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ABSTRACT The trends in movement-related functional activity measurement for brain-computer inter-
face (BCI) are mostly associated with the central lobe of the brain. This consideration may be a faulty
approach for the paralyzed patient. This limitation demands an alternative approach for movement-related
BCI. For the first time, we propose the prefrontal hemodynamics for implementing movement-related BCI.
This paper aims to model the activation pattern and the classification performances of the prefrontal hemody-
namics regarding the movement-related events. Utilizing functional near-infrared spectroscopy (fNIRS) the
changes in the concentration of the oxidized hemoglobin and deoxidized hemoglobin regarding voluntary and
imagery movements are acquired. With necessary preprocessing, the fNIRS signals are statistically analyzed
to localize the most significant activated regions regarding the applied stimuli. The experiment shows that
movement-related events have a strong correlation with the prefrontal hemodynamics. The patterns of the
movement-related hemodynamics are modeled by polynomial regression and used to classify the voluntary
and imagery events based on the maximum similarity approach. The resulting classification accuracies are
found promising that proves the effectiveness of the prefrontal fNIRS signal to be effective in movement-
related brain functionality analysis.

INDEX TERMS Voluntary movement, imagery movement, hemodynamic responses, prefrontal cortex,
functional near-infrared spectroscopy, activation localization, polynomial regression, activation modeling,
machine learning based classifiers.

I. INTRODUCTION
The neural activations regarding the movement-related
events are one of the most important research areas for
implementing the practical brain-computer interface (BCI).
The neural activations can be measured from the brain
based on two fundamental methods- i) based on elec-
trical activity estimation from the scalp of brain and
ii) based on the hemodynamics estimation. Depending
on the electrical activities, the brain function measuring

The associate editor coordinating the review of this manuscript and

approving it for publication was Kemal Polat .

modality is electroencephalography (EEG) and magneto-
encephalography (MEG). EEG has a major limitation regard-
ing its spatial resolution (5 to 9 cm) [1]. MEG is not widely
used for functional brain imaging due to its high degree of
noise sensitivity [2].

The hemodynamics means the changes in the concen-
tration of oxidized hemoglobin (HbO2) and deoxidized
hemoglobin (dHb) in the total blood volume of the brain.
Based on the hemodynamics, functional magnetic resonance
imaging (fMRI) is a gold modality in the field of func-
tional brain imaging. The fMRI provides an excellent spa-
tial resolution (3∼6mm) but its temporal resolution is poor
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(3∼5sec) [3]. In the field of BCI, it has a very slight scope
of operation because of its very high cost, motion sensitivity,
and heavyweight. On this contrary, Functional Near-Infrared
Spectroscopy (fNIRS) is another technique for functional
brain imaging that provides very good spatial resolution
(∼1-1.5cm), moderate temporal resolution (up to 100Hz),
portability to use, high value of signal to noise ratio (SNR),
and less motion artifact compared to the others [4]–[6].
Furthermore, fNIRS is not as physically confining as fMRI
and it allows more movements compared to fMRI during
imaging. Recent publications [7], [8] demonstrate that fNIRS
is comparable to fMRI and this method is reliable and valid
for cortical activations measurement. As a result, fNIRS is
getting the most attention for the recent researches in the field
of functional neuroimaging and BCI.

The fNIRS is a noninvasive optical method that utilizes
the trans-illumination techniquewith NIR (850∼1000nm) [4]
light to measure the change in the concentration of HbO2,
dHb, and total blood volume. The brain activation level and
corresponding functional region can be evaluated by these
parameters. A number of research works have been per-
formed by fNIRS in different valid fields of research and
applications like mental workload assessment [9], [10], BCI
[11], [12], human body monitoring for diagnosis and treat-
ment [13], [14], cognitive skill [15], [16], emotions assess-
ment [17], [18], and many more. In addition, fNIRS proves
itself as a suitable modality for the brain-based experiment
to develop the mechanisms for neurorehabilitation [19]. The
motor activity (both voluntary and imagery) related to brain
functionality plays an important role in BCI. Around one bil-
lion people in theworld’s population experience some form of
disability [20]. If it could be possible to measure the proper
activation pattern of motor action (in the case of voluntary
and imagery) from the brain, BCI would be implemented to
decline their physical limitations through rehabilitation.

Many researchers investigated the brain functionality
related to voluntary and imagery movements by fNIRS.
The research works [21]–[24] investigated the properties of
voluntary and imagery movements through fNIRS modality
and reported the activation strength of motor execution and
imagination tasks. These studies suggested that a number of
areas in motor cortex become active due to the voluntary
and imagery movements and showed an increased amount
of HbO2 concentration. In [25], fNIRS based neuronal acti-
vations of imagery movements of the left and right-hand
wrists were classified by linear discriminant analysis method.
Three classes of brain responses are classified in [26] where
two classes were motor imagery tasks. Voluntary movement-
related tasks of left and right handwere classified in [27] from
the fNIRS signals of optimally selected channels. Multiple
motor imagery tasks (movements of the left hand, right hand,
left foot, and right foot) are classified in [28].

Since the most predictable region related to motor execu-
tion and imagery tasks is the motor cortex (central portion of
the brain) [29], all of the aforesaid research works [21]–[28]
conducted the investigations on the activations of the motor

cortex. There is a problem of considering central lobe of the
brain while the persons are paralyzed or previously disabled
because these patients have the inactiveness of the central
part of their brains. This issue can be a major obstacle to
designing motor imagery based BCI for paralyzed patients.
Though motor areas of the paralyzed persons are damaged,
in most of cases their frontal areas of the brains remain sound.
However, it is reported in [30]–[32] that the motor action
planning occurs in the frontal lobe. In addition, some works
[23], [33]–[36] reported that there is an indirect relationship
of motor actions (especially the motor imagery) with the
frontal lobe. Based on aforementioned idea, a simple survey
was performed to classify the left and right hands movement
(voluntary movement) from the prefrontal fNIRS data and
on average we have found 79% classifying accuracy from
five participants [37]. In addition, our statistical research
work [38] has established the relation between the motor
area and prefrontal area of the human brain in case of motor
action. These works indicate that the hemodynamic informa-
tion of movements can be measured from prefrontal cortex
by fNIRS. Most of the previous research works [21]–[26],
[37] regarding the movement-related stimuli by fNIRS are
based on the classification of two class movements. The
works also did not model the activation pattern of the different
voluntary and imagery movements with their localizations.
Therefore, multiple motor activity patterns of voluntary and
imagery movements have not been analyzed by fNIRS from
the prefrontal hemodynamics. So far our knowledge, the
localization of the multiple movement-related stimuli and
their classification accuracies has not been performed consid-
ering the prefrontal hemodynamics. As a result, there arises
a scope to investigate the neural activations of the prefrontal
cortex with respect to the stimuli of the voluntary and imagery
movements by fNIRS.

