and nonlinear embed-
dings can be obtained based on DNNs. For more details
about the advantages of deep methods over the shallow ones,
we refer the readers to a recent overview [28]. However, this
direct combination has several serious drawbacks. Because
the DTW problem is discrete and its objective is not differen-
tiable, the alignment and representations are not optimized in
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a unified manner. Specifically, the new alignment is updated
while fixing the representations and vice versa. Without a
good initialization, this update scheme is prone to suboptimal
solutions. In addition, when DNNs are used to map the two
views into the new subspace, their expensive training proce-
dures need to be performed multiple times. This makes the
approach inefficient and unsuitable for extending to larger
deep models.

Another approach is based on manifold alignment. These
methods project data from two different but correlated
manifolds to a subspace, simultaneously preserving the
local structures and ensuring their closeness. A subgroup of
this technique includes semisupervised methods [31]–[34]
that utilize several sample-wise correspondences known in
advance between the manifolds while learning a new sub-
space. In contrast, the second subgroup, which we focus on in
this article, contains unsupervised manifold alignment meth-
ods that do not require correspondences to be predetermined.
Because there is no prior information on the sample-wise
pairing, [35] created a connection between the two views by
comparing their local geometry, which is characterized by the
k-nearest neighbors (k-NNs). [36] has recently proposed a
variant of this method where the local geometry information
is measured in the fuzzy granule space instead of the original
space. [37] built a k-NN graph for each view and extracted
a series of graph-based descriptors for each data sample.
The cross-view similarity and dissimilarity matrices are then
computed in the descriptors space. [38] constructed the cross-
view similarity matrix based on probability prediction results,
which are obtained by performing classification tasks on both
views. [39] took a different approach to the correspondence
problem. Specifically, they encoded the cross-view sample-
wisematching into a binarymatrix, which is jointly optimized
with the projection matrices of the two views. [40] further
extended the correspondence matrix with an extra row and
column. They aimed to better handle outliers that had no
corresponding sample from the other set. Nevertheless, these
methods cannot take advantage of sequential order in the data
to discover more accurate correspondence. In addition, they
are also limited to shallow models and sensitive to noise that
corrupts the adjacency and geometric information of the data.

[41], [42] proposed hybrid methods that combine unsuper-
vised manifold alignment with DTW. Thus, they also inherit
drawbacks from the two presented approaches. Our methods
(GSCA and GSCAE) differ from the first approach because
they discover the sample correspondence implicitly while
learning the representations instead of alternately updating
the projections of the views and aligning them. In addi-
tion, the proposed objective functions allow us to design
an efficient stochastic algorithm for training the models,
making them applicable to other deep models. Our methods
also differ from the second approach because the smooth
DTW can better utilize the sequential order of the data.
Furthermore, we parameterize the projection functions by
deep feed-forward neural networks and/or RNNs. There-
fore, our models can better capture view-specific relations

as they expand through the sequences and learn much more
robust and richer nonlinear embedding functions. We note
that [43] recently approached the problem of misalignment
in multiview sequential learning using memory-based neural
networks. Instead of recovering the sample correspondence
between the views, this approach stores view-specific infor-
mation in memory and makes it accessible to the neural
network of the other view. Although having promising results
in practice, we exclude this approach from our experiments
because it is a supervised method, which is not the interest of
this article.

In this work, we also consider a more challenging case
where the input data comprise more than two sequences.
To handle this problem, existing methods such as [44], [45]
combine multiset CCA [46] and an approximation of DTW
where the warping path is approximated by a linear com-
bination of monotonic basic functions. In comparison with
GMSA, these methods are less favorable to data with a com-
plex latent structure because they can only learn a simple
linear projection for each view. In addition, how to select a
proper set ofmonotonic basics for a particular dataset remains
unclear. Another closely related work of GMSA is deep
discriminant analysis with time warping [21]. This method
simultaneously projects and aligns the input data sequences
to a given label sequence. In contrast, in our case, supervised
information is unavailable. Therefore, GMSA solves a more
complex problem.

VII. EXPERIMENTS
A. COMPARED METHODS
We compare GSCA and its variant GSCAE with DSCA,
which was proposed in our primary work [7], and the fol-
lowing two-view baselines:
• Canonical time warping (CTW) [22]—a direct combi-
nation of CCA and DTW;

• Canonical soft time warping (CSTW) [23]—a
probabilistic extension of CTW, where the alignment
is considered a variable that follows Gibbs distribution.
The alignment and projection matrices are alternatively
optimized using the Expectation–Maximization (EM)
algorithm.

