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ABSTRACT This paper proposes an L1/L2-mode switching adaptive filter algorithm by comparing the
performances in L1 and L2 modes. In the L1 or L2 mode, the proposed algorithm adopts, as the update
equation, that of the normalized sign (NS) algorithm or that of the normalized least mean square (NLMS)
algorithm, respectively. By analyzing the mean square deviations (MSDs) of the NS algorithm as well as of
the NLMS algorithm, the algorithm selects the better mode in the sense that the next MSD of the algorithm
in the selected mode becomes smaller than that in the other mode. The algorithm mainly operates in the L1
mode when the impulsive noises occur but in the L2 mode otherwise, which leads to robustness against the
impulsive noises like the NS algorithm and also leads to a low steady-state misalignment like the NLMS
algorithm. Furthermore, the proposed algorithm is faster than the NS and the NLMS algorithms in terms of
the convergence rate. A modified reset algorithm is also applied to maintain performance when the unknown
system is abruptly changed. Simulations conducted in various system identification scenarios show that
the proposed algorithm outperforms the conventional algorithms in terms of the convergence rate and the
steady-state misalignment, whenever impulsive noises exist or not.

INDEX TERMS Impulsive noise, L1/L2-mode switching adaptive filter, mean square deviation (MSD)
analysis, normalized least mean square (NLMS) algorithm, normalized sign (NS) algorithm.

I. INTRODUCTION
Adaptive filters have been widely used in many applica-
tions such as channel estimation, echo cancellation, system
identification, active noise control, and biological signal
processing [1]–[4]. Least mean square (LMS) algorithm
and normalized LMS (NLMS) algorithm are consistently
studied owing to their simplicity and low computational
complexity [5]–[9]. However, these algorithms suffer from
performance deterioration in the impulsive noise envi-
ronments because they are derived from an L2-norm
optimization.

To surmount this defect of the algorithms based on the
L2-norm optimization, several approaches are proposed in
the literature. Adaptive filters based on Huber function are
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proposed, where the cost functions are designed by using
the Huber function or an modified Huber functions to retain
robustness against to the impulsive noises [10]–[12]. Algo-
rithms using step size scaler (SSS) are also proposed in
[13], [14], where the SSS is derived fromL2-norm based cost
functions that is modified by utilizing the tangent hyperbolic
function and log function.

The L1-norm based algorithms that use the sign of the
error signal in the weight update equation are also presented
in [15]–[17]. These L1-norm based algorithms have intu-
itively simple structure and are not affected by the impul-
sive noises. However, the convergence rates of them are
slower than those of the L2-norm-based algorithms in the
non-impulsive noise environments as they just use the sign
of the error signal which has partial information [18], [19].

To improve the performance, the algorithms using the
L1 and L2 norms together have been proposed. Among
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them, the family of mixed-norm adaptive filters has been
presented by optimizing the weighted sum of both L1 and
L2 norms [20]–[23]. Firstly, the robust mixed-norm (RMN)
algorithm was proposed, which linearly combines the LMS
and least absolute deviation (LAD) algorithms [20]. Then,
the normalized version of RMN (NRMN) was presented,
which shows better performance in a non-stationary environ-
ments [21]. The continuous mixed p-norm (CMPN) adap-
tive filtering algorithm was also put forward, where the
continuous p-norms for 1 ≤ p ≤ 2 are combined using
a probability density-like function and takes advantage of
their strengths [22]. Subsequently, the generalized version of
the VSS-CMPN (GVSS-CMPN) was proposed, which intro-
duces a rotated linear function of the probability density-like
function [23]. In [22], the probability density-like function
which mixes the continuous norms is assumed to be uniform,
but GVSS-CMPN generalizes it to the rotated linear function
rotated around ( 32 , 1) to improve the performance. Although
these algorithms based on themixed-norm show the improved
performance, there is a limitation that cannot use the merits
ofL2-norm-based algorithms in the environments with strong
impulsive noises.

