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ABSTRACT A reactive collision avoidance algorithm is proposed to enable safe autonomous flight in the
presence of multiple dynamic obstacles. A position-controlled hexacopter equipped with a visual sensor
obtaining obstacle information is considered as an Unmanned Aerial Vehicle (UAV) platform. The proposed
method centers on the concept of bounding tube which intrinsically extends the static bounding box to
incorporate forthcoming movement of the obstacles into the collision avoidance framework. The processing
pipeline consists of separate components for each of the sequential tasks in obstacle sensing and tracking.
Computation of a spherical bounding box for each obstacle is followed by discrete-time Kalman filtering
for prediction of obstacle trajectory to detect potential collision. If the current course of UAV turns out
highly likely to end in collision with any of the obstacles, the vehicle steers to an aiming point chosen from
among the bundle of candidates produced by constructing a bounding tube that takes account of predicted
obstacle motion. The bounding-tube-based aiming point generation extends seamlessly to the case with
multiple moving obstacles through running in series with multi-obstacle track management that combines
hierarchical clustering of sensory data points for obstacle identification and a simple geometric method for
data association. Numerical simulations are conducted to verify the performance of the proposed collision
avoidance algorithm.

INDEX TERMS Reactive collision avoidance, guidance algorithm, multiple obstacles, dynamic environ-
ment, unmanned aerial vehicle.

I. INTRODUCTION
Recent development of the autonomy and aerospace tech-
nologies has brought increased opportunities for Unmanned
Aerial Vehicles (UAVs) to replace manned operations in
the civil and military applications. In particular, small
rotary-wing UAVs have great potential for a wide range
of areas as the multi-rotor configuration provides Vertical
Take-Off and Landing (VTOL) and hovering capabilities
with a high thrust-to-weight ratio. The multi-rotor UAVs
have shown promises in various fields such as surveillance,
logistics, and cooperative operation. For instance, the logis-
tics industry has demonstrated autonomous delivery services
using the UAVs. However, a rapid increase in the number of
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aircraft causes dense air traffic and may increase the risk of
collision. The necessity of an effective and efficient collision
avoidance strategy thus poses a major challenge to the inte-
gration of UAVs into the controlled airspace. In particular,
the current regulatory framework requires UAVs to adopt
a sense-and-avoid technology so that the UAVs detect and
avoid the risk of collision as in the way manned aircrafts
resolve conflicts [1]–[3].

Reactive collision avoidance for the UAV operations
has been widely investigated for decades [4]. In reactive
collision avoidance, the UAV decides and executes the col-
lision avoidance maneuver online based on the informa-
tion of local surroundings obtained by onboard sensors.
It allows for rapid response to sudden changes in the envi-
ronment and requires little computational efforts and prior
knowledge of the configuration space. From these features,
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the reactive approach has many benefits in the dynamic
environment compared to the proactive planning approach
where the UAV incorporates map information to avoid col-
lision with known obstacles in the path planning level, e.g.,
sampling-based path planning [5], [6] and optimization-based
methods [7]–[9]. Vector field approach has been studied
as one of the ways of reactive collision avoidance where
it utilizes potential functions that consist of repulsive or
attractive force fields repelling a UAV from an obstacle
or attracting it towards a predefined goal point [10]–[16].
Santos et al. [10] proposed a trajectory tracking controller
based on a time-variant artificial potential field, where the
obstacle motion was modeled as the variations of the poten-
tial function. Sun et al. [11] proposed an optimization pro-
cess into the artificial potential field algorithm to improve
collision avoidance performance in dynamic environment,
and Du et al. [12] proposed a vector-field-based method
that is appropriate for real-time application. The vector field
approach has strengths in practice as it is intuitive and easy
to implement. However, it is well known that the necessity to
treat the local minima adds complications to the implementa-
tion of the approach.

Geometry-based approaches have also been extensively
investigated in the context of reactive collision avoid-
ance [17]. In the geometric approach, the collision detection
based on predicted trajectories of the vehicle and obsta-
cles precedes maneuver planning. Various guidance schemes
including intercept angle control [18], [19] and propor-
tional navigation [20], [21] have been proposed to produce
an avoidance maneuver to escape from the danger zone.
Specifically, the collision-cone-based approach has attracted
interests of many researchers. This approach determines a
collision condition by the relation between the obstacle posi-
tion and the UAV position, and the direction of the UAV
velocity. Chakravarthy and Ghose [22] applied the collision
cone approach which is appropriate for dynamic obstacle
environment and also generalized the collision cone concept
to three-dimensional environment [23]. Many other studies
extended the collision cone concept to the vision-based col-
lision avoidance [24]–[29], collision avoidance in dynamic
environment [30], [31], and formation flight [32]. Despite
the significant benefits, most of the studies on the collision
cone approach consider only a single obstacle. Therefore,
the collision cone based methods may not provide satis-
factory solution in the presence of multiple moving obsta-
cles. On the other hand, aiming point approach [33] can
offer an effective solution to cope with moving obstacles.
In the aiming point approach, possible points of avoidance
are collected, and an avoidance maneuver is performed by
following the aiming point selected among the candidates.
Mujumdar and Padhi [34] presented a nonlinear geometric
guidance method that incorporates aiming point to avoid
moving obstacles. A sphere-shaped boundary from the obsta-
cle was formed to impose additional safety, and the point
of closest approach [35] was adopted to choose the aiming
point among the boundary. In a more dynamic environment,

however, the sphere-tracking algorithm should be enhanced
by considering themovement ofmultiple obstacles efficiently
and stably.

