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ABSTRACT The challenge in addressing uncalibrated visual servoing (VS) control of robot manipulators
with unstructured environments is to obtain appropriate interaction matrix and keep the image features in
the field of view (FOV), especially when the non-Gaussian noise disturbance exists in the VS process.
In this article, a hybrid control algorithm which combines bidirectional extreme learning machine (B-ELM)
with smooth variable structure filter (SVSF) is proposed to estimate interaction matrix and tackle visibility
constraints. For VS, the nonlinear mapping between image features and interaction matrix is approximated
using the B-ELM learning. To increase the capability of anti-interference, the SVSF is employed to
re-estimate interaction matrix. A constraint function presenting feature coordinates and region boundaries
is given and added to the velocity controller, which drags image features away from the restricted region
and ensures the smoothness of the velocities. Since the camera and robot model parameters are not required
in developing the control strategy, the servoing task can be fulfilled flexibly and simply. Simulation and
experimental results on a conventional 6-degree-of-freedom manipulator verify the effectiveness of the
proposed method.

INDEX TERMS Bidirectional extreme learning machine, smooth variable structure filter, constraint
function, restricted region, visual servoing.

I. INTRODUCTION
Visual feedback signals have been used as significant infor-
mation in robots to tackle the positioning or motion control
in unstructured environments. Different from the traditional
visual servoing (VS) system requiring professional calibra-
tion, a challengeable task with higher flexibility and adapt-
ability is to face uncertain disturbances and features escaping
from the image plane for uncalibrated systems, especially in
robot positioning and trajectory tracking control. To pursue
high control efficiency, convenient application and good per-
formance become important developing direction in the field
of visual servoing.

The associate editor coordinating the review of this manuscript and

approving it for publication was Thomas Canhao Xu .

VS employs visual features of the target object to gen-
erate the robot control policy so as to guarantee the error
within an allowable domain. According to the visual feedback
signal returned by 3D Cartesian space coordinate or image
plane coordinate, it can be divided into position-based visual
servoing (PBVS), image-based visual servoing (IBVS) and
hybrid visual servoing control systems [1]–[3]. Generally
speaking, the PBVS is highly dependent on the calibrated
camera and the accurate geometric model for reconstructing
the relative pose of the object. However, accurate calibration
is difficult. Meanwhile, since the signal of image features
lies outside the control loop, the target might also lie out of
the view field. IBVS refers to the feedback control strategy
is designed directly according to the error signals defined
by the image features. It needs to calculate the image Jaco-
bian matrix and its inverse matrix, i.e., to determine the
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relationship between the change of image feature parameters
and robot pose. In IBVS, the analytical form of the image
Jacobian matrix is obtained in the control loop which requires
accurate calibration of camera model parameters. However,
the 3D parameter information cannot be measured directly,
and the external camera calibration with respect to the end-
effector is required. It makes the calibration of VS system
subject to many limitations in practical applications, such
as the degradation of camera parameters, and the large cal-
ibration error caused by small changes in the unstructured
environment. An uncalibrated IBVS, which does not require
scene model or camera/robot calibration, applies image fea-
ture information (e.g., point feature, line feature and image
moment) to estimate the unknown system dynamics, and then
the controller is designed based on the identified Jacobian
matrix [4], [5]. Therefore, the uncalibrated-based methods
have stronger robustness to calibration errors, and become
potential and active research areas [6]–[8].

For kinematic uncalibrated VS systems, the control perfor-
mance mainly depends on the speed and precision of on-line
estimation of Jacobian matrix. The operation accuracy is
not only affected by model and parameter uncertainties, but
also by noise and external disturbance. Some existing works
based on Jacobian matrix have been reported for nonlinear
optimization and state estimation, such as Broyden and its
improved method [9]–[12], recursive least squares [13]–[15],
Levenberg-Marquadt [16], [17], support vector regression
(SVR) [18], Kalman filter (KF) [19], and particle filtering
(PF) [20]. Music et al. [10] systematically compared the
performance of dynamic Broyden-Gauss-Newton method,
group-based Broyden method, KF method and PF method,
and summarized that these algorithms have their own short-
comings in calculating speed or dealing with environmental
noise. In [21], the Geman-McClure estimator was selected to
adjust the objective function to allocate weights and improve
the estimation accuracy of the Jacobian matrix. In [22],
Sagu-Husa adaptive KF was applied to the online state
estimation of image Jacobian, and the filter parameter was
adjusted to improve the adaptive ability of Jacobian iden-
tification model under partial known noises. Zhong et al.
used Kalman-neural-network filter to minimize the estima-
tion error of the interaction matrix, and discussed the influ-
ence of stochastic noise [23], [24]. Some other Jacobian
matrix estimation approaches were proposed with neural
networks. In [25], a hybrid genetic optimization BP neural
network algorithm was presented to model the compound
Jacobian matrix. Zhong et al. proposed an algorithm com-
bining robust KF with Elman neural network to identify
the interaction matrix online with considering the compound
noise [26]. Both [27] and [28] employed extreme learning
machine (ELM) to estimate the pseudoinverse of the inter-
action matrix to avoid matrix singularity and the noise. [29]
established the interaction matrix between the time-variation
of the wavelet coefficients and the spatial robot veloc-
ity and used the wavelet coefficients to obtain the control
law.

