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ABSTRACT Kinetic energy harvesters have become a common power source for autonomous sensors
operating at micro- and meso-scales. The conventional approach to kinetic energy harvesting is to assume
that the proof mass of the mechanical component in an energy harvester is actuated by external motion
produced by the sensor’s environment. This approach, dominant since the beginning of micro-scale energy
harvesting, has now resulted in the design of advanced, nonlinear harvesters suitable for non-harmonic
vibrations produced by many systems of interest. In this paper, we present a feasibility study of an alternative
approach to kinetic energy harvesting, where the motion of the proof mass is actively synthesized.

INDEX TERMS Energy harvesting, microelectromechanical systems, transducers, algorithm design and
analysis, statistical learning, time series analysis.

I. INTRODUCTION
In many aspects, electronic engineering is driven by the
concept of the Internet of Things (IoT) and the vision of
the interconnected world. One of the key issues that impedes
the roll-out of the next wave of the IoT is the issue of energy
supply [1]–[3]. The current generation of sensors utilise
chemical sources of energy (batteries). However, in many
cases, the size of batteries exceeds that of a typical sensor.
Moreover, as the number of connected devices increases, one
needs more and more batteries to supply them. There has
been a steady progress in decreasing the size of sensors and
optimising their energy consumption. However, in order to
expand the IoT, one also requires to increase the effectiveness
of power sources per given volume.

Energy harvesting, in particular, kinetic energy harvesting,
seems a very attractive solution to this problem since energy
has many forms and is abundant in our environment. Kinetic
energy harvesters (KEH) transform the kinetic energy of a
vibrating environment to electricity. There are a number of
different mechanisms facilitating energy transfer from the
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mechanical domain to the electrical one, including electro-
magnetic transduction [4]–[6] (when electric current is gen-
erated due to variable magnetic flux according to Faraday’s
law), electrostatic transduction [7], [8] (when the capacitance
of a variable capacitor is changed by external vibrations)
the piezoelectric effect [9], [10] (when voltage is generated
due to the deformation of a piezoelectric layer), and their
combinations [11], [12].

However, the resonators used in any type of harvesters
have an inherit problem related to their natural vibrational
spectrum. Assuming that a resonator is linear (or weakly
non-linear), it only generates a significant amount of power
when actuated over a narrow band of frequencies around its
resonant ones, with negligible power generated outside its
frequency response band. The common approach to mitigate
this problem is to utilise mechanical or electrically-induced
nonlinearities to widen the frequency response of a resonator.
However, in this case one can experience the problem of
bi-modality (also known as bi-stability) when small changes
in the actuation force can lead to a spontaneous ‘‘jump’’ from
a high-power to low-power branch.

Therefore, it is reasonable to want to create a
high-performance KEH which will self-tune to irregular
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aperiodic vibrations (for example human walking, running or
any other typical activity). The main idea of this approach is
to use an energy harvester with a strong coupling between
the electrical and mechanical domains and to control the
motion of the resonator in order to convert as much energy
as possible. The concept of the energy harvester operating
according to this principle is called the Near-Limit Kinetic
Energy Harvester (NLKEH) [13], [14] since the power pro-
duced by it approaches the maximum for a given system.

The aim of this paper is to analyse environment vibration
patterns for applications that are compatible with Near Limit
Energy Harvesting and to investigate its feasibility. To do so,
we introduce the concept of the maximum energy and power
that may be converted from an arbitrary acceleration wave-
form using a given transduction mechanism. We investigate a
range of vibration patterns generated from different human
activities and analyse what energy can be extracted from
them. As we will show, the implementation of Limit Energy
Harvesting requires predictive control. For this reason, we are
interested to understand the characteristics of these patterns,
including their correlation properties.

This paper is organised as follows. Section II describes a
mathematical formalism underlying the NLKEH. Section III
discusses a methodology to collect acceleration pattern data
and techniques to analyse the data including its Lyapunov
exponents, correlation dimension and entropy. Section III-B
is dedicated to the investigation of self-similarity of the sig-
nals. This is an important aspect of the NLKEH since the
required predictive control can be effectively implemented
for signals that display a clear pattern. Finally, in Section IV
an algorithm of statistical learning is used to estimate the
amount of energy that is convertible by the NLKEH. Con-
clusions and discussions are given in Section V.