This study presents a reactive collision avoidance guidance
algorithm for multi-rotor UAVs to prevent close encounter
with multiple moving obstacles with lateral acceleration in
three-dimensional space. The proposed method constructs
a bounding tube around each obstacle to find aiming point
candidates for the avoidance maneuver whenever the UAV
is determined to be on a collision course with the obsta-
cle. Inappropriate candidate points are eliminated during a
collision-checking step, and the selected final aiming point
is provided as the command to the position controller. Mean-
while, the proposed framework performs hierarchical cluster-
ing and cluster-track association to handle multiple obstacles,
because both obstacle state estimation and bounding tube
formation should be conducted for each obstacle individ-
ually. A new cluster is assigned or an existing cluster is
removed, depending on the circumstances. Numerical sim-
ulations considering maneuvering obstacles show that the
proposed algorithm based on the bounding tube successfully
avoids collision by producing aiming point candidates that
are not invaded by the movement of the obstacle, whereas
the previous algorithm developed in [24] based only on the
instantaneous bounding box results in failure. Simulation
studies also show that the algorithm appropriately handles
multiple dynamic obstacles with the proposed cluster track-
ing method.

The contributions of this study are clarified as follows.
First, the proposed guidance law improves the aiming point
approach by adopting the bounding tube concept. The con-
cept of bounding tube extends the static bounding box to
incorporate the forthcoming movement of the obstacles into
collision avoidance strategy. Second, this study proposes
an integrated framework of the reactive collision avoidance
algorithm for UAV platforms. The processing pipeline that
consists of obstacle detection, clustering, filtering, guidance,
and controller provides an integrated solution to avoid mov-
ing obstacles in real time. Third, the proposed reactive avoid-
ance algorithm provides conflict resolution to multiple mov-
ing obstacles.

The remainder of this article is organized as follows.
Section II briefly describes the architecture of UAV system.
In Section III, a collision avoidance method based on the
concept of bounding tube is proposed to deal with single
dynamic obstacle. Then, the method is extended to the case
of multiple obstacles in Section IV. The simulation results
are presented in Section V, and the conclusion is given in
Section VI.

II. VISUAL SENSING AND CONTROL SYSTEM FOR
AUTONOMOUS MULTI-ROTOR UAV
This section briefly explains the hierarchical control system
that enables autonomous flight of multi-rotor UAV equipped
with a visual sensor. The flight control system performs sev-
eral low-level, short time-scale tasks related to navigation and
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FIGURE 1. Definition of variables and coordinate system.

FIGURE 2. Block diagram of sensing and control system.

vehicle stabilization, which are the essential building blocks
of airborne vehicle autonomy. The visual sensor provides
distance to the objects in its sensing range in the form of
point cloud that is further processed to obtain the estimates
for the object movement and the bounding box. An overview
of the UAV system is provided in this section. Details of each
subsystem comprising the entire architecture are described in
our previous work [24].

A. MODELING
Fig. 1 shows the quantities that are required for modeling
of the dynamic system and development of the proposed
collision avoidance algorithm. The North-East-Down (NED)
coordinate system is used to represent vector quantities that
are defined with respect to the inertial frame of reference.
In Fig. 1, Ern and Evn represent the position and the velocity
of the UAV, respectively. Likewise, Erne , Ev

n
e , and Ea

n
e are the

estimated position, velocity, and acceleration of the obsta-
cle, respectively. Lastly, Erng ≡ [xng yng zng]

T denotes the
position vector of the goal point for which the UAV is
heading.

B. OVERVIEW OF UAV SYSTEM
Fig. 2 shows the UAV sensing and control pipeline repre-
sented in block diagram. The UAV system consists of two
main parts: i) obstacle sensor and tracking filter, and ii) posi-
tion tracking controller.

1) OBSTACLE SENSING AND TRACKING
Obstacles are initially unknown to the UAV. They are detected
by a sensor such as LiDAR mounted on the platform when-
ever the obstacle comes within the Field-Of-Regard (FOR)
during the flight. In this study, the FOR is modeled as a
sphere whose radius is da and center is Ern. Once detected,
the sensor measurements can be mapped into the data points
in three-dimensional space that together form a cloud around
the surface of the obstacle. Then, a spherical bounding box
of radius rs enclosing the arbitrarily-shaped obstacle while
including a safety margin is obtained from the point cloud at
each obstacle data acquisition time step as an abstract repre-
sentation of the volume occupied by the obstacle. Note that
the bounding box usually grows in its size as more data points
are collected during a short period after detecting the obstacle.
The velocity and the acceleration of the obstacle that are
needed to perform collision detection are estimated by using
a simple discrete-time Kalman filter with the center position
of the spherical bounding box as the only measurement.