In addition, to keep the image features in the field of view
(FOV) is one of key points for the success of VS control.
In order to avoid the failures of VS task caused by image
disappearance, researchers presented different approaches.
Mezouar and Chaumette [30] introduced a robust image-
based potential field method for trajectory planning. In the
proposed approach, camera FOV and robot joint limitations
were considered. In [31], potential field-based strategies were
applied to a global framework which took into account the
field constraints and joint constraints. Ding et al. [32] pro-
posed a path planning method based on hybrid artificial
potential field to solve the field of vision constraint prob-
lem during operation. Chesi et al. [33] proposed to a FOV
keeping system based on the switch control strategy and back-
ward motion. [34] presented an online IBVS controller for a
6-degree-of-freedom (DOF) robot system based on the
robust model predictive control method by taking into
account the input and output constraints of robotic VS sys-
tem, such as robot physical limitations and visibility con-
straints. The visibility constraints, parametric uncertainties
and physical limitations can be easily transformed into
nonequivalent constraints associated with the output and
input of VS systems. Perez-Cisneros [35] presented an evo-
lutionary optimization based predictive control strategy for
VS systems. The visual control task was regarded as a
nonlinear optimization problem with workspace and visual
constraints. [36] proposed a visual servoing scheme that
imposed predefined performance specifications on the image
feature coordinate errors. It can guarantee the transient
and steady performance, satisfy the FOV constraints and
reduce the design complexity. [27] utilized a negative motion
based on fuzzy logic to keeping FOV. Zhong et al. [23]
proposed a Kalman neural network filter which com-
pensated the nonlinear modeling error and the statistical
noise, however, the FOV constraint was not adequately
explained.

Although the uncalibrated VS does not need to calibrate
the camera parameters in theory, the system performance
will deteriorate during the servo process, such as complicated
noisy environments and features escaped from the camera
vision field can affect the convergence of the servo sys-
tem or even lead to task failure. In this article, a method
combined bidirectional extreme learning machine (B-ELM)
algorithm with smooth variable structure filter (SVSF) algo-
rithm was proposed to map the nonlinearity between the
visual space of the robot manipulator and the motion space
of the end-effector, and the FOV constraint was adopted to
ensure that no feature points will be lost during the whole
motion.

The main contributions of this article can be summarized
as follows:

1) The B-ELM cooperated with SVSF is presented to esti-
mate Jacobian matrix in uncalibrated VS. The SVSF is
endowed to re-estimate output matrix of B-ELMwhich
improves the robustness of the system in the presence
of the non-Gaussian noisy environment.
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2) Hyperelliptic boundary is adopted to smooth the
boundary of the field of visual constraint in VS control.
A novel constraint function is developed to dynami-
cally adjust the servo controller via dividing the regions
by different boundaries. It ensures that the image fea-
ture points are always visible during the movement.

The remainder of this article is organized as follows:
Section 2 describes the hybrid Jacobian matrix estimation
method in detail. In Section 3, the visual constraint strategy is
developed. In Section 4, a novel framework of VS controller
with constraints is proposed. In Section 5, experiments are
provided to demonstrate the effectiveness of the developed
method with respect to different noise conditions. Finally,
a brief conclusion is provided in Section 6.

II. VISUAL SERVOING OF ROBOT MANIPULATORS
A. BACKGROUND
In this article, a camera which is mounted on the robot end-
effector moves with robot manipulator. The main objective
of VS control is to drive the robot end-effector with camera
toward desired image features through robot joint movement.
The image feature is directly used for controller design, and
the image space error e(k) at epoch k is defined as

e(k) = S(k)− S∗, (1)

where S(k) =
[
S1(k), . . . , Sms (k)

]T
∈ Rms is the vector of

image features at time k , ms is the number of image features,
S∗ ∈ Rms is the desired vector of features.

Let r(k)=
[
r1(k), . . . , rnr (k)

]T
∈ Rnr be the position and

orientation of robot end-effector in Cartesian space and nr =
6, ṙ(k) =

[
vx(k), vy(k), vz(k), ωx(k), ωy(k), ωz(k),

]T
∈ R6

describes the corresponding velocity screw vector. The cam-
era velocity is mapped to image feature by the feature Jaco-
bian matrix (or interaction matrix), which can be expressed

Ṡ(k) = JI (k) · ṙ(k), (2)

where JI (k) is feature Jacobian matrix which can be com-
puted by

JI (k) =
∂S(k)
∂r(k)

=


∂S1(k)
∂r1(k)

. . .
∂S1(k)
∂rnr (k)

...
. . .

...
∂Sms (k)
∂r1(k)

. . .
∂Sms (k)
∂rnr (k)


ms×nr

=

 j11 . . . j1nr
...

. . .
...

jms1 . . . jmsnr


ms×nr

. (3)

In order to drive a robot from the current feature point to
the desired feature point, the relationship between the time
variable of the error and the camera velocity can be given by

ṙ(k) = −λJ+I (k) · e(k), (4)

where J+I (k) is the pseudo-inverse of feature Jacobian matrix,
and λ > 0 is a fixed control gain.

Before designing the VS controller, the system is supposed
to satisfy the following assumptions.
Assumption 1: There is no transformation between

the camera coordinate and end-effector coordinate with
eye-in-hand configuration.
Assumption 2: Image feature points observed by camera

are coplanar.