II. NEAR LIMIT KINETIC ENERGY HARVESTERS
The first generation of kinetic energy harvesters (KEHs),
proposed over a decade ago (see review [15]), offered a
fundamental idea of how to derive energy from the environ-
ment. Unfortunately, this seminal paradigm was developed
for harmonic or periodic vibrations rather than for irregular
vibrations of the type that are usually observed in real-life
applications. Over the following decade, the development of
kinetic energy harvesting technique was aimed at extending
the frequency band of harvesters to incorporate more com-
plex (and even quasi-random and impulse like) acceleration
waveforms. Since the study [16], the latest generation of
KEHs is wideband with resonators employing mechanical
nonlinearities, frequency tuning and frequency up-conversion
effects, able to respond to kinetic motion over a very large
range of input frequencies. This has potentially opened up
applications in irregular vibrating environments, including
human motion. The construction of the KEH implies the
existence of a mechanical domain with a vibrating resonator,
an electrical domain with a control and power management
system and an interplay between them using the transduc-
tion mechanism (Fig. 1(a)). Wideband KEHs employing

FIGURE 1. The high level block diagram of the kinetic energy harvester
with an arbitrary transducer: (a) Conventional kinetic energy harvester
and (b) Near-limit kinetic energy harvester.

nonlinear resonators have been implemented at a miniature
scale using electromagnetic [4]–[6], piezoelectric [9], [10]
and electrostatic [7], [8], [17] transduction mechanisms.
While the number of publications in this domain has
increased exponentially over recent years, research into the
full integration of kinetic energy harvesters into real applica-
tions continues. The high level block diagram of a traditional
energy harvester can be summarised as shown in Fig. 1(a).
External vibrations cause the motion of a mechanical res-
onator (proof mass oscillating on an elastic spring). Since
the aim is to convert energy into ‘‘electric’’ form, there are
several types of available transducers that can transform the
mechanical energy of the vibrations to the electric domain.
A power management circuit is added to optimise the process
and store energy.

The paradigm of near-limit kinetic energy harvesting
utilises an active control of a trajectory generated by the
proof mass and is based on a non-resonant principle. This
method is developed to harvest energy from arbitrary vibra-
tion waveforms. Compared to the classic high-level diagram
shown in Fig. 1(a), it requires an additional decision block
that will generate an active force on the proof mass to ensure
that its (proof mass) motion follows an optimal trajectory and
results in maximal power converted (Fig. 1(b)). As we will
discuss later in this section, the optimal control requires the
knowledge of acceleration waveform properties. For this rea-
son, the analysis of patterns and correlations in acceleration
waveforms is the main focus of this feasibility study. In terms
of the feasibility of the optimal control, we note that in fact
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TABLE 1. Typical parameters of a microscopic kinetic energy harvester
with acceleration magnitude and frequency taken as those of a typical
human walking waveform.

all transducers generate a force acting on the proof mass.
In the case of a strong coupling between the electrical and
mechanical domain, this force is significant and modifies the
mechanical trajectory of the resonator. It may induce strong
nonlinearity and even distort the frequency response of a
harvester [17], [18]. However, the shape of the transducer’s
force generated by conventional (passive) electrical interfaces
is, in most cases, far from the optimal one, such as that
required to maximize the converted power.

Let us briefly outline the mathematical foundation of the
NLKEH and compare it with the conventional formula devel-
oped for harmonic acceleration waveforms. The maximum
power that can be converted from a harmonic vibration of a
kinetic energy harvester can be expressed by the following
formula [19]:

Plim = 4mAextfextXlim, (1)

wherem is the resonator’s mass, Aext is the external amplitude
of the harmonic vibrations, fext is the frequency of the external
vibrations and Xlim is the distance which limits the motion
of the proof mass. Such a maximum power is converted
if the mobile mass toggles between two possible extreme
positions allowed by the system geometry (Xlim and −Xlim)
at each local maximum of the external acceleration. In the
case of sinusoidal external vibrations, the mass toggles twice
per period. Setting for an electromechanical silicon device a
reference volume of 1 cm3, the corresponding device param-
eters are presented in Tab. 1: the calculated limit power is
approximately 1 mW, and this is the fundamental limit for an
absolutely ideal system driven by a harmonic oscillations.