In this work, four different movements of the hands and
feet have been considered as both voluntary and imagery
manner. According to these stimuli, fNIRS data were
recorded from the prefrontal cortex of several young and
healthy male subjects. With proper signal pre-processing,
data were separated based on their class. Then, analysis of
variance (ANOVA) was used to localize the most signif-
icantly activated area regarding the stimuli. The ANOVA
results were verified by effect size (ES) estimation.

The temporal pattern of the change in the concentration of
both HbO2 and dHb signals regarding the most significant
areas were modeled by polynomial regression. Utilizing the
model activation patterns, a simple statistical classifier has
been proposed based on the spatiotemporal maximum simi-
larity concept. This proposed algorithm has been utilized to
classify the movement-related fNIRS signals. For classifica-
tion of the fNIRS signal, two, four, and six class problems
were considered. The overall idea of the proposed research
framework has been presented in Figure 1.

We have demonstrated the conventional time-domain fea-
ture extraction and classification strategy to classify the sig-
nals by four different classification algorithms: Artificial
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FIGURE 1. An illustration to describe the framework of this research work. This work localizes the significant activated areas regarding voluntary &
imagery movements and models those hemodynamic activation patterns. The fNIRS signals corresponding to the different movement related tasks
have been classified by several machine learning algorithms.

Neural Network (ANN), Support Vector Machines (SVM),
Linear Discriminant Analysis (LDA), and k-Nearest Neigh-
bor (kNN). We found that the classification accuracies of
the proposed and conventional methods are almost similar.
Eventually, this work contributes -

• To reveal the most significant activation regions of the
prefrontal cortex for the different voluntary and imagery
movements,

• To model the hemodynamic activation pattern based
on the change of HbO2 and dHb concentration using
polynomial regression,

• To propose a classification algorithm using the proposed
hemodynamic activation model, and

• Comparing the classification accuracy of the proposed
model with the accuracies of the conventional classifiers

The rest of the paper is organized as follows: The mate-
rials and applied mathematical methods are discussed in
Section II. In Section III, the results are presented with
discussions. We have concluded our research findings briefly
in Section IV.

II. MATERIALS AND METHODS
A. DATA ACQUISITION PROTOCOL
In this work, every participant performed eight different
movement-related tasks (four voluntaries + four imageries).
Since most significant voluntary movements of the human
beings are performed by hands and feet, the movements by
hands and feet (by means of voluntary and imagery) were
considered for the neural stimuli. The data acquisition pro-
tocol was checked and permitted by the ‘‘Data Acquiring
Ethics Evaluation Committee (DAEEC)’’ of Khulna Univer-
sity of Engineering & Technology (KUET). The subjects

were verbally informed about the protocol of the data acqui-
sition and according to the protocol all the subjects lifted
their left hand, right hand, left foot, and right foot, sequen-
tially. These four movements were performed in two kinds:
i) voluntary and ii) imagery. The time scheduling for the data
acquisition protocols is given in Figure 2. In one session this
unit protocol was performed four times by a participant. After
every session, each participant took rest at least five minutes.
Eventually, every participant performed 20 trials for each
movement-related task. A MATLAB based graphical proto-
col (as Figure 3) was designed for this research work that
helped the participants by providing the instructions to make
the data acquisition procedure easy with proper scheduling.
The code of the designed graphical protocol is freely available
in [39]. This program blinked according to the scheduled
tasks and instructed the participant to follow and perform
the tasks. In this graphical program, five different tasks were
arranged and those were movements of the left hand, right
hand, left foot, right foot, and rest. Finally, eight different
tasks have been considered for analysis those are voluntary
left hand (LH), right hand (RH), left foot (LF), right foot (RF)
and imagery left hand (iLH), right hand (iRH), left foot (iLF),
and right foot (iRF)).

B. DATA ACQUISITION
Thirty-five male subjects (age range=20 to 25) partici-
pated in the data acquisition procedure. Among them the
recorded signals of four participants were excluded due to
their poor signal quality. All participants were tested and
found right-handed depending on the recommendation of
Edinburg Handedness Inventory [40]. No participants had
any history of psychiatric, neurological or visual disorder.
In addition, no participant had pain in both hands and feet.
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FIGURE 2. Time schedule of data acquisition protocol for each participant regarding both the voluntary and imagery movements. This is a unit
task performing schedule that was repeated four times in each session to complete 20 individual trials of every task.

FIGURE 3. Schematic illustration of MATLAB based protocol instruction aiding application for the experiment. Regarding the instruction of this
application, the participant is asked to move left hand (voluntary or imagery) by Figure 3(a) and after that, Figure 3(b) instructs to take rest.

FIGURE 4. The optode and channel configurations of fNIR devices (Model 1200) sensor pad.

FIGURE 5. The optode and channel configurations of fNIR devices (Model 1200) sensor pad.