• Autoencoder regularized CTW (AECTW) [29]—a vari-
ant of CTW with autoencoder-based regularizations;

• Deep CTW (DCTW) [21]—a direct combination of
Deep CCA and DTW;

• Locally unsupervised manifold alignment (LUMA)
[35]—an unsupervised manifold alignment-based
method that establishes a connection between any two
samples from the two views by comparing their local
geometries;

• Fuzzy granule manifold alignment (FGMA) [36]—a
variant of LUMA, where the local geometry information
is collected in the fuzzy granule space instead of the
original space.

• Generalized unsupervised manifold alignment
(GUMA) [39]—another unsupervised manifold
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alignment-based method that encodes cross-view
sample-wise correspondence into a binary matrix that
is jointly optimized with the projections;

• Manifold alignment time warping (MATW) [42]—a
hybrid method where sample alignment is performed by
DTW and where projection matrices are optimized to
preserve the underlying structures of the two views;

and compare GMSA with the following multiview method:
• Generalized canonical time warping (GCTW) [44]—
Multiset CCA is used to project data sequence into a
shared subspace with an approximation of the DTW
algorithm to align the projected sequences.

We note that DTW� in the objective of our methods has
different versions depending on the selection of the regular-
ization functions �(γ ). Therefore, we add suffixes -e and -s
to our methods, indicating that �(γ ) is Shannon entropy and
squared `2 norm, respectively.

B. EVALUATION MEASUREMENTS
All datasets in our experiments are divided into training,
tuning, and test sets.We evaluate thesemethods bymeasuring
class separation in the learned embedding spaces on the test
set. First, we perform clustering tasks on the projections of the
first view and evaluate how well the clusters agree with the
ground-truth labels.4 We follow the same procedure in [47],
where spectral clustering [48] is used to handle possibly
nonconvex cluster shapes. We set the number of clusters to
the number of ground-truth classes available in each dataset.
Clustering accuracy (ACC) and normalized mutual informa-
tion (NMI) [49] are used as measurements for assessing the
clustering performance. Second, we test the accuracy of a
simple linear classifier on the learned embeddings. We train
one-versus-one linear support vector machines (SVMs) [50]
on the projected training set of the first view (label infor-
mation is used). The trained model is then used to classify
projections of the test set, and the percentage of errors is
reported as a measurement of classification performance.

C. PARAMETER TUNING
We select the optimal parameters that return the best evalua-
tion measurement results on the tuning set for each method.
Two-View Methods: Dimension d of the new sub-

space is selected from {5, 10, 20, 30, 50, 70}. For manifold
alignment-based methods, we select the parameter that bal-
ances between sample matching and geometry preserving
from {0.1, 0.2, 0.3, 0.4, 0.5}. The number of neighbors for
building the k-NN graph that encodes the local geometry
is selected from {1, 3, 5, 10, 15, 30}. We found that these
methods return the best average results at k = 5. The trade-off
parameter between the autoencoder regularization term and
the alignment objective in AECTW and GSCAE is selected
using a grid search. For the soft whitening constraints in
DSCA, GSCA, and GSCAE, we set λx = λy, and their
values are also selected using grid search. Another important

4For GMSA, we use the projections of the views as their cluster indicators.

FIGURE 4. A toy example of how to generate misaligned sequences.
(a) Hidden states generated by pHMM and (b) the corresponding two
data sequences generated from the noisy MNIST digits dataset.

parameter is β, which controls the regularization in the
smooth min operator. We set β = 1, as suggested in [7], [51].
For the DNNs used in the compared methods, their topology
and configurations are data-dependent and are specified in the
following subsections.
Multiview Methods: For GCTW, similar to the two-view

methods, we select a dimension of the new subspace from
{5, 10, 20, 30, 50, 70}. To approximate the optimal warping
paths, we use five hyperbolic tangent and five polynomial
functions as the monotonic basics. The other parameters are
set according to the original article. In contrast to GCTW,
our method GMSA projects the input sequences into the label
space. Therefore, we choose the dimension d of the new space
for GMSA such that it is identical to the number of classes
available in the datasets. We use the same soft whitening
regularization parameters for all the views: λ1 = λ2 = . . . =
λv, and the value is chosen using grid search. Let na, ns,
and nl denote the average, shortest, and longest lengths,
respectively, of the input data sequences. Then, the length
of the consensus sequence Z is selected from a rounded
set {ns,max(ns, 0.5na),max(ns, 0.75na), na,min(nl, 1.25na),
min(nl, 1.5na), nl}. The alternating optimization algorithm of
GMSA is determined to be converged if the relative reduction
of the objective is smaller than a tolerance ε = 10−5.
In practice, we also terminate the algorithm if the number
of iterations exceeds a prespecified value iter_max = 50.