To overcome this limitation, the proposed L1/L2-mode
switching adaptive filter algorithm adopts a switching mech-
anism. In [24] and [25], a switching mechanism is applied
to solve the trade-off problem between a convergence rate
and a steady-state error, where the switching is activated
in variable step size scheme when the adaptive filter is in
the steady-state. However, the proposed algorithm switches
between L1 and L2 modes, which have different advantages.
The proposed algorithm compares the MSDs in L1 and L2
modes and selects the better mode at each iteration so that
the forthcoming MSD in the selected mode becomes lower
than that in the other mode. By analyzing the MSDs of the
two modes in a new way, the MSDs can be estimated more
accurately and utilized in the switching process in the impul-
sive noise environments. The algorithm primarily operates in
the L1 mode when the impulsive noise occurs, otherwise in
the L2 mode. Therefore, the algorithm can take advantage of
both NS and NLMS algorithms. In other words, the algorithm
is robust to the impulsive noises like the NS algorithm and
has a low steady-state misalignment like the NLMS algo-
rithm. To maintain the performance in the system sudden
change, a modified reset algorithm is also applied. The sim-
ulation is conducted in various system identification scenar-
ios and the algorithm is compared with other conventional
algorithms.

This paper is composed as follows. In section II, the NS
and the NLMS algorithms adopted as the update equations
in the L1 and L2 modes are summarized. In section III,
the MSDs of the NS and the NLMS algorithms are ana-
lyzed in the novel methods and the mode switching scheme
is proposed. The simulations are conducted to verify the
proposed algorithm and to evaluate the theoretical MSD
analyses in section IV. Finally, the conclusion is presented
in V.

FIGURE 1. System identification structure.

II. REVIEW NS AND NLMS ALGORITHM
In the system identification model (Fig. 1), the desired output
of the adaptive filter di is obtained as

di = uTi wo + vi, (1)

where wo is an M -dimensional optimal weight vector which
has to be estimated, vi is the measurement noise, ui =
[ui, ui−1, . . . , ui−M+1]T ∈ RM is the input vector with
the variance σ 2

u and superscript T stands for the transpose
operator of a vector. The measurement noise vi is modeled
as

vi = θi + ηi, (2)

where θi is the white Gaussian sequences with zero-mean and
variance σ 2

θ and ηi is the impulsive noise. A priori error ei is
represented as

ei = di − uTi ŵi, (3)

where ŵi = [w0,i,w1,i, . . . ,wM−1,i]T ∈ RM is the weight
vector of the adaptive filter that is the estimate of the unknown
system. It is assumed that the tap length of the filter is same
with that of the unknown system.

A. L1-NORM OPTIMIZATION ALGORITHM: NS
ALGORITHM
TheNSAlgorithm can be derived byminimizing theL1-norm
of a priori error. The cost function is described as follows:

J1(ŵi) =
‖ei‖1√
uTi ui

(4)

where ‖·‖1 stands for L1-norm. By applying the adaptive
gradient method to the cost function [15], [16], the update
equation of the NS algorithm can be derived as

ŵi+1 = ŵi − µ1∇ŵiJ1(ŵi)

= ŵi + µ1
uisgn(ei)√

uTi ui
. (5)

where ∇ is the gradient operator and µ1 is the step size of the
NS algorithm. Alternatively, (5) can be derived by applying
the Lagrange multipliers method to the L1 norm of a priori
error with the constraint about minimal disturbances [17].
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B. L2-NORM OPTIMIZATION ALGORITHM: NLMS
ALGORITHM
The NLMS can be derived by minimizing the L2 norm of
a priori error. The cost function is described as follows:

J2(ŵi) =
1
2
‖ei‖22
uTi ui

, (6)

where ‖·‖2 stands for L2-norm. By applying the adaptive
gradient method to the cost function (6), the update equation
of the NLMS algorithm can be derived as follows [26], [27]:

ŵi+1 = ŵi − µ2∇ŵiJ2(ŵi)

= ŵi + µ2
uiei
uTi ui

. (7)

where µ2 is the step size of the NLMS algorithm. Alterna-
tively, (7) can be derived by applying the Lagrange multipli-
ers method and the principle of minimal disturbance with the
constraint about the updated filter’s output [1].