Also, their verbal consents were taken before the data acqui-
sition related to this research work as the rule of the uni-
versity. All data acquisition procedures were completed in
the Neuroimaging Laboratory of the Biomedical Engineering
Department of KUET obeying the declaration of Helsinki
[41]. For this work, a 16 channel continuous-wave fNIR
system (model: Biopac 1200 fNIR imager) was used. By the
system, hemodynamic signals from the prefrontal cortexwere
acquired from all the participants. The optode band for data
acquisition for this fNIR system contains four NIR light

sources and 16 detectors. The physical configurations of the
optode band on prefrontal cortex are given in Figure 4. The
data sampling rate was 2 Hz and COBI (cognitive optical
brain imaging) software [42] was used for data acquisition.
The total hardware configuration associated with the data
acquisition is presented in Figure 5.

In this fNIRS system, two different sources of NIR
light (λ1 =730nm & λ2 =850nm) were used those are
almost transparent to skin, bone, and brain tissue [43]. The
chromophores (HbO2 and dHb) of the blood absorb NIR
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FIGURE 6. This figure presents the actual signal dimensions in
Eigen-space which is formed by the three principal components of PCA
analysis. The figure shows four linearly uncorrelated solution vectors with
the channel number.

with dissimilar absorption coefficients. Therefore, from the
scattered backlight after absorption, the amount of existed
chromophores was measured modified Beer-Lambert law
(mBLL), i = i010−ζλ where, i = intensity of scattered-
back light, i0 = intensity incident light and ζλ is the optical
density which depends on the wavelength [44]. In addition,
the concentrations of dHb and HbO2 were calculated as [45],
[46],[
1CHbO2 (t)
1CdHb(t)

]
=

[
αHbO2 (λ1) αdHb(λ1)
αHbO2 (λ2) αdHb(λ2)

]−1 [
ζλ1
ζλ2

]
1

dPL × DEM
(1)

In (i) ζλ1 and ζλ2 are optical density for two correspond-
ing NIR wavelength, λ1 and λ2. Here, α is the excitation
coefficient of HbO2 and dHb in µMole-1mm-1, dPL is the
unit-less differential path length factor, and DEM is the dis-
tance between emitter and detector. The unit of DEM is mm.
Besides,1C is the concentration of HbO2 and dHb inµMole.

C. PREPROCESSING
At first all the fNIRS signals were separated according to
the tasks and thereafter signals of the same tasks for all the
participants were arranged in individual arrays. Since we
used 16 channel fNIRS system, the 16 channel fNIRS data
carry the information of 16 different spatial positions of the
prefrontal cortex. The positions and corresponding channels
are shown in Figure 3. Interestingly, all these channels are
not linearly uncorrelated. To check the linearly correlated and
uncorrelated channels, principal component analysis (PCA)
was applied and found that the signals are of four dimensions.
The linearly uncorrelated profiles of the channels have been
shown in Figure 6 where the Eigen-space is formed by the
three principal components. In this consequence, the pre-
frontal cortex has been divided into four major region of inter-
est (ROI) those are- Left Lateral (LL: includes channels 1, 2,
3, & 4), Left Medial (LM: includes channels 5, 6, 7, & 8),
Right Medial (RM: includes channels 9, 10, 11, & 12), and
Right Lateral (RL: includes channels 13, 14, 15, & 16) [47].

It was found that the 4 signals corresponding to four channels
in every defined region show a very strong correlation (0.95
< r < 1). Therefore, these four signals can be averaged to
reduce the total dimension i × 16 to i × 4. Here, i indicate
the sample number. If, a signal, X (N )i×16 is of i× 16(here N
is all samples of that signal), then the procedure to reduce its
dimensions according to the previous description as,

LL(N )i×1 =
1
4

4∑
k=1

X (N )i×k (2)

LM (N )i×1 =
1
4

8∑
k=5

X (N )i×k (3)

RM (N )i×1 =
1
4

12∑
k=9

X (N )i×k (4)

RL(N )i×1 =
1
4

16∑
k=13

X (N )i×k (5)

This selection of ROI is very important to localize the
neural activities [48] and to reduce the feature dimension,
which helps to achieve the high classification accuracy.

Savitzky-Golay (SG) filter with frame length 21 and
order 3 was used to filter the noisy fNIRS signal. For smooth-
ing the fNIR signals, we have used SG filter because of
its special benefit i.e., SG filter is better than FIR filter for
removing high-frequency contents from signals. Because,
in the case of FIR filter, the Euclidian distance between
original and filtered signal is more than SG filter [49]. Fur-
thermore, employing SG filter needs no delay correction as
an FIR filter. For each trial of the fNIRS data were corrected
by subtracting the baseline from the original signal. Baseline
was calculated from the average of the first 3 seconds of the
task. This consideration [23], [50] ensures the initial signal
points regarding each trial to remain at the zero level or the
value closed to zero.

D. MODELING
This research work scopes to model the activation pattern
with its localization. Consequently, modeling is done by two
steps:

1) Statistically finding the localization of the activation,
and

2) Activation pattern modeling by polynomial regression.
The methods regarding the activation localization and

modeling are presented as follows.

1) LOCALIZATION BY STATISTICAL ANALYSIS
One-way repeated ANOVA was used to find the significant
ROI for each activity, separately. The signal mean was taken
from three sample window (0-10, 10-20, and 20-30 sam-
ples) for one-way repeated measures of ANOVA. Student’s
t-distribution statistics were also used to find the significant
difference between the hemispheres regarding any voluntary
or imagery event. Since the p values of ANOVA is not enough
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to find the significance level for a big dataset [51], we also
calculated ES of the event to localize the hemodynamic acti-
vation. Statistically, we can find the difference in activation
level using ES calculation. ES is a simple statistical method of
measuring the difference between groups of mental activation
due to external excitation and resting-state activation. The
widely used method of ES estimation is Cohen’s d method.
Suppose that, x1 and x2 are the mean values of the entries
of group 1 and 2, respectively, then, the ES can be estimated
between x1 and x2 by the following method [52],

d =
x1 − x2√

(N1−1)S21+(N2−1)S22
N1+N2

(6)

Here, N1 and N2 are the numbers of entries in each vector and
S1 and S2 are the standard deviation of the dataset, respec-
tively. The ROI’s satisfied the significance by both ANOVA
and ES test were considered for most significant activated
ROI for a specific event.