2) POSITION TRACKING CONTROL
A model for the UAV dynamics can be obtained with a
rigid-body assumption. The dynamics of usual multi-rotor
UAV is inherently under-actuated as it does not have an
independent actuator assigned per each translational and
rotational degree-of-freedom. The thrust provided by each
rotor/motor assembly produces moment with respect to the
center of mass of the UAV. The force produced by the
propeller blades attached to the motors tilts as the UAV
rotates due to the moment generated. Therefore, the UAV
can gain or lose acceleration by adjusting its attitude. This
allows the UAV to move to the desired position via attitude
control based on time-scale separation between the transla-
tional and the rotational motion. The position loop devel-
oped in [24] produces the moment command based on a
Proportional-Derivative (PD) control of the position track-
ing error. The guidance algorithm that will be developed
in the present study to perform reactive collision avoidance
produces the desired position for feeding into the position
controller.

III. COLLISION AVOIDANCE STRATEGY CONSIDERING
DYNAMIC OBSTACLE
The traditional approach to obstacle avoidance known as
the collision cone approach takes a point of reference on
the safety sphere to find the flying direction that requires
minimal course correction to circumvent the threat. How-
ever, this strategy may expose vehicle to the risk of unex-
pected crash when the obstacle is moving. The collision cone
approach makes the UAV head for the aiming point chosen
on the stationary bounding box obtained at each instance
without consideration to the obstacle motion. As a result,
the UAV abruptly avoids the obstacle as they get close to each
other, which increases the risk of the collision. To overcome
this shortcoming, this study presents a collision avoidance
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FIGURE 3. Calculation of aiming point candidates.

strategy that explicitly takes account of obstacle movement
predicted for a predefined period.

A. AIMING POINT CANDIDATES
Fig. 3 shows how to obtain aiming point candidates consider-
ing the predicted motion of obstacle in the situation where
the UAV is currently located at point A and heads for the
goal point while the obstacle is located at point A′ at the
same time (t = t0). From the point where the onboard sensor
detects the obstacle, the obstacle state estimator employing
the standard Kalman filter algorithm provides information
about the position, velocity, and acceleration of the obstacle.
In the meantime, the UAV calculates the future trajectory of
the obstacle by propagating the filter output as follows [36],
[37]:

x̂(1td + t0) = 8d (1td )x̂(t0) (1)

where x̂(t0) is the estimated obstacle state at the current time
t0, and8d (t) represents the discrete-time transition matrix of
the process model. The future position of the obstacle can be
expressed by assuming constant acceleration as

Erne (1td , t0) =
1
2
1td 2Eane +1tdEv

n
e + Er

n
e (2)

where the first argument of Erne (), 1td , is the prediction hori-
zon, and the second argument is the current time. The UAV
also predicts its own future trajectory in a similar manner as
follows:

Ern(1td , t0) = 1tdEvn + Ern (3)

Note that (3) does not incorporate vehicle acceleration, as the
usual practice is to predict collision by determining whether
the UAV will encounter an obstacle when moving in the
current velocity direction.

The UAV determines that it is on a collision course with the
obstacle, if there exists a1td ∈ [0,Td ] such that the predicted
trajectories of the UAV and the obstacle satisfy

‖ Ern(1td , t0)− Erne (1td , t0) ‖2 ≤ rs (4)

Let us suppose that the earliest moment after which (4) holds
is denoted by t = t1, and the UAV and the obstacle are at
points B and B′, respectively, as shown in Fig. 3.
Calculation of the aiming point for vehicle guidance con-

sidering the obstacle movement is central to cope with the
weakness of the standard collision cone approach that obtains
the aiming point for the obstacle regarded as stationary at each
instance. A practical approach for the collision avoidance
strategy to manage the cases with dynamic obstacles through
searching the aiming point from the candidates defined on a
plane leading the obstacle is proposed in this study.

The aiming point should be found to compute the avoid-
ance maneuver as the UAV detects the potential hazard of
collision with the obstacle at t = t1. First, a unit vector Era in
the direction viewing point A from point B′ as shown in Fig. 3
can be obtained as follows:

Era =
Ern − Erne (t1 − t0, t0)
‖ Ern − Erne (t1 − t0, t0) ‖2

(5)

Then, the angular separation η in Fig. 3 can be calculated as

η = cos−1
(
Era · Evne(t1 − t0)
‖ Evne(t1 − t0) ‖2

)
(6)

where Evne(t1 − t0) is the obstacle velocity for t = t1 predicted
at t = t0 given by

Evne(t1 − t0) = (t1 − t0)Eane + Ev
n
e (7)

The proposed guidance method generates a single way-
point at each instance for use in the overall control archi-
tecture to define the desired flying direction. The proposed
method takes an approach separating the process of aiming
point generation into two distinguishable steps: i) generation
of a cloud of candidates, and ii) selection of the best one
ensuring safety of the vehicle.