III. PROPOSED ALGORITHM
The NS and the NLMS algorithm mentioned in Section II
have advantages and disadvantages, respectively. The NS
algorithm is robust to the impulsive noises as it uses the
sign of the error in the update equation, but its convergence
rate is slower than that of the NLMS. On the other hand,
the convergence rate of the NLMS is faster than that of the NS
algorithm as it is derived from an L2-norm, where the weight
update equation uses the direction and size of the gradient
unlike the NS algorithm, but its performance is degraded
severely by the impulsive noises. Therefore, a mode switch-
ing scheme is proposed to compensate for the shortcomings
of each algorithm. The L1 mode and L2 mode use the update
equations of the NS and the NLMS algorithms, respectively.

A. NOVEL MSD ANALYSIS OF NS ALGORITHM
From [13] and [28], MSD is defined as

MSDi , E(
∥∥wo − ŵi∥∥2 |Ui ∪Di)

, Ē(
∥∥wo − ŵi∥∥2)

= Ē(‖w̃i‖2) , pi, (8)

where w̃i = wo− ŵi is the weight error vector,Di = {dk |0 ≤
k < i} and Ui = {uk |0 ≤ k < i}. The weight error vector
w̃i+1 is derived as

w̃i+1 = wo − ŵi+1 = w̃i −
µ1uisgn(ei)√

uTi ui
. (9)

From (9), MSD estimation of NS algorithm is represented as

pi+1 = Ē(w̃Ti+1w̃i+1)

= pi − 2µ1Ē

 sgn(ei)uTi w̃i√
uTi ui

+ µ2
1 (10)

As sgn(ei) can be represented by sgn(ei) = ei/|ei|, equa-
tion (10) is derived as

pi+1 = pi − 2µ1Ē

 eiuTi w̃i

|ei|
√
uTi ui

+ µ2
1

= pi − 2µ1Ē

 (w̃Ti ui + vi)u
T
i w̃i

|ei|
√
uTi ui

+ µ2
1

= pi − 2µ1Ē

 w̃Ti uiu
T
i w̃i + u

T
i w̃ivi

|ei|
√
uTi ui

+ µ2
1. (11)

The measurement noise vi and the weight error vector w̃i
are assumed to be uncorrelated [29]–[31]. From this assump-
tion, (11) is represented as

pi+1 = pi − 2µ1Ē

 w̃Ti uiu
T
i w̃i

|ei|
√
uTi ui

+ µ2
1

= pi − 2µ1

√
uTi uiĒ

(
w̃Ti uiu

T
i w̃i

uTi ui|ei|

)
+ µ2

1. (12)

By ensemble averaging, MSD estimation (12) can be approx-
imated as

pi+1 = pi − 2µ1

√
uTi uiĒ

(
w̃Ti w̃i
q1M |ei|

)
+ µ2

1

= pi −
2µ1

q1M
Ē

 w̃Ti w̃i

|ei|/
√
uTi ui

+ µ2
1, (13)

where q1 is the scaling factor which reflects the correlated-
ness of the input vectors. To get the recursion form of MSD
estimation, the approximation used in [32]–[35] is applied
to (13). Then, the MSD estimation pi+1 is approximated as

pi+1 ≈ pi −
2µ1

q1M
Ē(w̃Ti w̃i)

Ē(|ei|/
√
uTi ui)

+ µ2
1

= pi −
2µ1

q1M
pi

Ē(|ei|/
√
uTi ui)

+ µ2
1

=

1−
2

q1M
µ1

Ē(|ei|/
√
uTi ui)

 pi + µ2
1 (14)

Owing to the expectation, the estimation (14) cannot be used
in the practical situation. Accordingly, the following moving
average is applied to get the expectation term.