2) ACTIVATION MODELING
After the confirmation of the statistically discovered acti-
vation localization, the fNIRS signals of all trials from all
subjects were averaged to fit as model activation patterns
regarding the event by polynomial regression. To fit a time
series of data by polynomial fitting or regression, we usually
contemplate a polynomial equation as an estimation function
and assume that the estimation function, E(x) is of k th degree
polynomial that can be presented as,

E(x) = a0 + a1x + a2x2 + ...+ akxk (7)

Therefore, the difference between the actual value, Y and the
estimated value resulting from the proposedmodel estimating
equation, E(x) is called as residual, R2 = |E(x)− Y |2.
For attaining the finest fitted estimated model equation, it is
the foremost target to minimize the value of the residual.
It is reported in [53] that hemodynamic activations can be
modeled by polynomial fitting with the value of k = 5.
In this work, k = 5 has been taken to get the minimum value
of residual and for the coefficient, ai at the minimum error
condition, the partial derivative of R2 is zero. To achieve the
regression with k th polynomial we get,

y1
y2
·

·

yn

 =

1 x1 x21 · · x

k
1

1 x2 x22 · · x
k
2

· · · · · ·

· · · · · ·

1 xn x2n · · x
k
n



a0
a1
·

·

ak

 (8)

The previous relation can be represented as,

Y = Xa (9)

Here, X is a Vandermonde type matrix. This can be solved as,

XTY = XTXa

or, a = (XTX )−1XTY (10)

The order of the polynomial equation was estimated from
the error performance of the fitted results. A satisfactory level
of error was taken as the threshold for different activation
modeling.

E. CLASSIFICATION
For classification, the voluntary and imagery tasks from the
fNIRS signal, conventional feature extraction and classifi-
cation technique can be applied. Moreover, in this work,
we have proposed a statistical way to classify the fNIRS
signal utilizing the proposed activation model of the HbO2
and dHb concentration. Although the proposed classification
method is not too powerful to the conventional classifiers, it is
very simple to implement and significant in the results. Here,
both the proposed method and the conventional classification
method have been applied to compare the results.

1) PROPOSED CLASSIFICATION METHOD
Suppose, an fNIRS signal is to be tested whether it is the
signal of LH, RH, iLH, iRH, iLF, or iRF. The testing sig-
nal can be presented as Sk = [SLLSLMSRMSRL] that con-
tains 4 columns of data of 4 different ROI’s of the prefrontal
cortex and every column of signal contain N number of the
data sample. The value of k = 1, 2, 3, and 4 indicates
the positions (LL, LM, RM, and RL, respectively). Again,
we have six model equations of six different stimuli (vol-
untary and imagery). The temporal activation model can be
represented as, M c

τ where the notation τ = 1, 2, 3, 4, 5, and
6 (LH, RH, iLH, iRH, iLF, and iRF, respectively) represents
the index of the stimuli and c = (1, 2) = (HbO2, dHb) rep-
resents the concentration information. Therefore, M2

3 means
the activationmodel of iLH in dHb concentration. Tomeasure
the maximum similarity index of the testing signal Sk with the
models M c

τ , the following correlation can be calculated.

rcτ,k =

i=N ,k=4∑
i=1,k=1

[
(Sk (i)− S̄k )(M c

τ (i)− M̄
c
τ )
]

√(
Sk (i)− S̄k

)2 (M c
τ (i)− M̄ c

τ

)2 (11)

Therefore, testing with six different models we get two final
correlation coefficient matrices, r1τ,k and r2τ,k for the HbO2
and dHb respectively, where,
rcτ,k = [rc1,kr

c
2,kr

c
3,kr

c
4,kr

c
5,kr

c
6,k ]. The size of r

c
τ,k is 1× 24.

According to the proposed methodology, the maximum sim-
ilarity pattern will show the minimum error. Therefore, the
maximum value in the elements of the correlation coefficient
matrix rcτ,k indicates the signal class. So, the index of the
maximum valued element, Idx of the correlation coefficient
matrix rcτ,k can be found by applying the following argument,

Idx = index(max(rcτ,k ) = rcτ,k ) (12)

If the model activation patterns are loaded in the algorithm of
data testing in the proposed sequences, the proposed model
suggests that theminimum valued index of a specific task will
follow a fixed pattern. The aforementioned methodology has
been briefly presented with a flow diagram in Figure 7. The
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FIGURE 7. Classification mechanism of the proposed method utilizing the
proposed activation models.

FIGURE 8. The overall mechanism of the conventional machine learning
based classifiers. The training phase (a) and testing phase (b) are
separately shown in Figure.

index for the value of τ will be 3, 6, 11, 14, 20, and 21 for all
six classes, respectively. This same design can be regarded
as two to six classes. For that proposition, the value of τ is
to set according to the number of the classes. In this work,
classifications of the two, four, and six class approaches were
conducted.

2) CONVENTIONAL CLASSIFICATION METHOD
In the conventional classification approaches, feature extrac-
tion is a primary step to classify the data set. Although there
are many techniques to extract features from the signals
like independent component analysis, principal component
analysis, common spatial pattern etc., these methods are often
used in the feature extraction of the complex signals like EEG,
MEG, EOG, etc. for its time and frequency domain proper-
ties. Since fNIRS signals exhibit simple time-domain charac-
teristics, most of the classification techniques need only time
domain features like mean, slope, skewness, median, maxi-
mum, minimum, etc. [37], [54]–[56] to classify the signals.
Mean, slope, skewness, median, maximum, and minimum
was considered as features.

For classification purpose, the signals are generally sepa-
rated into two parts: i) for training purpose and ii) for testing
purpose. For a 5-fold cross-validation technique, 4/5 portion
of the data is used to train the classifier to make a model
and the rest of the data are used to predict the performance
of the model. The training and testing files are separated
with 5-different combinations from the original data set. Then
the overall classification accuracy is found by averaging the
results of the 5 different classification accuracies. This train-
ing and the testing procedures are shown in Figure 8 where
there are two phases: training phase Figure 8(a) and testing
phase Figure 8(b).