The group of aiming point candidates are generated by
deterministic sampling from a virtual circle on the tangent
plane to the predicted bounding box that is also perpendicular
to the predicted obstacle velocity Evne(t1 − t0). Let us define
point C as the center of aiming point candidates. The distance
between point B′ and point C, which is denoted by ` in Fig. 3,
can be computed as follows:

` = rs cos η (8)

The position vector of point C represented in the NED coor-
dinate system can be expressed as follows:

Ernc = Er
n
e (t1 − t0, t0)+ `

Evne(t1 − t0)
‖ Evne(t1 − t0) ‖2

(9)

Now, suppose that the vectors Ed1 and Ed2 in Fig. 3 along with
Evne(t1 − t0) form an orthogonal basis of three-dimensional
Euclidean space. These vectors can be obtained by computing
the bases of the null space of Evne(t1 − t0)

T . Then, their mag-
nitudes are adjusted to rs. The aiming point candidates rep-
resented in the NED coordinate system, Ernp , can be expressed
as

Ernp = Ed1 cosϕ + Ed2 sinϕ + Er
n
c (10)
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for ϕ values in a uniform grid spanning over [0, 2π). The
density of the ϕ grid determines the number of aiming point
candidates.

This process results in aiming point candidates on a circle
whose center, radius, and normal vector are Ernc (point C),
rs, and Evne(t1 − t0), respectively. It is worth noting that the
aiming point candidates are not invaded by the movement of
the obstacle predicted for the period of [t0, t1].

B. BOUNDING TUBE
The collision avoidance strategy needs a certain degree of
inherent conservatism against uncertain factors that may
be present in reality but are neglected in the simplified
predictionmodels.Without appropriatemanagement of unex-
pected risks, the mismatch between the predicted trajecto-
ries and the actual trajectories due to model uncertainties
can bring about catastrophic harm, i.e., failure in collision
avoidance.

Once the UAV detects the possibility of collision with
the obstacle at the future time t = t1, the UAV changes
the velocity direction to the aiming point selected among the
candidates given as (10). The avoidance maneuver induces
curvature of the trajectory by the UAV, resulting in trajectory
prediction errors due to the discrepancy between the con-
stant velocity model assumed for prediction in (3) and the
actual trajectory. As a consequence, the UAV arrives at the
aiming point later or earlier than the estimated time t = t1.
Also, the UAV describing a curved trajectory may approach
closer to the obstacle while performing collision avoidance
maneuver than the straight path repetitively predicted with
the simple model, leading to the violation of the bounding
box.

To prevent complete failure and to enhance safety during
execution of avoidance maneuver, it is desirable to employ
a robustifying modification to the process of generating the
aiming point candidates, even though a more conservative
planning can be achieved only at the cost of sacrifice in
efficiency in terms of less steering. The overall direction
of modification is to place more candidate points around
the nominal set of aiming point candidates. One possible
way of extending the set of aiming point candidates is to
generate points on the external surface of a bounding tube
as shown in Fig. 4. Here, the bounding tube is defined as
the volume swept by the obstacle moving in the time interval
of [t1 −1tb, t1 +1tb] where 1tb is a design parameter that
determines the length of the tube.

To obtain an extended set of candidate points, let us con-
sider a sweeping parameter 1tp that attains value in the
range of [−1tb,1tb]. As shown in Fig. 4, the center of the
bounding box at t = t1+1tp can be computed as Erne (1tp, t1)
according to (2). The velocity of the obstacle at t = t1+1tp,
Evne(1tp), can be predicted by using (7). Then, the aiming point
candidates corresponding to the bounding box at t = t1+1tp
(dotted circle in Fig. 4) can be obtained by following the
relation of (10) with Ed1 and Ed2 defined to be perpendicular
to Evne(1tp) and Ernc replaced by Erne (1tp, t1). Finally, all the

FIGURE 4. Bounding tube: Generation of aiming point candidates for an
interval [t1 −1tb, t1 +1tb].

candidate points can be obtained along the bounding tube
by varying 1tp from −1tb to 1tb. Note that 1tp is taken
from a uniform grid over (0,1tb], and the lower end of the
time interval for which the bounding tube is obtained cannot
be less than the initial time t0, i.e., the interval defining the
bounding tube is actually [max (t1 −1tb, t0) , t1 +1tb].

C. SELECTION OF AIMING POINT
An appropriate aiming point should be selected among the
candidates generated previously. In this study, the distance
between a candidate point and the goal point, ds in Fig. 4,
is selected as the measure for evaluation of the candidate
points. If Ernp is one of the candidate points, ds can be calculated
as follows:

ds =‖ Ernp − Er
n
g ‖2 (11)

Then, the entire candidate points can be sorted by the value
of ds for each Ernp in ascending order.