βi+1 = λ1βi + (1− λ1)
|ei|√
uTi ui

, (15)

where 0 ≤ λ1 < 1 is a smoothing factor. Therefore,
the update equation of MSD estimation of NS algorithm is
finally derived as

pi+1 =
(
1−

2µ1

q1Mβi+1

)
pi + µ2

1. (16)
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B. NOVEL MSD ANALYSIS OF NLMS ALGORITHM
The weight error vector of the NLMS algorithm at the next
iteration is derived as

w̃i+1 = w̃i − µ2
uiei
uTi ui

(17)

From [13], the upper bound of MSD of the NLMS algorithm
is analyzed as

pi+1 ≤

(
1−

2µ2 − µ
2
2

ρM

)
pi +

µ2
2σ

2
θ

uTi ui
(18)

where ρ ≤ 1 and it is an user-defined value which is deter-
mined by using the characteristics of the input signals. ρ is
set to one when the inputs are white Gaussian process, but ρ
is set to a value greater than one when the inputs are corre-
lated signal. However, this estimation does not work well in
the impulsive noise environments. To reflect abrupt changes
of the error in the impulsive noise environments, the MSD
estimation analyzed in the diffusion NLMS algorithm [36] is
modified to be used in the NLMS algorithm as follows:

pi+1 = Ē(w̃Ti+1w̃i+1)

= pi − 2µ2Ē

(
w̃Ti uiei
uTi ui

)
+ µ2

2Ē

(
e2i
uTi ui

)

= pi − 2µ2Ē

(
w̃Ti ui(u

T
i w̃i + vi)

uTi ui

)
+ µ2

2Ē

(
e2i
uTi ui

)

≈ pi − 2µ2Ē

(
w̃Ti uiu

T
i w̃i

uTi ui

)
+ µ2

2Ē

(
e2i
uTi ui

)
, (19)

where the measurement noise vi and the weight error vec-
tor w̃i are assumed to be uncorrelated [29]–[31]. Using the
approximation used in (13), (19) is derived as

pi+1 = pi − 2µ2

Ē
(
w̃Ti w̃i

)
q2M

+ µ2
2Ē

(
e2i
uTi ui

)

= pi −
2µ2

q2M
pi + µ2

2Ē

(
e2i
uTi ui

)

= (1−
2µ2

q2M
)pi + µ2

2Ē

(
e2i
uTi ui

)
. (20)

In the practical situation, the estimation (20) cannot be used
directly owing to the expectation. Unlike the NS algorithm,
the instantaneous values are used to reflect a sudden surge
of the error caused by the impulsive noise in the NLMS
algorithm. Therefore, the update equation of MSD estimation
of the NLMS algorithm is derived as

pi+1 = (1−
2µ2

q2M
)pi + µ2

2
e2i
uTi ui

. (21)

C. MODE SWITCHING SCHEME
In the mode switching scheme, the mode with lower MSD
estimation value is selected. The MSD estimations of two
modes analyzed in (16), (21) are used to compare the MSDs

TABLE 1. The proposed mixed adaptive filter algorithm.

of each mode. The proposed switching scheme is described
as

ŵi+1 =


ŵi +

µ1uisgn(ei)√
uTi ui

, if p1,i+1 ≤ p2,i+1

ŵi + µ2
uiei
uTi ui

, if p1,i+1 > p2,i+1,
(22)

where p1,i+1 and p2,i+1 are the MSD estimation values of
the NS and the NLMS algorithm. Here, the MSD estimation
values p1,i+1 and p2,i+1 are calculated at each iteration as
follows

p1,i+1 = (1−
2µ1

q1Mβi+1
)pi + µ2

1, (23)

p2,i+1 = (1−
2µ2

q2M
)pi + µ2

2
e2i
uTi ui

. (24)

From the switching scheme (22), the mode with lower MSD
estimation value is selected. TheMSD estimation value at the
next iteration is decided as

pi+1 =

{
p1,i+1, if p1,i+1 ≤ p2,i+1
p2,i+1, if p1,i+1 > p2,i+1

(25)

The proposed L1/L2-mode switching adaptive filter is sum-
marized in Table 1.