Although ‘‘No Free Lunch’’ theorem claims that no clas-
sification mechanism is entirely superior to the other [57],
the most commonly used classifiers in fNIRS based event
classification was utilized in this work. The review work
[58] found that four classifiers are repeatedly used by the
researchers of fNIRS based BCI and those are LDA, SVM,

kNN, and ANN. These four classifiers were used to classify
the events. Though the detail mathematical explanations of
these machine learning based algorithms are out of the scope
of this paper, a short note on the working method of each
individual classification method is given here.

LDA: LDA is widely used classification technique in
fNIRS signal classification due to its low computational com-
plexity and high speed [50], [58]. To classify or separate the
two or more than two-class data, LDA employs discriminant
hyper-plane(s). Since the main mechanism of the LDA is
dimension reduction, it chooses the hyperplane(s) by mini-
mizing the ratio of within-class variance and maximizing the
ratio of between-class variance (i.e., Fisher’s criterion [58])
assuming the data of the classes are Gaussian distributed with
equal covariance. Based on Fisher’s criterion, the effective
projection matrix P is calculated in LDA as [50], [58],

f (P) =
det(PT τbP)
det(PT τwP)

(13)

In (13), τb and τw stand for the between-class scatter matrix
and the within-class scatter matrix, respectively. Besides,
det(•) represents the determinant of the matrix.We can define
τb and τw by the following relations [50], [59].

τb =

m∑
i=1

νi(µi − X̄ )(µi − X̄ )T (14)

τw =

m∑
i=1

∑
xk∈classi

(x − µi)(x − µi)T (15)

Here, x’s are the samples of the feature vector of a class, µi
and X̄ represent the sample mean of class i and the grand
mean of the total samples of m classes, respectively. The
number of total samples is represented by ν where, νi repre-
sents the number of samples in class, i. The solutions of (14)
and (15) can be found considering them as an eigenvalue
problem that leads to finding the optimum values of the
projection matrix, P. In Matlab 2017a, fitclda() was used to
construct the LDA based predictive model which was further
utilized with 5-fold cross-validation to check the classifica-
tion performance.

SVM: SVM is an extensively employed classifier for its
high prediction accuracy in high-dimensional features [60]–
[62]. SVM can be used as a linear or nonlinear method.
The main mechanism followed by SVM is to generate the
hyper-planes that maximize the margin among the classes.
The nearest points of the hyper-planes are called support
vectors. The discriminating hyper-plane in a 2D feature space
can be formularized as,

φ(x) = d .x + c1 (16)

In (10), x, d ∈ <2 and c ∈ <1. To find the optimal results
of d∗ maximizes the distance between the hyper-plane and
the support vectors. This maximization procedure is obtained
by minimizing the following cost function (17) cogitating the
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restrictions given in (18) [60]–[64].

φ(d, ξ ) =
1
2
‖d‖2 + 0 ·

Z∑
z=1

ξn (17)

(xn · d + c1) ≥ 1− ξn for yn = +1

(xn · d + c1) ≥ −1+ ξn for yn = −1

ξn ≥ 0∀n (18)

In (17) dT d = ‖d‖2 and 0 is a regularization parameter that
can be chosen by the users based on the penalty factor of
classification errors. Besides, ξn represents the measurement
of error during the training period, Z represents the number
of samples those are misclassified, and yn represent the class
label for the nth sample (for a binary classification problem,
it is +1 and −1). In this work, we used the Matlab toolbox
as one versus all approach of SVM. The SVM structure was
defined with polynomial kernel function with default order
value 3.

kNN: Although kNN is known as a lazy nonparametric
classifier, till now it is chosen by the researchers of various
fields because of its simplicity. This method does not need
any explicit training phase to generalize the training feature
vectors. Therefore, the training phase is precisely fast. Dur-
ing the training period, kNN actually keeps all the training
features with their labels for the testing phase. The kNN
algorithm finds the points from the training data those are
nearest to be considered for the selection of the class of a new
testing observation. To take decision on the nearest points,
there are several distance calculating formulas like Euclidean,
Minkowoski, Cityblock, Manhattan, Mahalanobis, Cosine,
Chebychev, etc.

Therefore, we find there key steps of the kNN approach:
i) a set of training feature vectors with label information ii)
a distance metric to measure the distance between objects,
and iii) the number of the nearest neighbors, k . Suppose,
we have a training set, (T (ϕ, y) ∈ T ) that contains the feature
vectors, ϕ with their labels, y and a test object t = (ϕ′, y′)
where ϕ′ is the feature vectors of the test object and y′ is
its class. Now, the kNN algorithm measures the distance
between (ϕ′, y′) ∈ t and the training objects (ϕ, y) ∈ T to
estimate the nearest neighbor list,(ϕi, yi) ∈ Tt . From the list
of the nearest neighbors, the class of the object will be decided
by the following majority voting condition [65],

Majority Voting:y′ = argmax
v

∑
(ϕi,yi)

I (v = yi) (19)

where ν is a class label. On the other hand, yi is the class
label for the ith nearest neighbors and I (∗) is a function that
indicates the value 1 for the true argument and 0 otherwise. In
our proposed kNN based predictive model, the distance cal-
culation was performed by the Euclidean method with k = 3
for two-class and k = 5for four and six-class classification.

ANN: ANN is a complex but very efficient classifier.
This algorithm was also used in this research work to find
the highest classification accuracy of fNIRS based BCI

system [37], [66]. ANN has the quality to mimic the com-
portment of the human brain. For the feedforward networks,
commonly multilayer perceptors consist of three type lay-
ers: input, output, and hidden layers. The objective of the
input layer is to buffer the distribution of the input signals
xn(n = 1, 2, 3...) towards the hidden layer neurons. Each
hidden layer neuron adds the input signals (xn) after weighing
the input signals by the strengthsWjn from the input layer
and calculate the output, Y where Y is a function of their
summations [37].