In many practical applications, external vibrations can be
of quite an irregular form. Reference [13] explains in detail
how to obtain an expression for the maximum energy and
power that can be extracted from an arbitrary irregular wave-
form.We will not present the derivation here, but simply state
the result:

Wlim = 2Xlimm
∑
i

(amax
ext,i − a

min
ext,i). (2)

Here amax
ext,i and a

min
ext,i are consecutive pairs of a local maxi-

mum/minimum of external acceleration, where the maximum
occures just after a local minimum. Taking into account
a time segment between the corresponding accelerations
(tmax
−tmin), it is easy to obtain the expression for the average

power limit [13]:

Plim = 2Xlimm ·

∑
i

(
amax
ext,i − a

min
ext,i

)
∑

i
(
tmax
i − tmin

i

) . (3)

FIGURE 2. An example of an external acceleration pattern and the
optimal trajectory of the proof mass a) in the case of the ideal system (if
the proof mass can move much faster then external acceleration can
change) b) in case of the realistic system, when the proof mass has delay,
and therefore the control system has to skip some local extrema.

Note that, in the case of a harmonic external acceleration
waveform, for each period of oscillation there is only one
maximum and one minimum amax

ext,i = − a
min
ext,i = Aext, and

(tmax
− tmin)−1 = fext; thus, it is fully transformed to (1).

Plugging in the parameters of a typical harvester from Table 1
into equation (3), one can estimate the maximum power. It is
important to understand that this is the upper limit; it cannot
be reached by a realistic device due to various losses.

According to the NLKEH principle, the ideal trajectory of
the proof mass that results in the converted power Plim given
by formula (3) in response to an input acceleration waveform
aext(t) is shown in Fig. 2(a). Ideally, an NLKEH harvester
from Fig. 1(b) should be able to detect every maximum
(shown by the red dots) and minimums (shown by the blue
dots) of aext(t) and toggle the proof mass at the corresponding
instances of time. The ideal trajectory consists of segments
when the displacement x is constant and changes from−Xlim
to Xlim when the acceleration waveform has an extremum.

We note that realistically it would not be possible (and
also not ‘profitable’ in the context of energy conversion) to
toggle the proof mass at every extrema. Firstly, extremum
detection and operation of the conditioning circuit has an
energy cost. If the energy provided by the input waveform
between the given amax and amin is less than the energy cost
to operate the toggling, one should not activate it. Secondly,
the proof mass has a response time defined by its mechanical
parameters and the strength of electromechanical coupling
(‘electrical’ damping [17], [20]). Therefore, it will not be able
to react instantaneously, even if we force it to toggle at every
extremum. A realistic trajectory of the proof mass is shown
in Fig. 2(b).

Hence, we arrive at the idea of extrema selection for
NLKEH: this is achieved by a decision block (Fig. 1(b)). The
aim of this block is to make a decision (to toggle or not to
toggle the proof mass) when an extremum of the waveform
aext occurs. Since the energy gain is a difference between the
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energy converted during two neighboring toggles, the deci-
sion device needs to predict the value of the future extremum
in order to estimate the gain. Such a prediction is only pos-
sible if the decision block learns from the history of the
input acceleration waveform. The decision block drives the
conditioning circuit to keep the current position of the proof
mass at +Xlim or −Xlim or to alter it.

The problem addressed by this paper concerns the feasi-
bility of the decision making device required by the NLKEH
concept. The paper aims to answer if prediction and control
are feasible for a typical acceleration waveform generated
from human motion. The next sections are focused on the
analysis of humanmotion in the context of the energy that can
be converted from them. We study the dynamical properties,
patterns, predictive model and learning algorithm as applied
to the motion waveforms collected under different external
conditions.