D. TWO-VIEW DATA I: NOISY MNIST DIGITS
In this experiment, we utilize the MNIST dataset [17], which
consists of 28 × 28 grayscale digit [0, 9] images divided
into 60K/10K for training/testing. Following the procedure
in [47], we generate two-view data as follows. For the first
view, we rescale the pixel to [0, 1] and randomly rotate the
images at angles uniformly sampled from [−π4 ,

π
4 ]. For each

image of the first view, we randomly select an image of the
same identity from the original dataset, add noise uniformly
sampled from [0, 1], and truncate the pixel value to [0, 1].
This image is further resized to 24× 24 and used for the sec-
ond view. 10K from 60K image pairs of the original training
set are set aside for tuning.

From 50K image pairs {(xi, yi, li)|1 ≤ i ≤ 5 × 104,
xi ∈ R784, yi ∈ R576, li ∈ {0, . . . , 9}} of the new training
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FIGURE 5. t-SNE [53] visualization of the projected test set of noisy MNIST digits on shared subspaces with dimension d = 10 returned by
different methods.
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set, we generate two misaligned sequences using a profile
hidden Markov model (pHMM) [52]. Specifically, we gen-
erate two state sequences, consisting of MATCHING state
Mi that emits the ith matching sample and INSERT state
Ii intended for emitting sample replication. The transition
probability is chosen such that from any state, the next state
is MATCHING with probability 0.6 and INSERT with proba-
bility 0.4. We terminate the state sequences after reaching the
(5× 104)

th
MATCHING. The state Mi of the first sequence

corresponds to sample xi. For state Ii, we replicate xi by
randomly selecting a sample xl=li from its class (having the
same identity). (Similarly for the second sequence). Figure 4
shows a toy example of how to generatemisaligned sequences
using pHMM for a given small set of 10 training image pairs.

In this experiment, we used feed-forward neural net-
works for all DNN-based methods, including DCTW, DSCA,
GSCA, and GSCAE. To parameterize the projection func-
tions that map data from original spaces to the new subspace,
we use two fully connected networks whose numbers of
sigmoid units at hidden layers are 1200 − 1200 − 1200 (for
the first view) and 1000−1000−1000 (for the second view).
Note that each network includes a BN layer of d units on the
top as an output layer. The view reconstruction in GSCAE
is performed by the symmetric DNNs. Figure 5 visualizes
the first view in the original space and its projections in the
subspaces learned by different methods. The class separation
results are shown in Table 1.

The results show that among manifold alignment-based
methods, FGMA had better scores than LUMA and GUMA.
FGMA evaluates the local geometry of the data after convert-
ing them into a fuzzy granule space. Thus, FGMA can dis-
cover more complex local structure information. MATW is a
hybrid method. Differing from LUMA, FGMA, and GUMA,
MATW discovers sample correspondences by DTW. Thus,
it can take advantage of sequential order in the data to find
the cross-view correspondence. Nevertheless, these methods
returned poor results on noisy MNIST digits dataset because
the noise corrupted the geometric information. In contrast,
the deep learning-based methods returned much higher class
separation results, even in noisy conditions. These methods
mapped samples of the same class to similar locations while
suppressing noise and rotational variation in the data. We also
observe that methods with a smooth approximation of DTW,
including DSCA, GSCA, and GSCAE, worked much better
than CTW, AECTW, and DCTW, which directly combine
the original DTW with variants of CCA. By minimizing
the differentiable version of DTW, alignment and projection
can be optimized in a unified manner. CSTW also implic-
itly optimizes DTW because it considers the warping path
as a probabilistic variable. However, its EM algorithm still
updates the alignment and projection matrices alternatively,
which is prone to suboptimal solutions.

The experimental results also show that by carefully tun-
ing the trade-off parameters and combining CTW or GSCA
with autoencoders (forming the variants AECTWorGSCAE)
can improve their performances. We note that each method

TABLE 1. Clustering (ACC, NMI) and classifying (Error) results on the
noisy MNIST digits dataset. The data sequences are generated randomly
five times using the pHMM-based procedure. Each method is performed
on these data to learn the new embeddings and the average results along
with variances on projections of the test set are reported.