Yj = f

(
n∑

n=1

Wjnxn

)
(20)

Here j is neuron numbers,1Wjn is the weight of a connection
between n and j according to their relation,1Wjn = ηδjxn.
Here, η is the rate of learning parameter and the factor, δj
depends on the condition whether j is an input or hidden neu-
ron. The adjustments of the weights are generally estimated
by the back-propagation algorithm. Let, Vi be the prediction
for jth observation in an ANN system and is a function of
the network weights vector W = (W1,W2, ...). Therefore,
e, the total prediction error will also be a function of W
as, e(W ) =

∑
[Yj − Vj(W )]2 [66]. For every weightWi,

according to the gradient descent algorithm the updating
formula is considered as Wnew = Wold + α(∂e/∂W )Wold .
Here, α is the learning parameter and the value of α lies
between 0 and 1. In this work, we used two hidden layers
for two class classifications and four hidden layers for the
four and six class classification problems. In every case, the
classification accuracy was calculated with a 5-fold cross-
validation technique.

III. RESULTS AND DISCUSSIONS
The activations of the four voluntary and imagery movements
have been presented in Figure 9 and Figure 10, respectively.
This is a result of an arbitrarily selected participant. The
results have been presented after separating the data based on
the ROI’s, correcting baseline, and filtering. In the figures,
both HbO2 and dHb activation patterns have been presented.
From the graphical depiction of the neural activations, the
most significant activated areas and the activation patterns
can be assessed. From the hemodynamic responses (HbO2
and dHb) of four voluntary and four imagery tasks have been
given regarding four ROI’s (LL, LM, RM, and RL).

From the results of Figure 9, we get voluntary hand
movements to create significant activation in the prefrontal
cortex. The hemodynamics due to voluntary movements of
the left and right hand show contralateral activation in the
opposite hemispheres. Due to the left-hand movement, the
activation is noticeable in the RM region of the prefrontal
cortex and oppositely the LM region is activated due to the
right-hand movement. The other regions show the random
activation which does not indicate the clear hemodynamic
activation. On the other hand, the voluntary movements of
the left and right feet also show random activations as given
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FIGURE 9. The change in hemodynamic concentration (HbO2 and dHb) regarding the movement execution stimuli: LH (a), RH (b), LF (c), and RF
(d) correspond to the ROI’s: LL, LM, RM, and RL. It is the hemodynamic activations of a single participant. The activations are regarding 20 trials of
four movement execution tasks.
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FIGURE 10. The change in the concentration of HbO2 and dHb regarding the imagery movement stimuli: iLH (a), iRH (b), iLF (c), and iRF
(d) correspond to the ROI’s: LL, LM, RM, and RL. It is the hemodynamic activations of the same participant as the data of Figure 7. Here, there are 20
trials of four imagery movement tasks.
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FIGURE 11. The grand average hemodynamic activation pattern (HbO2 & dHb) from all the trials of all the participants regarding only the
most activated regions of prefrontal cortex. Here the activation pattern of LF and RF movements are excluded due to their insignificant
(p>0.05) activation level.

in Figure 9(c) and Figure 9(d). From the results of imagery
movements given in Figure 10, we find that the hemody-
namic activations due to the imagery hand movements show
similarity with the voluntary movements but the activation
strength is lower than that of the voluntary movements.
In addition, the imagery feet movements show significant

activation in the lateral area of the prefrontal cortex. The
imagery left and right foot activates the right and left hemi-
sphere of the prefrontal cortex, respectively where the activa-
tions of the RL and LL regions are most noticeable as given
in Figure 10(c) and Figure 10(d). To examine the significant
neuro-activation considering the data of the total population
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FIGURE 12. The average activation pattern of HbO2 and dHb of different voluntary and imagery movements and their model activation
pattern by 5th order polynomial regression.

FIGURE 13. Subject dependent classification accuracies for two class data (iLH & iRH).

involved in this research, statistical analysis, ANOVA was
performed. One way repeated measures (three levels: 0-5, 5-
10, and 10-15 sec) ANOVAwas performed on the fNIRS data
of the tasks (left-hand, right-hand, left-foot, and right-foot
movement as voluntary and imagination manner) to reveal

the significant activation localization of the region of interests
(LL, LM, RM, and RL). The ANOVA was conducted on the
mean value of HbO2 and dHb concentration. From the results
of ANOVA, the following significant hypothesis has been
found:
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TABLE 1. The Statistical Results of the Activations Regarding All Voluntary and Imagery Stimuli. Here, Both Results of Anova and Es are Tabularized.

FIGURE 14. Subject dependent classification accuracies for four class data (iLH, iRH, iLF, & iRF).

LH & iLH: Due to the left hand movement execution
and imagination, significant (p <0.001) increase of HbO2
concentration (F(2,90)=108.34, for voluntary movement,
F(2,90)=106.35 for imagery movement) and decrease and
dHb concentration (F(2,90)=103.58 for voluntary move-
ment, F(2,90)=80.73 for imagery movement) were occurred
in RM region of PFC. Moreover, other regions showed
insignificant activations (p >0.01). The effect of the hemi-
sphere on the left-hand movement (voluntary and imagery)
was tested by t-distribution on the mean value of HbO2 con-
centration of left and right hemisphere. The right hemisphere
(RM+RL) showed a significant difference (t = 6.7510,

p <0.001 for movement execution and t = 5.6555, p <0.001
for imagery movement) than the left hemisphere (LL+LM).
Moreover, the activated region (RM) due to the task (left
hand voluntary and imagery movement) showed significant
ES (2.4439 and 1.5233) compared to the control (rest) state.

RH & iRH: Due to the right hand movement as volun-
tary and imagery, significant (p < 0.001) increase of HbO2
concentration (F(2,90)= 195.67 for voluntary movement &
F(2,90)= 56.62 for imagery movement) and consequently
there occurred a significant decrement in dHb concentra-
tion (F(2,90)= 138.8 for voluntary movement, F(2,90)=
40.39 for imagery movement) in LM region of PFC.
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TABLE 2. The Functional Neuroimages of Prefrontal Cortex Regarding Different Voluntary and Imagery Movements. These Images are Prepared from the
Grand Average of All Population’s Trials.