B. B-ELM FUNCTION APPROXIMATION METHOD
Unlike conventional ELM, B-ELM which refers to a variable
of incremental extreme learning machine (I-ELM) was pro-
posed by Yang et al. [37]. When the number of hidden nodes
is odd, the hidden node parameters are generated randomly
in accordance with I-ELM. However, when the number of
hidden nodes is even, the hidden node parameters are deter-
mined by proper error functions. In this way, the hidden node
can be added automatically until the model satisfies the given
precision or the number of hidden nodes beyonds the given
maximum. It was proved that B-ELM can greatly improve
the learning efficiency, further reduce the number of hidden
nodes and computational cost. The algorithm of B-ELM is
provided in details as follows.

For M arbitrary distinct samples (xj, yj), where xj ∈ Rd ,
yj ∈ Rm, the output function of ELM is

oj(x)=
L∑
i=1

βig(aixj + bi), ai ∈ Rn, bi ∈ R, j = 1, . . . ,M ,

(5)

where βi is the output weight vector between hidden and
output layers, g(•) is activation function, oj is the network
output, ai is the weight vector connecting the ith hidden node
and the input nodes, bi is the bias of the ith hidden node,
L is the number of hidden nodes. If the network output is
equivalent to the target, i.e.,

∑M
j=1

∥∥oj − yj∥∥ = 0, (5) can be
rewritten as

yj(x) =
L∑
i=1

βig(aixj + bi), ai ∈ Rn, bi ∈ R, j = 1, . . . ,M .

(6)

And (6) can be written as

Gβ = Y , (7)

where Y = [y1, . . . , yM ] ∈ RM×m is target matrix, β =[
βT1 , . . . , β

T
L

]
∈ RL×m is weight of output matrix and G ∈

RM×L is the hidden layer matrix as

G =

 g(a1 · x1 + b1) . . . g(aL · x1 + bL)
...

. . .
...

g(a1 · xM + b1) . . . g(aL · xM + bL)

 . (8)

It is clear that the solution of the network can be obtained
by the least-squares method. However, in most casesM 6= L,
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the solution of (7) can be written as

β̂ = G+Y , (9)

where G+ denotes the pseudo-inverse matrix of G.
Based on the B-ELM algorithm, Yang et al. [37] provided

a single hidden layer feedforward neural network (SLFN)
with a bounded nonconstant piecewise continuous function
H : R −→ R for additive nodes or sine nodes. For any conti-
nous target function f , randomly generates function sequence
Gr2n+1, and obtains error feedback function sequence Ge2n,
n ∈ Z. en = f − fn is the residual error function for the
current network fn with n hidden nodes. Then, the number of
hidden nodes L ∈ {2n+1, n ∈ Z }, the hidden node parameter
a2n+1 and b2n+1 are determined randomly by the I-ELM as

Gr2n+1 = G(a2n+1, b2n+1, x), (10)

β2n+1 =
〈e2n,G2n+1〉

‖G2n+1‖
2 . (11)

Along with the number of hidden nodes L ∈ {2n, n ∈
Z }, the parameter a2n and b2n are obtained according to the
formulas as

Ge2n = e2n−1(β2n−1)−1, (12)

a2n = g−1(U (Ge2n)) · x
−1, (13)

b2n =
√
mse(g−1(U (Ge2n))− a2n · x), (14)

Ĝe2n = U−1(g(a2n · x + b2n)), (15)

β2n =

〈
e2n−1, Ĝe2n

〉
∥∥∥Ĝe2n∥∥∥2 , (16)

where U : R −→ [0, 1] is a normalized function, g−1 and
U−1 represent the inverse functions of g and U , respectively.
The algorithm of B-ELM is represented in Table 1.

The calculation of Jacobian matrix (or its pseudo-inverse)
is very important in visual servoing control, which changes
when the manipulator moves. It makes sense to approximate
the Jacobian matrix effectively so as to reduce the computa-
tional cost of offline training and online application. In this
article, B-ELM is employed to estimate JI (k). We set each
element of S(k) as the input, and each element of JI (k) as the
target output. In order to use activation function more effec-
tively, all input and output sample data should be normalized.

C. SMOOTH VARIABLE STRUCTURE FILTER
STATE ESTIMATION
For kinematic uncalibrated visual servoing systems, explicit
expression of image Jacobian matrix or interaction matrix
cannot be provided without explicitly computing camera’s
internal and external parameters. The Jacobian matrix is
regarded as the system state, and can be accurately estimated
by the state estimation scheme. The standard KF method is
highly dependent on the known statistical characteristics of
noise, which is difficult to determine in the actual robot vision
task. It may lead to the decrease or even divergence of filtering

TABLE 1. The algorithm of B-ELM.

accuracy. SVSF [40] is a predictor-corrector method based on
sliding mode. As a new state estimation strategy, the effective
improvement of SVSF is obtained in the presence of model-
ing uncertainties and noise. The basic estimation scheme of
the SVSF is shown in Fig.1.

The discrete-time linear dynamical system can be
expressed as:

X (k) = X (k − 1)+ w(k), (17)

Z (k) = H (k)X (k)+ v(k), (18)

where X (k) = [j11, . . . , jmsnr ]
T
∈ R(ms×nr )×1 is the state

vector, w(k) ∈ R(ms×nr )×1 and v(k) ∈ Rms are process
noise and measurement noise, respectively,Q(k) and R(k) are
the state model and measurement noise covariance matrix,
Z (k) ∈ Rms is measurement vector given by

Z (k) = S(k + 1)− S(k) = JI · (M r(k)), (19)

and H (k) ∈ Rms×(ms×nr ) is measurement matrix as

H (k) =

M r(k)
. . .