III. ANALYSIS OF PATTERN IN EXTERNAL VIBRATIONS
GENERATED BY HUMAN MOTION
In this Section, we present an overview of the characteristics
of typical patterns generated by human motion. The first step
of this investigation is data collection and processing. As a
source of acceleration waveforms, we have chosen walking
and running as possible applications of NLKEH. The data
collection procedure involved several people using different
devices (in-built accelerometers in iPhone, Google Pixel and
M5Stack motion sensor, Fig. 3). The collected data was
labelled depending on the conditions of each experiment (for
instance: person, location of the sensor, activity type, sensor
type). The obtained data was consistent in the sense that there
was no significant dependence on the type of sensor [21].
The data collection and processing procedure is summarised
in Fig. 4.

There is a significant body of literature published in regard
to time series analysis, with a large number of methods
available for analysis and prediction [22]–[27]. Some meth-
ods are conventional in signal processing (Fourier trans-
form, auto-correlation function, auto-regressive integrated
moving average model (ARIMA), dynamic time warping),
while other methods originate from the theory of dynamical
systems (phase portraits, Lyapunov exponents, embedding
or correlation dimensions). We will employ a combination
of known techniques but also suggest another analysis and
visualisation method that would allow us to identify patterns
and similarity in these time series easily.

A. ANALYSIS OF ACCELERATION WAVEFORMS
We start with conventional techniques of time series analysis
that include auto-correlation functions, Fourier transforms,
correlation dimensions and ARIMA predictive modelling to
investigate the correlation properties of such motion.

One of the traditional techniques showing the feasibility
of the forecasting for time series is the calculation of the
auto-correlation function (ACF) that shows the correlation
between a signal and the same signal shifted by a time lag,

FIGURE 3. Measurement devices: (a) M5Stack on a ESP32 programmable
(Arduino compatible) chip and a MPU9250 accelerometer-gyroscope
sensor; (b) Google Pixel 3a Android smartphone with an BMA-253 sensor.
The Physics Toolbox application was used to collect the data.

FIGURE 4. The summary of the algorithm used for data collection and
processing including data filtering, obtaining its characteristic
frequencies, regression models and similarity measure.

defined as:

9(τ ) =
∫ tmax

tmin

f (t)f ∗(t − τ )dt, (4)

where f (t) is the waveform of a signal versus time, τ is
the time lag, tmin and tmax are the time limits of the given
time-series (ideally infinite). The analysis of the ACF cal-
culated for the patterns of walking (when an accelerometer
device is in a hand) reveals a slowly decaying function involv-
ing multiple frequencies with a dominant peak corresponding
to one cycle of walking (two steps) and minor peaks corre-
sponding to individual steps, Fig. 5(a), implying a significant
degree of self-similarity in such a waveform. Patterns of
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FIGURE 5. Comparison of running and walking acceleration patterns
respectively: (a) and (b) Auto-correlation functions with a given time lag,
dots and lines shows the ACF, blue region shows the reliability region;
(c) and (d) Predictive modelling obtained from ARIMA models trained on
the first 2/3 segment of the given data series and its comparison with the
last 1/3 segment of the measured time series; (e) and (f) visualisation of
the time series using phase portraits in the reconstructed state space.

running, as expected, show lower degree of self-correlation
than walking ones (Fig. 5(b). However, the correlation time
between the ACF peaks are still clearly visible, implying that
predictive models of walking and running time series are
feasible.

A well-known demonstration of the feasibility of predic-
tive modelling of a time series is the Autoregressive Inte-
grated Moving Average (ARIMA) model [24]. This model
ARIMA(p, d, q) for the non-stationary time series Xt is built
the following way:

1dXt = c+
p∑
i=1

ai1dXt−i +
q∑
j=1

bjεt−j + εt , (5)

where εt is a stationary time series, c, ai, bj are parameters
of the model, 1d is the operator of the time series difference
of the d-order. This ARIMA model was trained on the first
2/3 of the recorded human motion time series, and then
predictions made by this model for the last 1/3 of the time
series were compared with the measured data. As one can
see, the autoregressive models works well for both running
and walking time series (Fig 5(c),(d)). This fact convinces us
that it is possible to use these learning algorithms with these
activities. However, the energy harvesting application should
require less resource intensive algorithms than the ARIMA
method.