D. RESET ALGORITHM FOR SYSTEM ABRUPT CHANGE
From the mode switching scheme (22), the proposed
algorithm can minimize the bad effects caused by the
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TABLE 2. Computational Complexity of Various Algorithms.

impulsive noises and converge fast to the steady-state. How-
ever, the algorithm loses its tracking capacity if the unknown
system to be estimated has changed. To overcome this draw-
back in a non-stationary environments, a reset algorithm
has to be used. The reset algorithms used in [19] cannot
be directly applied to the proposed algorithm. Therefore,
the modified reset algorithm is proposed as follows:

if mod(i,VT ) = 0

Cnew =
STDS
VT − VD

end

if (Cnew − Cold)/µm > ξ

pi+1 = 1

βi+1 = |di|

end

Cold = Cnew

where VT , VD are the positive integers (VD < VT ), mod(a, b)
stands for the remainder of the division between a and b, and
S = sort(|e(n)|/(||u(n)||2 + ε), . . . , |e(n− VT + 1)|/(||u(n
− VT + 1)||2 + ε))T where sort(·) is the ascending order
operator, D = diag(1, . . . , 1, 0, . . . , 0) is a diagonal matrix
with its first VT −VD elements set to one,µm = (µ1+µ2)/2,
and ξ is a threshold value.

E. COMPUTATIONAL COMPLEXITY
Unlike the conventional algorithms, the noise variance esti-
mation process is not necessary because the proposed mixed
L1/L2-norm adaptive filter does not use the noise variance
σ 2
θ . Considering these points, the proposed algorithm has

merit in terms of computational complexity. Table 2 shows
the computational complexity of various algorithms. The
computational complexity of the proposed algorithm is a little
higher than those of the NLMS and NS algorithm. However,
the performance of the proposed algorithm is much better
than that of the other algorithms.

IV. SIMULATION RESULTS
To verify the performance of the proposed algorithm, the sim-
ulations are conducted in the system identification models.
The channel of the unknown system is generated by the white
Gaussian random process with zero mean and unit variance,
and it has 64 taps (M = 64). It is assumed that the tap

length of the adaptive filter is the same as that of the unknown
system. The signal-to-noise ratio (SNR) between filter output
yi = uTi wo and the measurement noise is defined as

SNR = 10 log10

(
E[y2i ]

E[θ2i ]

)
. (26)

In the following simulations, the SNR is set to 30dB. The
white input signal is obtained by a white Gaussian random
process with zero mean and unit variance. The correlated
input signals are obtained by filtering through these systems:

G1(z) =
1

1− 0.7z−1
(27)

G2(z) =
1+ 0.6z−1

1+ 1.0z−1 + 0.21z−2
(28)

The impulsive noise ηi is modeled by a Bernoulli-Gaussian
process as follows:

ηi = sibi (29)

where bi is a white Gaussian process and si is a Bernoulli
process with the probabilities P[si = 1] = pr and P[si =
0] = 1 − pr . Here, pr is the impulsive noise occurrence
probability that is set to 0.001 and 0.01 in our simulations.
The signal-to-impulsive noise ratio (SIR) between the filter
output and the impulsive noise is defined as

SIR = 10 log10

(
E[y2i ]

E[b2i ]

)
. (30)

In the following simulations, the SIR is set to −30dB and
−20dB.

A. MSD ANALYSES COMPARISON
Fig. 2 shows the curves of MSD estimations of the NS and
the NLMS algorithms for different q1 and q2. The smoothing
factors are set to a value close to one, where λ1 = λ2 = 0.99
which are used in the following simulations. The step sizes
are chosen so that the real MSD converges to an appropriate
steady-state misalignment value, where µ1 = 0.005 and
µ2 = 0.1. We can see that the larger q1 and q2, the larger the
MSD estimation values. In the proposed algorithm, the MSD
estimation values should be slightly larger than the real MSD
values because the worst cases have to be considered in the
comparison step of the mode-switching scheme. However,
the MSD estimations are regarded as faulty analyses if they
are largely different from the real MSDs. Therefore, the opti-
mal values that satisfy these conditions have to be set as
q1 and q2. Based on the results of Fig. 2, q1 and q2 are
set as slightly a larger value than 1 that satisfies the above
conditions when the input is white Gaussian process, which
q1 = 1.1 and q2 = 1.3. On the other hand, q1 and q2 are set
as a moderately large value that satisfies the above conditions
when the input is correlated, where q1 = 3 and q2 = 3.5.
The proposed algorithm has similar performance as long as
the q1 and q2 are set as an appropriately larger value than the
previously chosen values.
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FIGURE 2. Learning curves of real MSD and MSD estimations in impulsive
noise environments (a) MSD estimations of NS algorithm for different q1
values (b) MSD estimations of NLMS algorithm for different q2 values.