M r(k)


ms×(ms×nr )

. (20)

In SVSF, (17) and (18) are denoted as state space equations
of the robot vision system. The system estimation can be
summarized as follows.
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FIGURE 1. SVSF estimation concept.

First, the state estimation X̂ (k | k − 1) and state error
covariance P(k | k − 1) of the system are calculated by

X̂ (k | k − 1) = X̂ (k), (21)

P(k | k − 1) = P(k − 1)+ Q(k − 1). (22)

Second, by using the above state estimation X̂ (k | k − 1)
and the corresponding predictive measurement Ẑ (k | k − 1),
the measurement error eZ (k | k − 1) can be calculated by

Ẑ (k | k − 1) = H (k)X̂ (k | k − 1), (23)

eZ (k | k − 1) = Z (k)− Z (k | k − 1). (24)

Third, the gain K (k) of SVSF which is a function of
the prior measurement errors eZ (k | k − 1) and posterior
measurement errors eZ (k − 1 | k − 1) can be obtained by

K (k)= H+(k)diag[(|eZ (k | k − 1)|+γ |eZ (k − 1 | k − 1)|)

◦sat(eZ (k | k − 1))9]diag(eZ (k | k − 1))−1, (25)

where H+(k) is the pseudo-inverse of the measurement
matrix H (k), γ is the convergence rate of SVSF, 9 is a
smooth boundary layer (SBL), the sign ◦ represents the Schur
product, and the symbolic function is defined as

sat(eZ (k | k − 1), 9i)

=


1, eZ (k | k − 1)/9i ≥ 1
eZ (k | k − 1)/9i, 1 < eZ (k | k − 1)/9i < 1
−1, eZ (k | k − 1)/9i ≤ −1.

(26)

The gain K (k) is used to estimate the state X (k | k) and
update state error covariance matrix P̂(k) as

X (k | k) = X (k | k − 1)+ K (k)eZ (k | k − 1), (27)

P(k) = (I − K (k)H (k))P(k | k − 1)(I − K (k)H (k))T

+K (k)R(k − 1)K (k)T , (28)

where I ∈ Rmsnr×msnr is identify matrix.
Finally, the measurement estimation Ẑ (k | k) and the

measurement error eZ (k | k) can be calculated by

Ẑ (k | k) = H (k)X̂ ((k | k)), (29)

eZ (k | k) = Z (k)− Ẑ (k | k). (30)

FIGURE 2. Hyperelliptic field constraints.

The estimation error is convergent, if

|eZ (k | k)| < |eZ (k − 1 | k − 1)| . (31)

The proof is provided in detail in [41].

III. VISIBILITY CONSTRAINTS
It is difficult to obtain the control law of the robot visual
servo when the target image features leave the camera FOV.
To avoid this problem, a constraint function which is limited
in the image plane is defined for each image feature.

In this article, a constraint function is introduced to limit
the motion speed and the direction of image features. The
image features in the safe area are not required to reaction.
When the image features locate in the danger area, gentle
measures reduce the image features’ movement to the worse
region. Enforcement measure is taken when it is necessary
to drag image features out of forbidden areas. The constraint
function reflects the relationship between the image feature
coordinates and region boundary functions.

It is necessary to eliminate the absent features to main-
tain image features when they locate at the image edges in
FOV. To maintian them, the image boundary area is defined
in Fig.2. There are three FOV regions in this figure, i.e., the
safe region Csafe shown as white, the danger region Cdanger
shown as yellow and the forbidden region Cforbid shown as
orange. To make the boundary constraint smoother, consider
the formula for an ellipse

∣∣ x
a

∣∣κ + ∣∣ yb ∣∣κ = 1 (called a hyperel-
lipse for κ > 2), which is similar to a rectangle with rounded
corners, the image boundary area can be described by

SVsafe (us, vs)

=

∣∣∣∣∣∣ us
WVsafe

2 (1− mV )

∣∣∣∣∣∣
κV

+

∣∣∣∣∣∣ vs
HVsafe

2 (1− mV )

∣∣∣∣∣∣
κV

= 1, (32)

SVdanger (ud , vd )

=

∣∣∣∣∣∣ ud
WVdanger

2 (1− mV )

∣∣∣∣∣∣
κV

+

∣∣∣∣∣∣ vd
HVdanger

2 (1− mV )

∣∣∣∣∣∣
κV

= 1, (33)
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where us and vs are the pixel coordinates of the image fea-
ture SVsafe on the ellipse of safe boundary, ud and vd are
the pixel coordinates of the image feature SVdanger on the
ellipse of danger boundary, κV is the super-elliptic smoothing
parameter to smooth the rounded corners of the constrained
boundary, HVsafe andWVsafe are those of the ellipse of the safe
boundary,HVdanger andWVdanger are the length and width of the
ellipse of danger boundary, the width and height of the ellipse
represent the plane limit of the image in pixels, mV is the
safety margin of visibility constraints to cope with possible
errors and inaccuracies [42].