It is also necessary to assess the possible chaotic proper-
ties of the data: a strongly chaotic dataset causes significant

FIGURE 6. Fast Fourier Transformation (FFT) of the acceleration patterns:
(a) FFT of the total walking data-set; (b) the corresponding walking
oscillation that demonstrates two main frequencies; (c) FFT made with
moving window along the time-scale, it is easy to see that all harmonics
have similar amplitudes with time; (d) similar picture for the running
acceleration pattern.

difficulties with predictions. For that, we need to calculate
the embedding dimension of a pattern which, in many cases,
is the same as correlation dimension of a data set [27]. The
Grassberger-Procaccia algorithm [28] is available in many
packages for data analysis. We use the nolds module in
Python which correlation dimension ∼ 1.8 for walking and
∼ 2.3 for running.
The obtained correlation dimension allows us to draw the

phase portrait (Fig. 5 (e),(f)) that shows a typical behaviour
of chaotic attractor in case of running. In addition, we used
the Rosenstein method [29] to calculate the highest Lyapunov
exponent, which is the reciprocal to the characteristic time
when a system becomes chaotic.

B. ANALYSIS OF PATTERNS TROUGH CROSS-SIMILARITY
As was highlighted before, the experimental data was
obtained using a smartphone with an accelerometer. The
experimental data was exported as coma separated values
(*.csv) files, and then processed on a computer.

Despite the comfortable measurements, the usage of the
smartphone has some drawbacks. The sequenceswerewritten
with a resolution of 1 ms, however, because of the features
of the internal clock of the phone, the extracted sequence
contains gaps of 1− 3 ms,nevertheless missing data could be
restored by interpolation in order to build the discrete Fourier
transform (DFT) spectrum of the system (Fig.6 (a)).

The analysis of the Fourier transformation can show
the main frequency of the walking, and therefore to define
the duration of the single step, as is shown in Fig. 6 (b).
The building of the DFT spectra for different sub-sequences
(Fig. 6 (c), (d)) also show that different parts of the signal has
the same harmonics.
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FIGURE 7. The figure shows schematic steps for building the
cross-similarity map for the given sub-sequence. The top figure is the
analysed signal, the next is the reference signal, it sweeps along the
analysed signal, and for each configuration the cosine similarity is
calculated and transformed to the colour-map.

Finally, to make sure that the given excitation has recog-
nisable repeatable pattern we made the direct comparison
between sub-sequences. A fast way to do this is to estimate
the cosine similarity of the pairs of the sequences, which is a
well-known tool in data science [30], [31]:

C =
(Ex1, Ex2)
|Ex1|2 + |Ex2|2

, (6)

where Ex1 and Ex2 are vectors storing the two time series to be
compared:

Exi = (a(i)1 , a
(i)
2 , a

(i)
3 , . . . , a

(i)
n ). (7)

Cosine similarity is a very useful quantity which allows us
to understand if the measured signal has a repeatable pattern.
To do this, one can use the following algorithm (Fig. 7):

1) Define the appropriate sub-sequence of the signal. The
most convenient length of the sub-sequence corre-
sponds to one period of the oscillation, which is found
from the FFT analysis (Fig. 6)

2) Calculate the cosine similarity (6) between all different
continuous sub-sequences of the initial sequence by
using the time sweep.

3) Code the cosine similarity using a colour mapping
(Fig. 7).

4) Repeat this for every sub-sequence, which corresponds
to the vibration period, and build the full map of the
cross-similarity (Fig. 8).

The analysis of the pattern’s cross-similarity shows that
the given signal has a pronounced pattern in which one can
identify a weak and a strong similarity (Fig. 8). This effect
is caused by the fact that a walking person produces slightly
different acceleration signals when taking steps with the left
and the right legs.

The analysis of the given cross-similarity shows a sim-
ilarity pattern in the data collected from a given activity

FIGURE 8. The cosine cross-similarity of the different motion activities.
(a) The cross-similarity of walking. (b) The cross-similarity of running.
(c) The mixed similarity where the running pattern is used as analysed,
and the walking pattern was used as the reference.

and an absence of any correlations in the case of different
motion patterns. That allows us to propose prediction algo-
rithms that allow one to estimate the energy which can be
converted by the near-limit energy harvester in the immediate
future. This information will then be used to decide if it is
worth ordering to toggle the mobile mass at a given detected
extremum.