FIGURE 6. Average times for computing stochastic gradients of GSCA-e,
GSCA-s, and DSCA over a batch size ratio α = 0.1 (equivalent to a batch
size of about 1.5K ) on noisy MNIST digits dataset with different
dimensions d of the learned subspace.

proposed in this article has two versions depending on the
selection of the regularization �(η). Although GSCA-e and
DSCA have similar scores as their objectives are equivalent,
computing the gradient of GSCA-e is much more efficient.
Figure 6 shows the average times for computing the stochastic
gradients of GSCA-e, GSCA-s, and DSCA over different
dimensions d . Because of the sparsity of the gradient induced
by squared `2 norm, training GSCA-s and GSCAE-s are
generally faster than GSCA-e and GSCAE-e, respectively.
However, this advantage comes at a cost of slightly lower
class separation scores.

E. TWO-VIEW DATA II: ACOUSTIC AND
ARTICULATORY RECORDINGS
We next evaluate the performances of the two-view methods
on the Wisconsin X-ray microbeam (XRMB) corpus [54],
which consists of 2537 utterances recorded from 47 Amer-
ican English speakers. Lengths of the utterances vary from
63 to 2941 frames. Each frame is basically described by
39D acoustic features (13-dimensional mel-frequency cep-
stral coefficients [MFCCs] along with their first and second
derivatives) and 16D articulatory features (horizontal/vertical
displacement of 8 pellets attached to the tongue, lips, and
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jaw). To incorporate context information and generate two
sequential views of different frame rates, we slide windows
of 7 and 9 frame sizes over each utterance with one frame
step size. The frames within the windows are concatenated,
resulting in 273D acoustic and 144D articulatory input sam-
ples. Because each original frame belongs to one of 41 phone
classes, we consider the labels of the central frames as those
of the newly generated inputs.

The utterances are presently characterized by two
sequences whose lengths are different and the sample corre-
spondences are also missing. We randomly divide them into
1415/471/471 for training/tuning/testing. We use RNNs for
GSCA and GSCAE to better capture the sequential nature
of the data in this experiment. Specifically, for each view,
we stack three LSTMunits with the same numbers ofmemory
cells (1500 for acoustic view and 1200 for articulatory view)
along with a fully connected BN layer of d units at the output
to parameterize the projection function. The view recon-
struction in GSCAE is performed by the symmetric deep
LSTM networks. Note that while training these models using
Algorithm 1, at each iteration, we randomly sample acoustic
and articulatory input sequences that correspond to one of the
1415 training utterances to compute the stochastic gradient.
Thereby, we can take better advantage of the sequential nature
in the data for training the RNNs. For DCTW and DSCA,
we concatenate two views of the training utterances into
two long sequences and feed them separately to two fully
connected networks. These networks consist of three hidden
layers whose activation functions are ReLU, and the numbers
of the units are 1500−1500−1500 for the acoustic view and
1200− 1200− 1200 for the articulatory view.

Table 2 shows the phone class separation results on
representations obtained by different methods. Similar to
the results on the noisy MNIST digits dataset, the DNN-
based methods outperformed CTW, CSTW, AECTW, and
the manifold alignment-based methods. The DNNs enable
those methods to approximate projection functions nonlin-
early, improving the quality of the learned embeddings. In this
experiment, the designed RNNs have shown positive effects
on our methods. They allow the models to better capture the
sequential relations among data samples. As a consequence,
GSCA and GSCAE achieved the highest scores among the
compared methods. We also see that the results of AECTW
and GSCAE surpass those of CTW and GSCA, respectively.
This again validates the benefits of coupling autoencoder-
based regularizations with the objective functions for provid-
ing a better trade-off between view-specific and cross-view
information.

We then investigate average times for computing stochas-
tic gradients of GSCA-e, GSCA-s, and DSCA. Because of
the differences between their network architectures (RNN
in GSCA and feed-forward network in DSCA), we exclude
the computational time of the backpropagation 5 (Line 7 in
Algorithm 1). Figure 7 shows that the computing gradients

5Note that in GSCA, we use BTT for computing gradients for its RNNs

TABLE 2. Phone class separation on the projections of the acoustic view
learned by different methods. The testing set is randomly divided into six
folds. Clustering and classification tasks are performed on each fold and
the average results along with their variances are reported.