Let us denote Ernp,min as the candidate point with minimum
ds, and tmin as the time instance that corresponds to Ernp,min
on the bounding tube. If Ernp,min is chosen as the final aiming
point, it means that the UAV performs a collision avoidance
maneuver with the minimum possible deviation from the cur-
rent line-of-sight towards the goal point. However, it should
be guaranteed that the UAV does not collide with the obstacle
while heading for Ernp,min.

An additional collision-checking step is necessary to
ensure minimum clearance of rs between the vehicle trajec-
tory predicted with the velocity in the direction towards a
chosen aiming point, instead of the current velocity, and the
predicted obstacle trajectory. The distance between Ern and
Ernp,min, `p in Fig. 4, can be computed as follows:

`p =‖ Ern − Ernp,min ‖2 (12)
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TABLE 1. Pseudocode of aiming point calculation utilizing bounding tube.

If vavg is the average speed of the UAV, the time-to-go of the
UAV to Ernp,min can be calculated as follows:

tgo =
`p

vavg
(13)

Then, tgo is the length of time-window considered for the
collision-checking. The distance between the predicted obsta-
cle position, Erne (1td , t0) of (2), and the predicted UAV posi-
tion, Ern(1td , t0) of (3), is computed for the time interval of
[t0, tgo]. Note that the UAV trajectory here should be the one
predicted with the velocity of

Evnp = vavg
Ernp,min − Er

n

‖ Ernp,min − Er
n ‖2

(14)

instead of Evn in (3). If the distance decreases below the radius
of bounding sphere, rs, at any point on the predicted trajec-
tory, the aiming point Ernp,min tested at the current iteration is
discarded from the set of candidates as it cannot guarantee
safety of the vehicle. Then, the point of minimum ds among
the remaining candidate points is selected as a new aiming
point Ernp,min, and the collision-checking step is performed
again in the same fashion. The pruning process is repeated
over the sorted list until finding the final aiming point Ernp,min
such that the distance between the predicted trajectories of
UAV and obstacle is greater than rs for the entire time interval
of [t0, tgo].
Table 1 summarizes the proposed algorithm in the form of

a pseudocode to facilitate implementation.

FIGURE 5. Two obstacles detected at the k-th step.

IV. EXTENSION TO MULTIPLE OBSTACLES
Themethodology of generation of aiming point candidates by
using the bounding tube followed by pruning of candidates
can be applied in a similar fashion to the case where multiple
obstacles exist in the environment. However, straightforward
extension to the multi-obstacle case is possible only if the
UAV is capable of multi-target tracking. That is, the UAV
should be able to identify each obstacle from the clouds of
acquired obstacle data points and associate different clusters
with respective correct track in order to correctly estimate
states of the obstacles and to construct bounding tubes. This
section presents a cluster-to-track assignment method for the
extension of the proposed algorithm to multiple obstacles.

In the clustering step, sensed data points are grouped into
clusters at each time step. This study adopts distance connec-
tivity based hierarchical clustering [27] for cluster-to-track
assignment of multiple obstacles. The Euclidean distance
between the closest pair is considered as a cutoff threshold,
dct . The UAV perceives each cluster as an individual obstacle
and the clusters move in space according to movement of the
corresponding obstacles.

In the next step, track assignment is conducted to han-
dle multiple clusters. Each measurement cluster should be
associated with the correct one from among the evolving
tracks that exist at each instant. This track assignment step
is necessary because wrong pairing between a measurement
cluster and a track would result in large and abrupt Kalman
filter transients, whichmay lead to catastrophic consequences
such as collision with obstacles or loss of vehicle stability.

Now let us explain how to determine the association
between newly observed clusters and obstacle tracks with
an illustrative example. Fig. 5 shows two obstacles detected
by the sensor mounted on the UAV at the k-th step. It is
assumed that the distance between the obstacles is greater
than dct . Thus, two clusters are generated by the hierarchical
clustering method. It is also assumed that obstacle 1 in Fig. 5
was detected a while ago, and its state estimate has converged
to a steady-state value. Obstacle 2 is assumed to be detected
at the k-th step for the first time, and its state estimator is just
initiated. Also, Erne,1k and Erne,2k are the position estimates of
obstacle 1 and obstacle 2 at the k-th step, respectively, which
can be directly obtained from the sensor.

Fig. 6 shows the obstacles detected at the (k + 1)-th step,
i.e., the two clusters are formed. Each of the newly obtained
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FIGURE 6. Two obstacles detected at the (k + 1)-th step.

clusters should be associated with the right obstacle track
that has been maintained until the previous step for smooth
state estimation. After the transient response in the state
estimate of a cluster has died out, it can reliably be utilized for
tracking of the cluster. The trajectory of obstacle 1 between
the k-th and the (k + 1)-th steps can be estimated using (2),
which is depicted as dotted line in Fig. 6. If the data points
comprising one of the clusters at the current step and the
points sampled along the trajectory estimated from the track
of obstacle 1 between neighboring time steps belong to the
same cluster after performing the hierarchical clustering once
again, then it is reasonable to say that the cluster at the (k+1)-
th step belongs to the track of obstacle 1 maintained up to the
k-th step. Note that multiple clusters are generated as a result
of the hierarchical clustering performed over the trajectory
estimated with the information of the track of obstacle 1 and
the cluster around obstacle 2 in Fig. 6, which is obviously a
mismatch.