IV. DESCRIPTION OF THE PROPOSED
DECISION ALGORITHM
In this section we propose a maximum/minimum selection
algorithm to maximise the the energy extracted by a NLKEH,
based on a prediction of the future of the sequence. The
method is based on prior identification of aligned normalised
sub-sequences of the external accelerations, which are used
as a reference sequence. We propose the following algorithm
for the extrema selection (Fig. 9):

1) Split the analysed signal into sub-sequences of equal
length. The optimal length of such sub-sequence should
be a multiple of the period of the signal, that can be
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FIGURE 9. Demonstration of the learning method: a) the initial sample of the acceleration (walking pattern) b) the sequence of the maxima (red circles)
and minima (blue circles) of the acceleration defined by the signal c) the sequence applied to the arbitrary walking signal d) the sequence applied to the
arbitrary running signal. e) suggested learning algorithm starting from the measurements of the External Vibrations, and ending with an Energy
Conversion.

defined by the FFT. The optional step is to apply a
high-pass filter [32], [33] to the reference signal)

2) For each next sub-sequence we need to chose a num-
ber previous sub-sequences and calculate the reference
waveform (Fig. 9 a) as an average over the given
ensemble.

3) Identify all pairs of minima and maxima at the ref-
erence signal, and identify the relative time instances
when they occur (Fig. 9 b).

4) In the reference signal, collect only the maxima and
minima which maximise the net average converted
power calculated as the difference between (3) and
the power required to toggle. In the simpliest case,
this can be done by defining a threshold between the
neighboring extrema. The sequence ofminima/maxima
defined at this step is called the ‘‘reference pattern’’.

5) Superimpose the reference pattern (Fig. 9 (b)) with
the other (non-reference) sub-sequences, and use the
minima and maxima of the reference pattern to identify
the time instants at which a toggle should be done on
other sub-sequences (Fig. 9 (c),(d)). Due to the simi-
larity between the sequences, the selected points will
correspond to the maxima which should be selected for
the toggling.

Step c) of the proposed algorithm consists of selecting the
optimal extrema subset for NLKEH toggling in the reference
sequence on the basis of the whole (a posteriori) knowledge
of the sequence. This operation is not trivial, and we propose
here a discussion about how it can be implemented. After that,
we will show how the identified optimal sequence may be
used to control the NLKEH.

A. A POSTERIORI SELECTION OF THE
OPTIMAL EXTREMA SUBSET
After step 2) of the algorithm, we have the set ε = {ti, ai},
i ∈ [1,N ], where ti is the time and ai is the value of the
ith extremum in the reference sub-sequence. Without loss of
generality, we consider that for odd i all ai are maxima and
for even i all ai are minima. Then the formula (2) gives the
maximum energy WN which can theoretically be converted
from this vibration if the mass toggles at each extremum.

Now we suppose that, because of non-zero losses asso-
ciated with toggling the mobile mass, we can only select
n < N ‘‘best’’ extrema, which will allow us to convert energy
Wn < W0. If the energy loss due to each toggling is δ, the net
energy is given by:

Wnet; n = Wn − nδ. (8)

Figure 10 (a) presents the convertible energy Wn as a
function of n normalized by WN (green curve) measured
on vibrations issued from human walking. For small n the
energy grows fast, since we select the ‘‘maximum-minimum’’
pair with the highest amplitude. For larger n we have to
include maxima of minima of lower amplitude, and we end
with insignificant extrema due to the noise, where the plot
saturates. On the same plot we draw the loss function nδ
(red curve).

The functionWn/WN of Fig. 10 (a) is calculated for several
sub-sequences, which allows one to see the statistical disper-
sion (uncertainty) of this measure.

Figure 10(b) represents the normalized net converted
energy defined as Wnet n/WN . This plot shows the aver-
age net energy over several sub-sequences with error-bars
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FIGURE 10. a) Normalized gross extracted energy versus the number of
togglings over a sub-sequence. Losses are shown as the red line. b)
Normalized net extracted energy versus the number of togglings over a
sub-sequence. c), d) Normalized net energy obtained with walking, for
different history depth of learning for vibrations issued from walking and
running.