Fig. 3 shows the curves of MSD estimations of the NS
and the NLMS algorithms when the input is white Gaussian
process. The step sizes are set to same values used in Fig. 2.
The MSD estimations of the NS algorithm in the existing
studies [18], [19] do not track the curve of the real MSD value
but the proposed estimation properly tracks the curve of the
real one (Fig. 3(a)). The MSD estimation of the NLMS algo-
rithm in the existing study (18) also does not track the curve
of the real MSD but the proposed estimation properly tracks
the curve of the real one in the impulsive noise environments
(Fig. 3(b)).

B. SYSTEM IDENTIFICATION WITH STEADY
ENVIRONMENTS
In Figs 4-6, the simulations are conducted in the steady
environments where the system parameters and impulsive
noise ratio are not changed. The step sizes are chosen so
that their MSDs at the steady-state have similar values.
In Fig. 4, the step sizes are set to µ1 = 0.005 and µ2 =

0.1. Firstly, Fig. 4(a) shows the MSD curves for the NS,
the NLMS and the proposed algorithm in non-impulsive
noise environments. Since the proposed algorithm compares
the updated MSD estimations and adopts the better mode

FIGURE 3. Comparisons of various MSD estimations (a) About NS
algorithm (b) About NLMS algorithm.

at each iteration, it has a faster convergence rate than the
NS and the NLMS algorithms and has a low steady-state
error of the NLMS algorithm. Fig. 4(b) shows the MSD
curves for the NS, the NLMS algorithms and the proposed
algorithm in the impulsive noise environments. The pro-
posed algorithm has the robustness to the impulsive noises
of the NS algorithm and low steady-state misalignment of
the NLMS algorithm. It operates in L1 mode when the
impulsive noises occur. Therefrom, the weight coefficient
of the adaptive filter does not diverge to the abnormal one
and stably converges to the steady-state misalignment value
of the NLMS algorithm obtained in non-impulsive noise
environments.

In Figs 5 and 6, the MSD curves of the proposed algorithm
and other algorithms are shown for comparison. The pro-
posed algorithm is compared with NS, NLMS, LAD, RMN,
VSS-CMPN and GVSS-CMPN. For the RMN algorithm,
Nw = 10 as suggested in [20]. For the GVSS-CMPN, κ = 0.1
and θ = −2 as described in [23]. In Fig. 5, µ1 = 0.005 and
µ2 = 0.1 for the proposed algorithm and µ = 0.00015 for
the VSS-CMPN. In Fig. 6, µ1 = 0.005 and µ2 = 0.2 for the
proposed algorithm and µ = 0.0003 for the VSS-CMPN.
In Figs 5(a) and 6(a), the white Gaussian noise is used as
inputs. It is shown that the proposed algorithm has better
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FIGURE 4. MSD curves of NS, NLMS and proposed algorithm for the white
Gaussian noise input (a) In non-impulsive noise environments (b) In
impulsive noise environments.

performance than the other conventional algorithms includ-
ing the mixed-norm algorithms in terms of the convergence
rate and the steady-state misalignment. In Figs 5(b) and 6(b),
AR(1) process generated using G1(z) is used as inputs.
In Figs 5(c) and 6(c), ARMA process generated using G2(z)
are used as the inputs. It is also shown that the proposed
algorithm has the great improvement compared to the con-
ventional algorithms including the mixed-norm algorithms
in terms of the convergence rate and the steady-state mis-
alignment when the inputs are correlated. The mixed-norm
adaptive filters [20], [22], [23] are derived from the convex
combination of the L1 norm and L2 norm or the continuous
mixed norm. The performance of these mixed-norm adaptive
filters partially deteriorates as the L2 norm-based term in
them is badly affected by the large value of the impulsive
noises. However, the proposed algorithm selects L1 mode
to prevent the wrong updates when the impulsive noises
occur, otherwise, it selects L2 mode to get a fast convergence
rate. Therefore, we can say that the proposed algorithm has
improved performance in both impulsive and non-impulsive
noise environments and we can see that in simulation
results.