In this case, the value of adaptive gain Fi must be null at
feature deactivation (Image feature Si is in the safe region
Csafe), and it increases as the constrained features vary from
the safe region to the danger region. When the image feature
moves to the forbidden region Cforbid , the value of adaptive
gain Fi = 1. We address a continuous adaptive function Fi
with the form as

Fi =


0, if Si ∈ Csafe√
f 2ui + f

2
vi

2
, if Si ∈ Cdanger

1, if Si ∈ Cforbid ,

(34)

where fui ∈ [0, 1] and fvi ∈ [0, 1] are weight factors, which
can be denoted as

fui = 0.5×
(
1− tanh

(
1

udi − ui
−

1
ui − usi

))
×

∣∣∣∣ usi − ui
min(|ui − umin| , |ui − umax|)

∣∣∣∣ ,
fvi = 0.5×

(
1− tanh

(
1

vdi − vi
−

1
vi − uvi

))
×

∣∣∣∣ vsi − vi
min(|vi − vmin| , |vi − vmax|)

∣∣∣∣ ,
(35)

where ui ∈ [umin, umax] and vi ∈ [vmin, vmax] are the pixel
coordinates of the image feature Si, umin, umax, vmin and vmax
are the limits of image plane. The injection adaptive function
Fi is represented in Fig.3.

Based on the velocity control law, FOV performance is
maintained. Therefore, the velocity controller based on the
FOV constraint can be rewritten as

ṙ(k) = −λ · J+I (k) · Fuv(k) · e(k), (36)

where Fuv(k) is an imposed constraint function as

Fuv(k)

=


1−δF1(k)

1−δF1(k)
. . .

1−δFms (k)
1−δFms (k)


2ms×2ms

,

(37)

where δ ∈ (0, 1) is a positive constant, which stands for the
constraint degree.

To ensure the stability of the velocity controller based FOV
constraints, some assumptions are taken into consideration.

FIGURE 3. The value of adaptive gain.

Since image feature S is composed of four image points,
rankmax(JI J

+

I ) = 6, where rankmax denotes the maximum
rank, and JI J

+

I has two null vectors that satisfy {JI J
+

I x =
0, x ∈ R8, x 6= 0}. Assuming that x does not fall in the null
space of JI J

+

I , we have JI J
+

I > 0 [1], [43]. We choose the
Lyapunov function candidate as

L(k) =
1
2
‖e(k)‖2. (38)

The time derivative of the Lyapunov function is

L̇(k)= (e(k))T (ė(k))=−λ(e(k))T JI (k)J
+

I (k)Fuv(k)e(k), (39)

where Fuv(k) is positive definite matrix, JI (k)J
+

I (k) > 0 and
λ > 0. Hence, we have L̇(k) < 0, the control system is expo-
nentially stable according to Lyapunov stability theorem.

IV. HYBRID ALGORITHM OF VISUAL SERVOING SYSTEM
WITH FEATURE CONSTRAINTS
The IBVS by combing B-ELM with SVSF (B-ELM-SVSF)
strategywith feature constraints is shown in Fig.4. In the pres-
ence of system noise and modeling uncertainties, the extrac-
tion of image features increases complexity and potential
errors. B-ELM algorithm is adopted to estimate feature Jaco-
bian matrix, but be vulnerable to noise. Therefore, the robust-
ness and stability of SVSF is employed to further improve the
estimation accuracy of Jacobian matrix. A visual constraint
function is used in constructing the control law to effectively
prevent feature points from being removed from FOV, which
ensures the completion of the servo task. The algorithm is
described as follows.

First, the region is judged according to the image feature
information collected by the camera. Through the position
information of the image feature, the proposed constraint
function is introduced into the control law when the adaptive
gain Fi is calculated.
Second, each element of the image features is taken as

input, and the nonlinear off-line learning of B-ELM is carried
out to obtain the approximation of each element of the feature
Jacobian matrix.

Third, SVSF can estimate the system states online to
obtain feature Jacobian matrix after calculating the output
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FIGURE 4. Algorithm structure diagram of B-ELM-SVSF with constraint function.

of the feature Jacobian matrix from B-ELM at the current
moment, improve its vulnerability to external environments
and uncertainties. The approximate Jacobian matrix based on
re-estimation of SVSF is applied to the control law.

Finally, robot manipulator is driven from the initial
position to the desired position by the modified velocity
controller (36).

After each moving step, the new image features are
extracted and the Jacobian matrix is re-estimated. It will drive
the robot to move again until reaching the allowable error
range of the desired image features.

In general, noise is assumed to be Gaussian white noise.
However, in practice, due to noise interference, mechanical
vibration, light intensity fluctuation, the state noise and mea-
surement noise might be non-Gaussian or have some outliers
in servo motion, thus it can be described by

v(k) = v1(k)+ v2(k) (40)

and

v(k) = v1(k)+ voutlier(k), (41)

where v1(k) is the Gaussian and white, v2(k) is also the
Gaussian white noise with different statistical properties, and
voutlier(k) is the outliers.
In the next session, we will discuss the robustness of the

proposed method in dealing with Gaussian white noise and
non-Gaussian noises such as (40) and (41) seperately.

V. SIMULATION AND EXPERIMENTS
A. SIMULATION TESTS
In this section, the simulation is constructed with a 6-DOF
robot where a camera is mounted on the end-effector and
the static target consists of four circular feature points. The
robotic manipulator conducted visual servo tasks in two
cases, and the robustness and effectiveness of the proposed
method is verified. In case 1, the robustness of the pro-
posed B-ELM-SVSF-based IBVS method is evaluated in the
presence of uncertainties and disturbances. Three different
noises are introduced in the visual servo process respectively
to make the robot move from the image feature captured

in the initial pose to the desired image feature. In case 2,
the keeping ability of FOV is verified based on the proposed
B-ELM-SVSF method as image features are chosen near
FOV boundary.