FIGURE 7. Average times for computing stochastic gradients of GSCA-e,
GSCA-s, and DSCA on the XRMB dataset. For a fair comparison,
computation times for backpropagation (or BTT) are excluded. The
computation is taken on minibatches with the sizes are equal to average
length of the training utterances (about 1K samples).

of GSCA are much faster than that of our primary model
DSCA. This efficiency originates from the use of the new
generalized smooth DTW.We can further reduce the training
time by setting �(η) in DTW� to be squared `2 norm. How-
ever, as shown in Table 2, the class separation results were
slightly decreased. Because DTW�=squared `2 is a nonexact
approximation of DTW, GSCA-s and GSCAE-s included
some certain bias in comparison with the Shannon entropy-
based versions.

F. MULTIVIEW DATA I: HUMAN ACTIONS WITH
MULTIPLE FEATURE SETS
In this experiment, we evaluate the performances of
multiview methods, including GMSA and GCTW, on the
Weizmann dataset [55], which consists of 90 videos of
nine subjects, each performing ten actions: wave-one-hand
(wave 1), wave-two-hand (wave 2), side, jump-in-place
(pjump), jump-forward (jump), jack, skip, bend, walk, and
run. Similar to [56], we concatenate videos of the same sub-
ject into a long video sequence following the presented order
of the actions. Background is subtracted from each frame of
these video sequences and the frames are then rescaled to the
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FIGURE 8. Three-view sequential data generated from the Weizmann dataset. The views are constructed by concatenating
ten action videos of three subjects named Daria, Lyova, and Eli, respectively. Note that each view has different features:
Binary (view 1), Euclidean distance transform (view 2), and solution of Poisson equation (view 3).

FIGURE 9. Convergence curves (objective function value averaged over
five runs against the number of iterations) of GMSA-e and GMSA-s on the
Weizmann dataset.

size 80 × 40. There are three types of features that can
be computed to characterize the frames, including type 1:
binary, type 2: Euclidean distance transform [57], and type
3: solution of the Poisson equation [58]. We generate three-
view sequential data for training by selecting video sequences
of the first three subjects, each of which is represented by one
of the three feature types without repetition. As a result, each
view of the data has different features, and each frame of the
views belongs to one of the ten classes (see Figure 8 for more
details). To reduce the dimensions of the feature space (3200),
the top 123 principal components that preserve 99% of the
total energy are selected. Videos of the next three subjects
are used for tuning, and the remaining subjects’ videos are
utilized for testing.

For GMSA, we use RNNs to parameterize the projection
functions. We use a similar network configuration for all the
views because three views of the dataset have the same input
dimensions. Specifically, the data of each view are passed
through a deep network with three stacked LSTM units, each

TABLE 3. Performance measures of clustering (ACC, NMI) and
classifying (Error) on the projections of the Weizmann dataset, using
GCTW and GMSA. Each method is run randomly five times, and their
average results along with the variances on the test set are reported.

of which has 256 memory cells. The output layer of the
network is a BN layer with d = 10 units. Because the new
subspace in GMSA corresponds to the label space, we expect
the learned representations can have cluster interpretability
and better discriminability. Let z(k)i ∈ Rd be the projection
of the testing sample x(k)i , we then assign x(k)i to class j such
that z(k)j,i is the largest element of z(k)i . Table 3 shows the class
separation results on the representations learned by GCTW
and GMSA.

The results show that the performances of clustering and
classification on the new embeddings returned by GCTW
and GMSA are much better than those on the original
space. These results indicate that integrating complemen-
tary information from different views helps the two methods
to improve the quality of the new representations. In addi-
tion, the results also show that the improvement of GMSA
is more considerable because it can learn more richer
nonlinear embeddings. In contrast, GCTW limits itself to
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FIGURE 10. Five-view sequential data generated from the MMI facial expression dataset. The representative facial images
of the classes are depicted. The bottom of each view shows the duration of the corresponding ground-truth temporal labels
along with the total number of frames.

a shallow model where only linear projection matrices can
be obtained. Another unfavorable property of GCTW is that
the accuracy of its alignment procedure heavily depends on
the selection of the monotonic basic functions. However,
how to choose a suitable collection of basics for a partic-
ular dataset remains unclear. Therefore, the inappropriate
settings of monotonic bases might degenerate the results
of GCTW.

We then empirically explore the convergence of the opti-
mization algorithm for GMSA. Each outer iteration of the
algorithm includes two steps: finding the optimal consensus
label sequence and updating the parameters for all DNN
branches of themodels. Figure 9 shows the convergence cures
(objective function value against the number of iterations)
with andwithout the proposed initialization (see Algorithm 2)
on the Weizmann dataset. The results show that the algo-
rithm still converges even with a random start. However,
the proposed initialization improved the performance of the
optimization procedure significantly. Not only does this help
the algorithm to converge faster, but a good initial guess also

TABLE 4. Class separation results on the representations learned by
GCTW and GMSA on the MMI facial expression dataset. Each method is
run randomly five times, and their best average scores along with the
corresponding views are reported.

allows better solutions to be obtained. These results again
elucidate the efficiency of the GMSA model.