FIGURE 5. MSD curves of various algorithms in impulsive noise
environments with pr = 0.001 and SIR = −30dB (a) Inputs: white
Gaussian noise (b) Inputs: correlated input (G1(z)) (c) Inputs: correlated
input (G2(z)).

C. SYSTEM IDENTIFICATION WITH CHANGED
ENVIRONMENTS
In Figs 7 and 8, the impulsive noises exist in the first and
third quarter of total iterations and it does not exist in the sec-
ond and fourth quarter. The tuning parameters in Fig. 7
are the same as in Fig. 5, and the tuning parameters
in Fig. 8 are the same as in Fig. 6. In Figs 7(a) and 8(a),
the input signals are white Gaussian process. We can see
that the proposed algorithm has faster convergence rate and
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FIGURE 6. MSD curves of various algorithms in impulsive noise
environments with pr = 0.01 and SIR = −20dB (a) Inputs: white Gaussian
noise (b) Inputs: correlated input (G1(z)) (c) Inputs: correlated input
(G2(z)).

lower steady-state misalignment than the other algorithms
including the mixed-norm algorithms. At the steady-state,
the curves of the conventional algorithms are fluctuated due
to the steady-state performance degradation in the impul-
sive noise environments, but that of the proposed algo-
rithm remains at an optimal value. In Figs 7(b) and 8(b),
AR(1) process generated using G1(z) are used as the inputs.
In Figs 7(c) and 8(c), ARMA process generated using G2(z)

FIGURE 7. MSD curves of various algorithms in on/off impulsive noise
environments with pr = 0.001 and SIR = −30dB (a) Inputs: white
Gaussian noise (b) Inputs: correlated input (G1(z)) (c) Inputs: correlated
input (G2(z)).

are used as the inputs. We can also see that the pro-
posed algorithm has faster convergence rate and lower
steady-state misalignment than the other algorithms includ-
ing the mixed-norm algorithms when the inputs are corre-
lated. At the steady-state, the performance degradation of the
NLMS and VSS-CMPN algorithms are noticeable due to the
slow convergence rates of them caused by correlated inputs.
However, the steady-state misalignment of the proposed algo-
rithm remains stable.
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FIGURE 8. MSD curves of various algorithms in on/off impulsive noise
environments with pr = 0.01 and SIR = −20dB (a) Inputs: white Gaussian
noise (b) Inputs: correlated input (G1(z)) (c) Inputs: correlated input
(G2(z)).

In Fig. 9, the unknown system is abruptly changed to −wo
at 60000th iteration. For the reset algorithm, VT = M/2,
VD = b0.2 × VT c, ε = 10−6 and ζ = 0.001, where b·c
stands for the round-off function. The other tuning parameters
used in Figs 9(a) and 9(b) are the same as Figs 7(b) and 8(b),
respectively. After the unknown system changes, the con-
vergence rate of the proposed algorithm is faster than those
of the other algorithms and its steady-state misalignment
is lower than those of the other algorithms. Therefore, the
proposed algorithm is more robust to unknown system abrupt
changes.

FIGURE 9. MSD curves of various algorithms for correlated input (G1(z))
with system abrupt change (a) pr = 0.001 and SIR = −30dB (b) pr = 0.01
and SIR = −20dB.

V. CONCLUSION
This paper proposed an L1/L2-mode switching adaptive
filter algorithm by adopting mode-switching scheme. The
mode-switching scheme compared the MSD estimations of
each mode and selected the better mode in the sense that the
forthcoming MSD of the selected mode is lower than that
of the other mode. To estimate MSDs precisely, the MSD
estimations for the NS and the NLMS algorithms were ana-
lyzed in the novel methods and verified in the system iden-
tification simulation. The proposed algorithm was conducted
in various environments and the simulation results showed
that the proposed algorithm outperformed other conventional
algorithms in terms of the convergence rate and steady-state
misalignment.
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