The state estimate of a cluster cannot be used reliably
if the transient behavior in the state estimate of a cluster
has still not died out yet. In this case, minimum distance
between the position estimates is utilized to determine the
track that corresponds to the cluster. Thus, the association
of obstacle 2 at the (k + 1)-th step in Fig. 6 is conducted as
follows:

argmin
i

{
‖ Erne,2k+1 − Er

n
e,ik ‖2 | i ∈ {1, 2}

}
(15)

Let us define nk and nk+1 as the numbers of clusters
generated at the k-th and the (k + 1)-th steps, respectively.
Depending on how the number of clusters changes between
two consecutive steps, there are six possible cases as listed
below:

• nk+1 > nk and nk = 0 : CL1 in Table 2
• nk+1 > nk and nk 6= 0 : CL2 in Table 2
• nk+1 < nk and nk+1 = 0: CL3 in Table 2
• nk+1 < nk and nk+1 6= 0: CL4 in Table 2
• nk+1 = nk 6= 0 : CL5 in Table 2
• nk+1 = nk = 0 : CL6 in Table 2

The clusters should be managed appropriately according to
CLk at each time step, where k ∈ {1, · · · , 6}. The pro-
posed cluster-track association as well as the overall summary
of the proposed collision avoidance algorithm is described
in Table 2.

TABLE 2. Pseudocode of collision avoidance against multiple obstacles.

V. NUMERICAL SIMULATION AND DISCUSSION
Numerical simulations are performed to demonstrate the per-
formance of the proposed reactive collision avoidance algo-
rithm. The time step of numerical integration and control
update is 0.005 s, and the sampling time of obstacle data
acquisition from the sensor is 0.05 s. Also, the sensor range,
da, is set to 20 m. To avoid excessive maneuver, the roll and
pitch angle commands are limited not to exceed ±20◦. The
UAV utilizes the obstacle state estimate 1 s after the first
detection of an obstacle in order to allow a period for the
Kalman filter estimate to converge. Design parameters of the
proposed collision avoidance algorithm are set as follows:

td = 0.05 s Td = 20 s

tp = 0.025 s 1tb = 5 s

dct = 0.4 m (16)

where td and tp are time step parameters introduced in Table 1.
The rest of the parameters of UAV, Kalman filter, and
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FIGURE 7. Trajectories of the UAV and the obstacle (Simulation I).

collision avoidance algorithm used in simulations are iden-
tical to those used in [24].

A. SIMULATION I: SINGLE OBSTACLE
In Simulation I, the proposed collision avoidance algorithm
is compared to the previous algorithm [24] in the presence of
a single obstacle. The initial position of the UAV and the goal
point are set to [0 0 0]T and [30 0 0]T in the NED coordinate
system, respectively. A spherical obstacle with a radius of
2.9m is initially located at [23.5 7.1 38.4]T . Its initial velocity
and acceleration vectors are set to [−2.6 − 3.8 − 3.2]T

and [0.7 0.9 − 1.2]T , respectively. There exists a lateral
acceleration since the angle between the velocity vector and
the acceleration vector of the obstacle is 98.7◦. Without a
collision avoidance maneuver, the UAV and the obstacle are
on a collision course.

Fig. 7 shows the trajectories of the UAV with the pro-
posed algorithm and the previous algorithm, and the obsta-
cle in the NED coordinate system. Figs. 8-12 show the
time responses of the attitude, angular velocity, velocity,
and speed of the UAV, and the minimum distance between
the UAV and the obstacle. Also, Fig. 13 shows the time
responses of the state estimate of the Kalman filter, where
[xne,k y

n
e,k z

n
e,k ]

T , [ẋne,k ẏ
n
e,k ż

n
e,k ]

T , and [ẍne,k ÿ
n
e,k z̈

n
e,k ]

T are
the components of the position, velocity and acceleration

FIGURE 8. Roll, pitch, and yaw angles (Simulation I).

FIGURE 9. Body rate (Simulation I).

estimates of the obstacle, respectively, in the NED coordinate
system.

At first, the UAV heads for the goal point because the
obstacle is not sensed until point A (t = 3.35 s) in Fig. 7.
At point A, the obstacle enters the sensor range as shown
in Fig. 12, and the Kalman filter initiates estimation of the
obstacle state. After the transient phase, the obstacle state
estimates converge to the true states at point B (t = 4.35 s)
as shown in Fig. 13. From this point, the UAV uses the
obstacle information provided by the Kalman filter to com-
pute the aiming point for collision avoidance. Note that the
trajectories of the UAV resulting from the proposed and
previous algorithms remain identical until point B, as shown
in Fig. 7.