G. MULTIVIEW DATA II: MMI FACIAL ACTION UNITS
We next exploit the MMI facial expression dataset [59],
which contains more than 2900 videos of 75 different sub-
jects, each performing a particular combination of an action
unit (AU). In our work, we focus on videos of AU12, which
corresponds to a smile. These videos consist of different
number of frames, and each belongs to one of three classes:
neutral (when facial muscle is inactive), apex (when facial
muscle intensity is strongest), and onset (when facial muscle
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TABLE 5. Ablation analysis of GMSA-e. The views are removed one by one, ablating one corresponding branch of DNN from the model. The best class
separation scores of the ablated GMSA-e along with their differences to the results of the original one (full views) are reported.

starts to activate) or offset (when facial muscle begins to
relax). We first preprocess each frame by performing face
cropping and face alignment using dlib-ml [60]. The results
are depicted in Figure 10. We then convert them to grayscale
and reduce their dimension. Specifically, we utilize whitening
PCA to pick the top 400 components, preserving 99% of
the total energy. Finally, we generate sequential data with
five views using videos S002–005, S003–023, S006–026,
S014–009, and S017–004. Tuning and testing are per-
formed on videos of the same subjects but in different trails
(S002–006, S003–024, S006-025, S014–010, and
S017–006).

In this experiment, RNNs are used to parameterize the
projection functions for GMSA. We stack two LSTM units,
which each has 800 memory cells, and a BN layer with d = 3
units as the output layer to form a deep network for each view.
The projections of the views are used to predict the cluster
labels and perform the classification task. Table 4 shows the
results of GCTW and GMSA.

The results show the same pattern as on the Weizmann
dataset: i.e., the representations learned by GCTW and
GMSA significantly improve the performances of clustering
and classification tasks in comparison with those on the
original input features. Because GMSA-s and GMSA-e are
nonlinear methods, their results are much better than those of
GCTW. We also note that the multiple alignments in GMSA
are simpler than that in GCTW because of the introduction
of the consensus sequences. GCTW discovers the sample
correspondences by instead performing pairwise alignment
between every two views, while there are up to five views in
this dataset. Therefore, more errors potentially occurred and
propagated through update iterations in GCTW.

Finally, we investigated the convergence of Algorithm 2
on the MMI facial expression dataset. Its convergence curve,
which shows the objective value against the number of iter-
ations, is depicted in Figure 11. The figure shows that the
algorithm always converges, regardless of the initial condi-
tions. Because the updated equation for the consensus label
sequence satisfies the KKT conditions and the optimiza-
tion for DNNs’ parameters is based on the gradient descent
method, the objective value is guaranteed to not increase
after each iteration. In addition, as on the Weizmann dataset,
we also observe that the proposed initialization significantly

FIGURE 11. Convergence curves (objective function value averaged over
five runs against the number of iterations) of GMSA-e and GMSA-s on the
MMI facial expression dataset.

improves the performance of the algorithm. With a better
initial value, the algorithm could converge with a much lower
objective value, hence obtaining a superior optimal solution.

H. ABLATION ANALYSIS OF GMSA
In this section, we conducted ablation experiments to inves-
tigate the multiview effect in the GMSA-e model. For a
v-views dataset,6 the GMSA-e model consists of v branches
of DNNs, and each of which maps an input data sequence
from one view into the shared label space. Following the
same procedure in [61] and [62], we remove the branches
of DNNs one by one and report the results in Table 5. The
results show that some views are more important than others.
For example, the absence of the Euclidean distance transform
view in the Weizmann dataset or view 4 in the MMI dataset
produces the most significant reduction in the results of the
model. However, all of the views contribute more or less to
the improvement of the model’s performance. GMSA-e with
full views has better separation scores than it does with view
absence. This result again verifies the advantages of GMSA,
which can handle multiple sequential views instantly.