Moreover, other regions showed insignificant activations
(p > 0.01). The effect of the hemisphere on the left-
hand movement (voluntary and imagery) was tested by t-
distribution on the mean value of HbO2 concentration of
left and right hemisphere. The left hemisphere (LL+LM)

showed a significant difference (t = 13.4297, p < 0.001 for
movement execution and t = 4.2874, p < 0.001 for imagery
movement) with the right hemisphere (RM+RL). Moreover,
the activated region (LM) due to the task (movement of
the right-hand as voluntary and imagery manner) showed
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FIGURE 15. Subject dependent classification accuracies for six class data (LH, RH, iLH, iRH, iLF, & iRF).

significant ES (1.6527 and 1.1997) than the control (rest)
state.

In case of voluntary and imagerymovements of LH andRH
some other regions showed significant activation (p < 0.01)
based on the results of repeated ANOVA (see Table 1) but for
large observations the p-value is not enough [51] for taking a
statistical decision. Therefore, we also considered the value
of ES to confirm the activation strength of the concerned ROI.
The regions showed the significant ES have been considered
as the significantly activated regions for the corresponding
task (see the Table 1).

LF&RF: The data regarding the voluntary movements of
the left and right foot showed no significant activation either
in HbO2 or dHb concentration with insignificant ES. Since
the activation region of the lower body part is situated in the
deep brain, this inactiveness may occur. This result suggested
us to advise the participants to concentrate deeply to imagine
the feet movement during data acquisition so that there a
significant cognitive load may occur in the prefrontal cortex.

In case of left and right foot imagery movement, several
ROI’s were found as significant according to the results of
ANOVA. The LF imagery movement showed the significant
activations in RL (F(2,90)= 56.62, p < 0.001 for HbO2 and
F(2,90)= 40.39, p < 0.001 for dHb) and RM ((F(2,90)=
330.16, p < 0.001 for HbO2 and F(2,90)= 265.94, p < 0.001
for dHb). However, two different regions (RM&RL) showed
significant activations with the ANOVA outcomes, only the
RL region showed significant ES (=3.0541).

As a result, only the RL region can be considered as the
responsible area of interest for the activation of LF imagery
movement. Similarly, from the one-way repeated ANOVA
test, several significant activated regions are found for the
right foot movement (LL: F(2,90)= 300.71, p < 0.001
for HbO2 and F(2,90)= 246.56, p < 0.001 for dHb, LM:
F(2,90)= 358.22, p < 0.001 for HbO2 and F(2,90)= 314.48,
p < 0.001 for dHb, and RM: F(2,90)= 10.47, p < 0.001 for
HbO2 and F(2,90)= 12.87, p < 0.001 for dHb). Although

three different regions were found as activated according to
the ANOVA results, two of them showed significant ES val-
ues (LL: 1.1872 and RL: 0.6232) and between them, only the
LL showed the highest (around two times than RL) ES value.
Therefore, LL is the most significant region of activation due
to the imagined movement of RF. All the results regarding
ANOVA and the ES have been tabulated in Table 1. From
the results of ANOVA and ES, the most significant areas
for different tasks were selected. The concentration changing
pattern of HbO2 and dHb regarding the most activated area
were averaged from the data of all the trials of all participants.
The activation patterns of HbO2 and dHb of the correspond-
ing stimuli have been presented with their error disparity by
Figure 11.

Moreover, to show the activation pattern due to the volun-
tary and imagery movements in the total area of the prefrontal
cortex the functional neuroimages are given inTable 2. These
functional neuroimages have been prepared based on the
grand average value of the total population dividing five equal
windows from the beginning of the task to the end of the
trial. The concentration changes of the HbO2 were consid-
ered here to construct the neuroimages where the activation
level was registered on the MRI brain images. The total area
covered with the activation level of the 16 channels was done
with 20 points B-Spline interpolation technique using the
fNIRSoft [67]. The color bar is placed just aside the neuro
images to understand the activation levels.

The mean value of HbO2 concentration due to voluntary
hand movements (both hands) are more than that of the
imagery movements of hands. In addition, the activation level
of imagery feet movements is comparatively lowest than
the voluntary and imagery movements of the hand. These
results reveal that the voluntary and imagery movements of
upper limbs show more activation than that of lower limbs.
To observe the difference in the concentration of HbO2 and
dHb corresponding to different stimuli the mean concentra-
tions are as of Figure 12.
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FIGURE 16. Average classification accuracies of the different classifiers for two, four, and six class fNIRS data by the applied classifiers.

The mean concentration changes of HbO2 and dHb in Fig-
ure 12 have been considered as the model activation pattern
regarding the stimuli. The model activation patterns of volun-
tary and imagery movements were modeled by the 5th order
polynomial regression. The dotted lines in Figure 12 repre-
sent the fitted line by the polynomial regression. The mean
concentration of the HbO2 and dHb have been presented with
the solid lines and corresponding fitted curves with 5th order
polynomial regression has been presented by the dotted line
with the same color of solid lines. The model equations of the
significant voluntary and imagery stimuli regarded activation
patterns in the concentration change in HbO2 and dHb have
been given by the following relations (21) and (22), as shown
at the bottom of the page, respectively.

It can be hypothesized that the most activated region
for a typical stimulus shows the activation pattern closely
correlated with its model equation. Therefore, the maximum
temporal similarity pattern with its proper spatial region
according to the proposed activation model gives us the class
of the signal. Implementing the proposed methodology of
the signal classification technique, subject dependent task

classification was conducted based on the two, four, and six
class perspectives. The subject dependent classification accu-
racies of the proposed method have been given in Figure 13,
Figure 14, andFigure 15. Here, the results of two, four,
and six class movement-related tasks are given. Moreover,
the data classes have been oriented as two classes with iLH
and iRH, four classes with iLH, iRH, iLF, and iRF, and six
classes with LH, RH, iLH, iRH, iLF, and iRF. From the
results we found that utilizing the model activation pattern of
the proposed work, the average classification accuracies are
75.16±7.12 (2-class), 57.58±6.69 (4-class), and 51.11±7.74
(6-class). Since the spatiotemporal activation pattern of the
LH & iLH and RH & iRH are similar (see Figure 11 and
Figure 12), six class classification accuracies are slightly
inferior. Further processing is necessary to improve the clas-
sification accuracies of six class problems. On the other hand,
the average classification accuracies of the two and four class
aspects are quite convincing.