At point B, the future positions of the obstacle and the
UAV are calculated by using (2) and (3), respectively. The
UAV detects that it is on a collision course, as (4) is true
for one of the predicted bounding boxes. Then, the bounding
tube is formed as shown in Fig. 14 to obtain the aiming
point for avoidance maneuver. The candidate points on the
bounding tube are sorted, and some of them are removed
from the set by observing an additional possible collisionwith
the proposed pruning process. At last, the final aiming point,
[17.7 − 3.8 − 2.4]T , is chosen as shown in Fig. 14.
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FIGURE 10. Velocity (body-fixed coordinate system, Simulation I).

FIGURE 11. Speed (Simulation I).

Meanwhile, the previous algorithm finds the candidate
points using a conventional collision cone approach, and
removes some of them by considering only a short-term
future movement of the obstacle, as shown in Fig. 15. Then,
the point closest in distance to the velocity vector of the
UAV, [15.5 − 3.0 3.6]T , is chosen as the the final aiming
point as shown in Fig. 15. Though the previous algorithm
selects the aiming point on the opposite side of the obstacle’s
predicted trajectory, it does not consider whether the UAV
is on a collision course while heading for the aiming point.
As a result, the UAV collides with the obstacle at point C′

(t = 5.37 s) as shown in Fig. 7 and Fig. 12.
On the contrary, the UAV with the proposed algorithm

successfully avoids the obstacle with the minimum separa-
tion of 2.08 m from the obstacle at point C (t = 5.88 s),
as shown in Fig. 7 and Fig. 12. Note that a safety margin
of the bounding box is set to 2 m. At point D (t = 5.9 s),
the UAV determines that the obstacle is no longer a threat and
heads again for the goal point. Then, at point E (t = 7.85 s),
the obstacle moves outside the sensing range as shown
in Fig. 12. Note that the performance of the Kalman filter
begins to deteriorate after point E as shown in Fig. 13. Finally,
the UAV reaches the goal point at t = 10.29 s as shown
in Fig. 7.

FIGURE 12. Minimum distance between the UAV and the obstacle
(Simulation I).

TABLE 3. Parameters of the obstacles (Simulation II).

B. SIMULATION II: MULTIPLE OBSTACLES
In Simulation II, the effectiveness of the proposed algorithm
in case of multiple moving obstacles is demonstrated. The ini-
tial position of the UAV and the goal point are set to [0 0 0]T

and [30 0 0]T in theNED coordinate system, respectively. The
parameters of the obstacles are listed in Table 3. The UAV is
about to collide with all three obstacles if it flies directly to
the goal point. In this study, collision between obstacles is not
considered.

Fig. 16 shows the trajectories of the UAV and the obstacles
in the NED coordinate system. Figs. 17-22 show the time
responses of the attitude, angular velocity, velocity, speed,
and cluster management of the UAV, and the minimum dis-
tance between the UAV and the obstacles.

At first, the UAV heads for the goal point as shown
in Fig. 16, and no cluster is obtained (CL6) as shown
in Fig. 21. Then, the obstacle is detected by the UAV at
t = 2.60 s as shown in Fig. 22. At t = 2.60 s, CL1
is obtained and the corresponding cluster is assigned as
obstacle 1. The Kalman filter begins to estimate the state of
obstacle 1. In Fig. 21, the number of cluster does not increase
at t = 2.60 s because it represents the cluster which is
on a collision course. However, collision cannot be detected
because the state estimate of obstacle 1 is not available
yet.
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FIGURE 13. Time histories of the state estimate (Simulation I): (a) xn
e,k , (b) ẋn

e,k , (c) ẍn
e,k , (d) yn

e,k , (e) ẏn
e,k , (f) ÿn

e,k , (g) zn
e,k , (h) żn

e,k , and (i) z̈n
e,k .

After t = 2.60 s, CL5 is obtained and obstacle 1 is tracked
by the proposed track assignment algorithm. At t = 3.15,
another obstacle is detected by the UAV, and as a result, two
clusters are formed by the hierarchical clustering. At this
moment,CL2 is obtained, and obstacle 1 is tracked first. Then,
the remaining cluster is assigned as obstacle 2 for which a
separate Kalman filter starts running. Now, the UAV has to
track two obstacles identified by the cluster-to-track assign-
ment strategy (CL5). The state estimate of obstacle 1 con-
verges at point A (t = 3.60 s), and the proposed collision
avoidance algorithm starts to incorporate its information.
By calculating the future positions of the UAV and obstacle 1,
the UAV determines that obstacle 1 is on a collision course
as shown in Fig. 21. Then, the bounding tube is formed as
shown in Fig. 23 to obtain the aiming point for collision
avoidance maneuver. Though there exist two clusters, only
one bounding tube is formed in Fig. 23 because the state
estimate of obstacle 2 is in its transient phase. The candidate
points on one bounding tube are sorted and post-processed
by the pruning process. The final aiming point for avoidance
maneuver is chosen from obstacle 1 as shown in Fig. 21 and

Fig. 23. Note from Fig. 16 that the UAV starts to change its
flight path due to the proposed collision avoidance algorithm.