In the simulation, the intrinsic parameters are set: the focal
length of the camera is 8 mm and the image size is 800× 800.
The feature points capture the center points of four circular
disks. The proportional gain λ= 0.5, the sample interval dt =
0.1s. 300 samples with different end-effector initial poses are
used to train B-ELM to achieve sufficient approximation in
the image plane. The number of hidden layer nodes is 82,
and the mean square error (MSE) = 0.93, the running time
is 0.953s.

1) SIMULATION CASE 1
We demonstrate the robustness of the proposed B-ELM-
SVSF method based on estimation of Jacobian matrix,
by comparing with traditional KF method (such as [44]).
In the following subsections, three different cases, which
contain different statistic characteristics of environmen-
tal noises, are assumed to make a better compari-
son. The initial joint angle of the robot is chosen as
(0, π/4,−π, 0, π/4,−π/4)T , the desired matrix of the
image features S∗ = [400, 400, 200, 400, 200, 600, 400,
600]T . The initial and desired image features are shown by
black circles and red circles, respectively. The servo motion
stops when the error norm of image features is less than
0.5 pixel or the number of iterations reaches the maximum.

For the sub-case 1 in simulation case 1, Gaussian white
noise is selected with its state noise covariance Q =

diag([0.1, . . . , 0.1]1×48), and its measurement noise is R =
diag([0.1, . . . , 0.1]1×8). The image feature trajectories of
three comparison methods are shown in Figs.5(a) and 6(a).
The feature trajectories of our proposed methods (B-ELM-
SVSF) are nearly linear and smooth in Fig. 6(a). The feature
trajectories of KF method are nonlinear due to the influence
of noise as shown in Fig. 5(a). The image feature errors are
convergent under the stop condition for all systems as shown
in Figs. 5(b) and 6(b). The proposed method performs a faster
convergence rate in Fig. 6(b), meanwhile, the feature errors
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FIGURE 5. KF method in sub-case 1 in simulation case 1: (a) image feature trajectories (b) image feature errors (c) robot end-effector velocities (d) the
trajectories of robot end-effector.

FIGURE 6. B-ELM-SVSF method in sub-case 1 in simulation case 1: (a) image feature trajectories (b) image feature errors (c) robot end-effector velocities
(d) the trajectories of robot end-effector.

FIGURE 7. KF method in sub-case 2 in simulation case 1: (a) image feature trajectories (b) image feature errors (c) robot end-effector velocities (d) the
trajectories of robot end-effector.

FIGURE 8. B-ELM-SVSF method in sub-case 2 in simulation case 1: (a) image feature trajectories (b) image feature errors (c) robot end-effector velocities
(d) the trajectories of robot end-effector.

are decreased with exponentially. Some velocity components
of the robot end-effector display slight vibration in both
methods shown in Figs. 5(c) and 6(c). However, comparing
with KF method in Fig. 6(d), the trajectory of the robot end-
effector in Cartesian space performs less vibration and more
preferred path by our method in Fig. 5(d).

For the sub-case 2 in simulation case 1, we intro-
duce mix Gaussian noise in the measure process such as
(40), in which v1(k) ∈ N (0, δ1), v2(k) ∈ N (0, δ2),
δ21 = diag([0.8, . . . , 0.8]1×8), δ22 = diag([0.3, . . . , 0.3]1×8).
As shown in Figs. 7 and 8, simulation results, which include
the image features and their error curves, are basically similar
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FIGURE 9. KF method in sub-case 3 in simulation case 1: (a) image feature trajectories (b) image feature errors (c) robot end-effector velocities (d) the
trajectories of robot end-effector.

FIGURE 10. B-ELM-SVSF method in sub-case 2 in simulation case 1: (a) image feature trajectories (b) image feature errors (c) robot end-effector
velocities (d) the trajectories of robot end-effector.

to those in sub-case 1. More specifically, line and angular
velocities are continuous and smooth in the proposedmethod,
but perform tiny fluctuation in KF method, which are shown
in Figs. 7(c) and 8(c). In our method, trajectory of robot end-
effector shows a less curvature in Cartesian space in Fig. 8(d).

For the sub-case 3 in simulation case 1, based on Gaus-
sian white noise, 100 multiples of the noise are introduced
as outliers into the simulation during 30-40s, 80-90s and
180-190s, respectively. We choose the state noise covariance
is Q = diag([0.00001, . . . , 0.00001]1×48), and the mea-
surement noise is R = diag([0.00001, . . . , 0.00001]1×8).
In Figs. 9(a) and 9(b), it can be evidently observed that
KF method distorts in both feature trajectories and feature
errors. Besides, there are obvious abnormal fluctuations in the
velocity curves except at the outliers in Fig. 9(c). KF method
presents a worse path from the initial features to the desired
features in the servo task as shown in Fig. 9(d). Figs. 10(a)
and 10(b) illustrate the fluctuations feature trajectories and
their errors when outliers occur. We observe that the velocity
curves appear oscillation only during the time of outliers,
as well as the trajectories of robot end-effector in Cartesian
space.