We also classified the fNIRS data of voluntary and imagery
movements considering the time domain features (mean,
slope, variance, and maximum). The HbO2 and dHb signals


LH (x)RM
RH (x)LM
iLH (x)RM
iRH (x)LM
iLF(x)RL
iRF(x)LL

 =

−0.33090 0.85623 1.58377 −3.88827 −1.83626 4.20650
−0.26068 0.91684 0.97558 −3.90405 −0.74627 4.00871
−0.15412 0.80454 0.43885 −3.14731 −0.12502 2.76679
−0.17562 0.58642 0.82504 −2.55847 −0.96458 2.39623
−0.27519 0.40188 1.22956 −1.75371 −1.32351 1.81244
−0.24658 0.43323 1.02428 −1.79568 −0.99342 1.75589

×


x5

x4

x3

x2

x1

x0


HbO2

(21)


LH (x)RM
RH (x)LM
iLH (x)RM
iRH (x)LM
iLF(x)RL
iRF(x)LL

 =

0.17856 −0.44935 −0.85301 2.04847 0.98713 −2.22508
0.14227 −0.45453 −0.52526 1.90815 0.39006 −1.92825
0.10783 −0.56848 −0.30631 2.21202 0.08637 −1.92738
0.12302 −0.41530 −0.58965 1.81203 0.69179 −1.85155
0.18331 −0.82022 −0.82071 1.21678 0.88556 −1.24722
0.18479 −0.30402 −0.77679 1.25893 0.76680 −1.22939

×


x5

x4

x3

x2

x1

x0


dHb

(22)
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of proposed ROI’s were considered for these time domain
feature extraction. The signal window for feature extraction
was considered as 5-15s since this window is the mostly acti-
vated period [68]. The features of two, four, and six class data
were used to train and test the LDA, kNN, SVM, and ANN
classifiers. The classification accuracies of the two, four, and
six class data by the four different classifiers are given in
Figure 13, Figure 14, and Figure 15, respectively along
with the results of the proposed classification method. The
classification accuracies have been presented as the subject
dependent approach.

The average classification accuracies of the conventional
classifiers along with the proposed activation model are given
in Figure 16. From the results, we can see that the clas-
sification accuracies found by ANN and SVM are better
than the kNN and LDA. In the case of ANN and SVM, the
nonlinear kernel function has been used and the accuracies
are quite good for four and six class problems. On the other
hand, the proposed classification method shows significant
classification accuracies. Although it provides slightly lower
classification accuracies than that of the ANN and SVM, the
proposed method has no training stage like the conventional
classifiers (ANN, SVM, kNN, and LDA). Therefore, by uti-
lizing the proposed mechanism it is easier to implement to
find the class of a signal from its activated region (spatial
information) and the temporal pattern of the activation.

IV. CONCLUSION
This paper report the localization of activations in the pre-
frontal cortex due to voluntary and imagery movements and
modeled the activations of different movement-related events
with polynomial regression. This work opens the doorway to
measure the voluntary and imagery movements from the pre-
frontal hemodynamics by fNIRS modality. From the overall
results of the proposed researchwork, we reveal that the upper
limb movements (LH and RH) by voluntary and imagery
movements are easily measurable from the prefrontal cortex
due to their activation strength than the lower limb (iLF and
iRF) activation. The voluntary movements of the lower limb
(LF and RF) did not create activation significantly in the pre-
frontal cortex. This may be happened due to being the func-
tional area of lower lamb activities situated in the deep brain.
The hemodynamic activations based on the concentration
change in HbO2 and dHb regarding the significant activities
have been also modeled by the polynomial regression. These
model equations are useful to assess the prefrontal hemody-
namic activation pattern of the proposed movement-related
events. In addition, this work proposes a classification tech-
nique utilizing the proposed activation models to classify the
fNIRS data. We classified the two, four and six class fNIRS
data including the voluntary and imagery tasks. The resulting
classification accuracy of the proposed approach has been
found convincing. The same signals were also classified by
the conventional classifiers from the temporal features of the
signals. From the comparisons of the classification accura-
cies by the conventional and the proposed approach, it has

been found that the proposed method provides accuracies
slightly lower than the ANN and SVM but it provides a better
result than that of the kNN and LDA. Another benefit of the
application of the proposed method is its non-necessity of the
training phase. The matrices of the polynomial coefficients
(see (17) and (18)) regarding the propose activation models
can be used as the initial marker to compare a signal to find its
class. So, it is easier to implement the proposed classification
methods for the voluntary and imagery movement-related
task classification from the prefrontal hemodynamics. Since
this work has found the very convincing classification accu-
racy from the prefrontal hemodynamics regarding voluntary
and imagery movements, this result will play a great role
to implement the BCI for the paralyzed people as well as
for those people has a major injury in their central lobe of
the brain. Therefore, the proposed research work contributes
significantly to model and classify the voluntary and imagery
movements from the prefrontal hemodynamics.

As all the participants of this study were normal, the actual
scenarios of the physically challenged or paralyzed persons
were not taken into this research which can be considered as
the limitation of this study. Nonetheless, this limitation may
be a future direction of research to find the actual scenario of
motor imagery activation in the prefrontal cortex regarding
the physically challenged persons. In our future work, afore-
said undone work will be performed to present a comparative
scenario of voluntary and imagery movement-related activa-
tions of the prefrontal cortex concerning both the normal and
physically challenged persons.
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