VIII. CONCLUSION
Multiview sequential data pose many challenges to
representation learning. In particular, the data sequences of
different views are often unequal in size and sample-wise
mismatching. Therefore, in this article, we introduced GSCA,

6v = 3 for the Weizmann human action dataset and v = 5 in case of the
MMI facial expression dataset.
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a DNN-based method that can discover sample correspon-
dence implicitly while learning representations. By using
a generalized smooth DTW distance, which is a differen-
tiable approximation of the original DTW, our model can
be trained using a gradient descent-based algorithm, where
the gradient can be computed efficiently in terms of both
time and space. Our model can be easily extended to improve
its learning performance. For instance, we added two DNNs
to the GSCA model for view reconstructions, forming a
new variant GSCAE. The second model allows a trade-off
between view-specific and cross-view relations when learn-
ing the representations. Given more than two data sequences,
it is obvious that both GSCA and GSCAE are inapplicable.
Hence, we further develop the third model called GMSA
that can simultaneously handle multiple data sequences and
learn more interpretable representations. Through extensive
experimentation on different publicly available datasets, our
methods were compared with various baselines. The results
show that the performances of our methods surpass those of
the competitors of all the datasets.

APPENDIX A
SMOOTH MIN OPERATOR
The smooth min operator is defined as:

min�(η) := min
γ∈1k
〈γ , η〉 +

1
β
�(γ ), (22)

where the regularization term �(γ ) must be a strictly convex
function [9]. Two widely used functions are Shannon entropy
and squared `2 norm.
Shannon Entropy: If �(γ ) =

∑k
i=1 γi ln γi, we obtain

min�(η) = min
γ∈1k

k∑
i=1

γiηi +
1
β

k∑
i=1

γi ln γi. (23)

Because the objective is strictly convex, we can take its
Lagrangian:

L =
k∑
i=1

γiηi +
1
β

k∑
i=1

γi ln γi + λ1

(
1−

k∑
i=1

γi

)

+ λ2

k∑
i=1

γi. (24)

With KKT conditions ∂L
∂γi
= 0 and slackness λ2γi = 0,

we have

γi = eβλ1−βηi−1 ∀i = 1, . . . , k. (25)

Combining with the simplex constraint:
∑k

i=1 γi = 1,
we obtain

eβλ1 =
e∑k

i=1 e−βηi
. (26)

Plugging this back into equation (25), we arrive at the mini-
mum of (23)

γi =
e−βηi∑k
j=1 e

−βηj
. (27)

In summary, when using Shannon entropy as regulariza-
tion, we have closed-form solutions of the smooth min oper-
ator and its gradient

min�(η) = −
1
β
ln

k∑
i=1

e−βηi , (28)

∇min�(η) =
e−βη∑k
j=1 e

−βηj
. (29)

Squared `2 Norm: When �(γ ) = 1
2

∑k
i=1 γ

2
i , the smooth

min becomes

min�(η) = min
γ∈1k

k∑
i=1

γiηi +
1
2β

k∑
i=1

γ 2
i . (30)

It can be easily shown that the minimum γ ∗ (i.e. ∇min�(η))
of (30) is the projection of −βη onto the simplex 1k

γ ∗ = argmin
γ∈1k

||−βη − γ ||22, (31)

which is likely to be sparse. The solution of (31)
can be efficiently obtained using the algorithm proposed
in [63]–[65] with a complexity of O(k ln k).

APPENDIX B
GENERALIZED SMOOTH DTW WITH ENTROPY
REGULARIZATION
Theorem 1: Let5 denote the set of all warping paths

π = 〈(i1, j1), . . . , (ip, jp)〉, (32)

where the set satisfies three conditions: Boundary, Continuity,
and Monotonicity, as described in Section II, and {s(π ) =
di1,j1 + · · · + dip,jp |π ∈ 5} be a set of cumulative sums
corresponding to all the warping paths. If the regularization
� is the Shannon entropy, then

DTW�(X,Y ) = DTWβ (X,Y )

= −
1
β
ln
∑
π∈5 e−βs(π ) . (33)

Proof: Let5i,j ⊂ 5 be the set of all warping paths from
(1, 1) to (i, j) and denote

ri,j = −
1
β
ln

∑
π0∈5i,j

e−βs(π0) . (34)

Note that when the regularization � is the Shannon entropy
smooth min has a closed-form expression, as shown in equa-
tion (28), we also have

ri,j = min�
(
{s(π0)|π0 ∈ 5i,j}

)
. (35)

We can rewrite Equation (34) as follows:

ri,j = −
1
β
ln
( ∑
π1∈5i−1,j

e−β
(
s(π1)+di,j

)
+

∑
π2∈5i,j−1

e−β
(
s(π2)+di,j

)