Fortunately, the proposed method which relies on the
B-ELM and SVSF methods has strong learning ability and
robustness. It can be concluded that B-ELM-SVSF performs
robustness of visual servoing task in the case of non-Gaussian
noise.

2) SIMULATION CASE 2
We verify the performance of feature constraint between the
proposed B-ELM-SVSF and traditional KF methods in two
sub-cases. For sub-case 1 in simulation case 2, the state noise

covariance is Q = diag([0.001, . . . , 0.001]1×48), the mea-
surement noise is R = diag([0.001, . . . , 0.001]1×8). We set
the matrix of initial features So1 and the matrix of desired
features S∗o1 as

So1 =
[
304.6 212.6 238.2 332.2
535.4 564.0 658.8 626.4

]
,

S∗o1 =
[
602.1 245.9 136.4 465.2
319.7 195.0 533.7 673.6

]
.

The results without visibility constraint function are illus-
trated in Figs.11 and 12. The feature trajectories of KF
method reach the desired pose, but beyond the FOV. In the
actual operation, the servoing task fails directly due to the
feature points leave the image plane. The B-ELM-SVSF
method shows that the feature trajectories are tracked appro-
priately within FOV, and close to the edge of the image
plane in Fig.12(a). Besides, Fig. 12(a) also verifies that the
proposed method is able to constrained image feature to some
extent. The feature errors are all convergent to 0.5 pixel
in Figs. 11(b) and 12(b). Figs. 11(c) and 12(c) illustrate the
continuous velocity of the robot. In Figs.11(d) and 12(d),
the trajectory of robot end-effector in Cartesian space con-
verges to the desired pose with smooth trajectories.

To show the performance of visibility constraint function,
the matrix of initial features So2 and the matrix of desired
features S∗o2 are considered as sub-case 2 in simulation case 2.

So2 =
[
304.6 212.6 238.2 332.2
535.4 564.0 658.8 626.4

]
,

S∗o2 =
[
602.1 245.9 136.4 465.2
319.7 195.0 533.7 673.6

]
.
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FIGURE 11. KF method in sub-case 1 in simulation case 2: (a) image feature trajectories (b) image feature errors (c) robot end-effector velocities (d) the
trajectories of robot end-effector.

FIGURE 12. B-ELM-SVSF method in sub-case 1 in simulation case 2: (a) image feature trajectories (b) image feature errors (c) robot end-effector
velocities (d) the trajectories of robot end-effector.

FIGURE 13. Results of sub-case 2 in simulation case 2 as 1st Row for B-ELM-SVSF without visibility constraint and 2nd Row for B-ELM-SVSF with visibility
constraint. (a,e) feature trajectories, (b,f) the feature errors, (c,g) velocities of the end effector, (d,h) end effector trajectories.

Assume the height and thewidth be 700 pixels in the ellipse
of forbid boundary, and 600 pixels in the ellipse of danger
boundary. The hyperellipse smooth parameter κV = 4, safety
marginmV = 0. In this case, the state noise covariance isQ =
diag([0.004, . . . , 0.004]1×48), the measurement noise is R =
diag([0.004, . . . , 0.004]1×8).
In Fig. 13(a-h), the curves of the same servoing task both

without and with FOV keeping are shown. The features move
across Cdanger and Cforbid beyond limitation of image plane

as shown in Fig. 13(a), which means that B-ELM-SVSF
without constraint functions has risk to the failure of visual
servoing. Besides, the proposed method provides FOV con-
straint to keep smooth transition between image regions
shown in Fig.13(e). In Figs. 13(b) and (f), it is obvious that
the errors of the image features entering the danger area
Cdanger and the forbid area Cforbid change in their profiles,
while the features in the safe area are not affected basically.
Furthermore, similar changes of velocities can be captured as

223504 VOLUME 8, 2020



X. Ren et al.: IBVS Control of Robot Manipulators Using Hybrid Algorithm With Feature Constraints

FIGURE 14. (a) Experiment environments with eye-in-hand
configurations. (b) circular target.

FIGURE 15. The proposed method in experiment case 1: (a) image
feature trajectories (b) image feature errors (c) robot end-effector
velocities (d) the trajectories of robot end-effector.

in Figs. 13(c) and (g). It is easy to ensure continuous velocity
signals without any sudden changes. Therefore, implement-
ing velocity constraint can move the features away from the
target. With the proposed method, the trajectory of robot end-
effector is continuous and reasonable in Fig. 13(h).
From the above simulation, it can be seen that

B-ELM-SVSF method has a certain FOV constraint ability.
However, feature points still escape from FOV in some cases.
Therefore, we add the constraint function of image features to
ensure that the servoing task can be completed for all cases.

B. EXPERIMENTAL TESTS
Our VS system consists of a UR10 robotic controller, a com-
puter with Intel Core i5-65003, 20GHz CPU, 4GBs RAM
for image processing, the computer communicates with con-
troller by RS232C serial interface, and aUR10 6-DOF robotic
manipulator with a Pixoel UI-1240LE-C-1 camera mounted
at its end-effector is shown in Fig. 14(a). The object is a
circular target with four small black-colored circular disks of
different size on the table as shown in Fig. 14(b). The object
images are captured by the camera at a rate of 25 Hz. The
resolution is 1280 × 1024, and the center points of the small
circular disks are used as feature points.