At t = 3.95 s, the last obstacle is detected and CL2 is
obtained. Two clusters are associated to the tracks of obsta-
cle 1 and obstacle 2, and the remaining cluster is assigned as
obstacle 3. The state estimate of obstacle 2 becomes available
to use after point B (t = 4.15 s), and the UAV detects
potential collision with two obstacles as shown in Fig. 21.
Now, two bounding tubes are formed and all the candidate
points from the tubes are sorted by ds. After performing the
pruning process, the final aiming point is selected from the
bounding tube around obstacle 1 as shown in Fig. 21. That
is, though the bounding tube from obstacle 2 is introduced,
the UAV sticks to avoid obstacle 1.

At point C (t = 4.95 s), the state estimate of obsta-
cle 3 becomes available and three bounding tubes are formed
as shown in Fig. 24. However, the final aiming point is still
obtained from the bounding tube enclosing obstacle 1 as
shown in Fig. 21 and Fig. 23. At point D (t = 5.54 s),
the minimum distance between the UAV and obstacle 1 is
2.12 m, as shown in Fig. 22. Note from Fig. 16 that the
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FIGURE 14. Bounding tube construction at point B (t = 4.35 s,
Simulation I).

FIGURE 15. Aiming point candidates by previous algorithm at point B
(t = 4.35 s, Simulation I).

trajectory of UAV from point A to point D maintains the
same direction as the UAV continuously maneuvers to avoid
obstacle 1.

FIGURE 16. Trajectories of the UAV and the obstacles (Simulation II).

FIGURE 17. Roll, pitch, and yaw angles (Simulation II).

FIGURE 18. Body rate (Simulation II).

At t = 5.75 s, obstacle 1 is no longer a threat and the
number of clusters on a collision course decreases as shown
in Fig. 21. The aiming point is selected among the points on
the bounding tubes of obstacle 2 and obstacle 3. And the UAV
is guided to the point on the bounding tube of obstacle 2 as
shown in Fig. 21. At t = 6.1 s, the UAV determines that

VOLUME 8, 2020 218141



J. Park et al.: Reactive Collision Avoidance Algorithm for UAV Using Bounding Tube Against Multiple Moving Obstacles

FIGURE 19. Velocity (body-fixed coordinate system, Simulation II).

FIGURE 20. Speed (Simulation II).

FIGURE 21. Cluster management (Simulation II).

obstacle 2 is also not on a collision course as shown in Fig. 21.
Therefore, the aiming point is chosen from the bounding tube
of obstacle 3.

At point E (t = 6.85 s), the UAV is not on a collision course
with all three obstacles, and it is guided to the goal point as
shown in Fig. 16 and Fig. 21. CL4 is obtained at t = 8.50 s
and t = 8.55 s as obstacle 2 and obstacle 1 move outside
the sensing range, respectively, as shown in Fig. 22. The
corresponding clusters are removed. CL3 is obtained at t =
8.85 s as obstacle 3 gets out of the sensing range, and the last
cluster is removed. Finally, the UAV reaches the goal point at

FIGURE 22. Minimum distance between the UAV and the obstacles
(Simulation II).

FIGURE 23. Bounding tube construction at point A (t = 3.60 s,
Simulation II).

FIGURE 24. Bounding tube construction at point C (t = 4.95 s,
Simulation II).

t = 11.79 s as shown in Fig. 16. Note that the minimum
distance between the UAV and obstacle 2 is 2.47 m and the
minimum distance between the UAV and obstacle 3 is 2.48m,
as shown in Fig. 22.

VI. CONCLUSION
In this study, a reactive collision avoidance algorithm for
multi-rotor UAVs was proposed to avoid multiple dynamic
obstacles. Provided that the UAV acquired obstacle data
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points with a visual sensor of a limited sensing range, the pro-
posed framework performed collision detection and avoid-
ance maneuver planning by considering the kinematic infor-
mation of the obstacles estimated by processing the sensor
measurements. Specifically, the proposed method utilized
the aiming point candidates generated on the bounding tube
which was introduced in this study to take explicit account of
themovement of obstacles at the stage of avoidancemaneuver
planning. The point with collision-free path causing minimal
deviation from the original course was chosen as the final
aiming point through the pruning process removing inappro-
priate candidate points. A hierarchical clustering method was
used to deal withmultiple obstacles by treating each cluster as
a single obstacle. The clusters were associated with the tracks
of obstacles for consistency of state estimation, and bounding
tubes were constructed for the ones that could potentially
collide with the UAV. It was demonstrated through numerical
simulations that the proposed collision avoidance framework
showed improved capability over the previous algorithm and
could successfully be deployed to a multi-rotor UAV flying
in the environment cluttered by multiple moving obstacles.
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