+

∑
π3∈5i−1,j−1

e−β
(
s(π3)+di,j

))
, (36)
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= −
1
β
ln e−βdi,j

( ∑
π1∈5i−1,j

e−βs(π1)

+

∑
π2∈5i,j−1

e−βs(π2)

+

∑
π3∈5i−1,j−1

e−βs(π3)
)
, (37)

= di,j +−
1
β
ln
( ∑
π1∈5i−1,j

e−βs(π1)

+

∑
π2∈5i,j−1

e−βs(π2)

+

∑
π3∈5i−1,j−1

e−βs(π3)
)
. (38)

Using the expression in equation (28) again, we obtain∑
π1∈5i−1,j

e−βs(π1) = e
ln
∑
π1∈5i−1,j

e−βs(π1)
, (39)

= e−β min�
(
{s(π1)|π1∈5i−1,j}

)
, (40)

= e−βri−1,j . (41)

The similar expressions for the sums over π2 ∈ 5i,j−1
and π3 ∈ 5i−1,j−1 can be derived in the same manner.
Substituting (41) into (38), we have

ri,j = di,j + min�(ri−1,j, ri,j−1, ri−1,j−1). (42)

By recursively applying equation (42) for i = 1 . . . , n and
j = 1, . . . ,m, we can arrive at equation (33), completing the
proof. �

APPENDIX C
FORWARD-BACKWARD ALGORITHM
To compute ei,j in equation (12), we use the forward-
backward algorithm, which is originally introduced in [10].
The details are shown in Algorithm 3. The algorithm indeed
computes the gradient matrix E, where ei,j is the element
at position (i, j), of the generalized smooth DTW w.r.t. the
distance matrix D. It includes a forward step and a back-
ward step. Both of them perform constant-time operations
in nm times. Therefore, the computational complexity of the
algorithm is O(nm). In addition, during the computation,
the algorithm stores several matrices whose largest size is
3nm. Thus, its space complexity is also O(nm). Note that
when the squared `2 norm is used as regularization in DTW�,
qi,j become sparse because of equation (31). This then
induces the sparsity in E, further reducing the complexity of
the algorithm in terms of both time and space.

APPENDIX D
UPDATE RULE FOR CONSENSUS LABEL SEQUENCE
In this section, we provide the derivation of the update rule
for the consensus label sequence in equation (21). By adding
an extra term ξ ||ZZ> − I||2F and introducing a Lagrange

Algorithm 3 Forward-Backward Algorithm

Input: Distance matrix D ∈ Rn×m

Output: Gradient matrix E = ∂DTW�(X,Y )
∂D ∈ Rn×m.

F Forward pass:
1: s′0,0 = 0, s′i,0 = s′0,j = ∞ ∀i, j.
2: for i = 1, . . . , n and j = 1, . . . ,m do
3: s′i,j = di,j +min�(s′i−1,j, s

′

i,j−1, s
′

i−1,j−1)
4: qi,j = ∇min�(s′i−1,j, s

′

i,j−1, s
′

i−1,j−1) ∈ R3

5: end for
F Backward pass:

6: qi,m+1 = qn+1,j = 03, ei,m+1 = en+1,j = 0 ∀i, j.
7: qn+1,m+1 = [0, 1, 0], en+1,m+1 = 1.
8: for i = 1, . . . , n and j = 1, . . . ,m do
9: ei,j = qi,j+1,1ei,j+1+qi+1,j+1,2ei+1,j+1+qi+1,j,3ei+1,j

10: end for

multiplier matrix9 ∈ Rc×n, we have the following Lagrange
function

L(Z,9) =
v∑

k=1

DTW�(Z,Z(k))+ ξ ||ZZ> − I||2F

+Tr(ψ>Z). (43)

Taking the derivative ofL(Z,ψ) w.r.t. Z and setting it to zero,
we obtain

∂L(Z,ψ)
∂Z

=

v∑
k=1

∂DTW�(Z,Z(k))
∂Z

+ 4ξ (ZZ> − I)Z+9 = 0. (44)

Then

9 = 4ξZ− 4ξZZ>Z− G, (45)

where G =
∑v

k=1
∂DTW�(Z,Z(k))

∂Z . According to the
Karush–Kuhn–Tucker condition [66], i.e.ψi,jzi,j = 0, we can
arrive at the following equation:

[4ξZ− 4ξZZ>Z− G]i,jzi,j = 0. (46)

Then, we obtain the update rule for Z:

zi,j← zi,j
[4ξZ]i,j

[G+ 4ξZZ>Z]i,j
. (47)
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