We consider translational and rotational movement of
the camera in two cases to verify the effectiveness of our

FIGURE 16. The proposed method in experiment case 2: (a) image
feature trajectories (b) image feature errors (c) robot end-effector
velocities (d) the trajectories of robot end-effector.

FIGURE 17. Results for experiment case 3 as 1st column for KF and 2nd
column for B-ELM-SVSF. (a-b) feature trajectories, (c-d) the feature errors,
(e-f) velocities of the end effector, (g-h) end effector trajectories.

uncalibrated-IBVS based on B-ELM-SVSF. For the first case
of pure rotational movement, the initial and desired features
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FIGURE 18. Results for experiment case 4 as 1st column for KF and 2nd
column for B-ELM-SVSF. (a-b) feature trajectories, (c-d) the feature errors,
(e-f) velocities of the end effector, (g-h) end effector trajectories.

are SIr = (556.6, 630.0, 532.0, 560.2, 487.0, 655.0, 462.5,
585.3)T and SDr= (525.7, 530.1, 557.6, 463.3, 458.8, 498.5,
490.8, 431.9)T . In the experiment of case 2, the cam-
era involves a low rotational angle and large transla-
tional movement. The initial and desired features are
SIt = (1102.0, 358.8, 1074.4, 293.8, 1037.3, 385.9, 1009.5,
320.9)T and SDt= (542.4, 739.1, 512.1, 676.8, 479.7, 768.4,
449.4, 706.2)T . The experimental results are shown in
Figs. 15 and 16. In case 1, the feature trajectories are bent
lines, and the image errors are gradually convergent to 8 pix-
els. The trajectory of robot end-effector is accomplished from
the initial features to the desired features. For the case 2,
the feature trajectories and robot trajectory in the Cartesian
space are almost straight lines. The image errors converge
from the initial features to the desired features. The velocities
of robot end-effector decrease gradually in the servoing task.
Although there are obvious vibrations under the influence of
unknown factors during the process, the image trajectories
are not affected.

In order to further test the robustness of our proposed
method, we consider a simple servoing task to verify the

FIGURE 19. Results for experiment case 5 as 1st column for KF and 2nd
column for B-ELM-SVSF. (a-b) feature trajectories, (c-d) the feature errors,
(e-f) velocities of the end effector, (g-h) end effector trajectories.

robustness by introducing different statistical knowledge of
environment noise comparing with KF method. The ini-
tial and desired matrix of the image features are given as
SI= (447.8,363.5, 351.7, 383.9, 467.3, 459.9, 370.6, 480.3)T

and SD = ( 685.1, 496.1, 588.0, 519.5, 708.9, 593.6,
611.6, 616.9)T . In the experiment of case 3, we choose
Gaussian white noise with zero mean, the system noise
variance is Q = diag([0.0001, . . . , 0.0001]1×48), and the
observation noise variance R = diag([0.001, . . . , 0.001]1×8).
In the experiment of case 4, the noise of image feature
changes to the noise with zero mean and the covariance R =
diag([0.001, . . . , 0.001]1×8). In the experiment of case 5, 10
multiples of noise is added at 30-40s on the basis of the
experiment case 3.

The experiment results of case 3 are shown in Fig. 17.
Image trajectories move to the allowable range of the desired
features in the form of linear as same as the sub-case 1 in
simulation case 1. The image errors gradually converge from
the initial features to the desired features, the velocities of
end-effector has obvious vibration at the beginning and then
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decrease smoothly. The trajectory of end-effector is smooth
in the Cartesian space, however, KF method performs a
slight vibration. The experiment results of case 4 are shown
in Fig. 18. It is noted that the image trajectories are not
straight lines in KF method, the velocity curves appear twice
abnormal fluctuations at 20-80s, the trajectory in Cartesian
space is seriously affected by increasing noise. There are
no discernible influence in the B-ELM-SVSF method. The
image trajectories are still straight lines. Similarly, the robot
trajectory is smooth under increasing. The experimental
results of case 5 are shown in Fig. 19. The feature trajec-
tories show almost straight lines in our method, while the
trajectories of KF method is a bent line in Figs. 19(a) and (b).
The image errors of two methods gradually decrease sim-
ilar to Figs. 19(c) and (d). The velocities of end-effector
perform distinct vibrations when outliers occur, and then
gradually stable in Figs. 19(e) and (f). Figs. 19(g) and (h)
show smoother curves of robot end-effector without outliers.

The experimental results show the robustness of the pro-
posed method. From the comparative experiment of KF
method, it shows that the method has a stronger robustness
in the present of noise and disturbance.

VI. CONCLUSION
In this article, a novel IBVS system with hybrid control
method has been proposed. The method approximates the
feature Jacobian matrix through B-ELM and SVSF which
is robust to camera calibration errors and feature noises.
The B-ELM can quickly and effectively approximate the
nonlinear relationship of the feature Jacobian matrix, while
the SVSF plays a prominent role in overcoming disturbances
such as environmental noise and mechanical errors. In order
to avoid the task failures caused by image features beyond
FOV, an effective constraint function was designed to adjust
the motion speed according to the description of hyperelliptic
boundary. Meanwhile, the trajectory of image features was
effectively constrained to move within the boundary without
abrupt change of speed. The simulations and experiments
based on 6-DOF manipulator show that the proposed method
is effective.

In this study, simulation results are presented to FOV
constraint only, but we will focus on the application. Further-
more, the feature extraction in VS will be selected as diverse
feature information in our future work.
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