(99% confidence). This plot allows one to select the optimal
number of togglings to maximize the net energy (6 togglings
in this case). The identified optimum set of extrema is then
used as the reference pattern in the step 4) of the algorithm
presented above.

B. USE OF THE REFERENCE PATTERN FOR EXTREMA
SELECTION IN FUTURE SEQUENCE
In this subsection we show how the reference pattern calcu-
lated from the reference previous sub-sequences is used to
extract energy from future sub-sequences. We demonstrate
the application of the algorithm to the vibration sequences
resulting from two contexts: a walking human and a running
human.

The results are summarized in Figures 10 c and d. On the
vertical axis we present here the plot of the normalized net
energy recovered from the vibrations. The horizontal axis is
the index of the sub-sequence i inside the sequence, which
can be interpreted as the discrete time iTs, where Ts is the
duration of the sub-sequence.

Our previous analysis shows that both walking and run-
ning acceleration vibrations change slightly with time; thus,
the vibration history relevant for the prediction is limited
in time. For this reason, for each sub-sequence i, the learn-
ing is performed with only k previous sub-sequences. For
that, k previous subsequences are averaged in time, and the
reference pattern is calculated on the averaged subsequence
as explained in Sec. III-A. Figures 10 (c) and (d) show
the results for k = 2, 5, 10, 20. For the sequences with
index i ≤ k , the learning has been performed on the first

TABLE 2. The estimations of the power which can be harvested by the
KEH in normal linear regime and near-limit regime.

(i − 1) sequences. Each plot shows the normalized energy
extracted at each sub-sequence for each length of the learning
history (the value of k).

The black plot presents the ideal maximum net energy
which can be extracted from each sub-sequence. This value is
calculated a posteriori, by application of the reference pattern
which is calculated from the sub-sequence itself (not from
the history). The difference between this ideal value and
the energy extracted after a learning on the past provides a
measure of the efficiency of the proposed method. Note that
all learning curves start from 0-efficiency, this is because we
do not have any information about the 1-st subset. It is easy to
see that the efficiency of the proposed learning algorithm is
much higher in the case of the walking pattern, with learning
on 2-10 previous subsets. It has good agreement with the ACF
of the signal (Fig. 5 (a),(c)).
However, the proposed algorithm has difficulties with the

running pattern. One can see that proposed algorithm some-
times even produces a ‘‘negative’’ efficiency (see (2) if we
assume the wrong points of accelerations as maxima and
minima, such as amin

ext,i > amax
ext,i, for most instances of time,

the oscillator will convert energy,vice versa, from the elec-
trical domain to the mechanical one). It can be explained by
the fact that in the case of running there is only a single huge
peak that produces the maximal amount of energy, and it is
really difficult to predict the position of the peak (it is weakly
changing). It means that for running we need to develop
a different learning algorithm that takes this features into
account.

As one can see, the power estimated in the near-limit
regime is much higher than in the linear regime. However,
we should keep in mind that this estimate shows the upper
limit of the harvested power, because some power should be
used to tune the pattern of minima and maxima, and to switch
to different regimes.

V. CONCLUSION
In this paper we analysed acceleration patterns of typical
human activities (running and walking). We showed that the
patterns are repeatable and weakly chaotic and therefore we
can design a self-tuning system which will harvest the energy
at certain time intervals. Finally, we introduced the concept of
the learning efficiency and showed that it is growing with the
time of learning. The numerical estimation showed that the
proposed approach allows one to extract significantly greater
power than the traditional linear KEH.

The next step of our investigation will be to focus on
the implementation of this idea in a fabricated device based
on the defined energy transition mechanism. There are sev-
eral challenges related to this step — the influence of the
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electro-mechanical coupling on the motion pattern of the
resonator, estimation of the energy which is spent on the
self-tuning and on toggling the mass and the energy required
for on-chip machine learning.

Nevertheless, the proposed concept potentialy offers a new
path to high-efficiency kinetic energy harvesting.
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