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ABSTRACT Synthetic Aperture Radar and optical (SAR-optical) image matching is a technique of finding
correspondences between SAR and optical images. SAR-optical image matching can be simplified to
single-mode image matching through image synthesis. However, the existing SAR-optical image synthesis
methods are unable to provide qualified images for SAR-optical image matching. In this work, we present a
K-means Clustering Guide Generative Adversarial Networks (KCG-GAN) to improve the image quality of
synthesizing by constraining spatial information synthesis. KCG-GAN uses k-means segmentations as one
of the image generator’s inputs and introduces feature matching loss, segmentation loss, and L1 loss to the
objective function. Meanwhile, to provide repeatable k-means segmentations, we develop a straightforward
1D k-means algorithm. We compare KCG-GAN with a leading image synthesis method—pix2pixHD.
Qualitative results illustrate that KCG-GAN preserves more spatial structures than pix2pixHD. Quantitative
results show that, compared with pix2pixHD, images synthesized by KCG-GAN are more similar to original
optical images, and SAR-optical image matching based on KCG-GAN obtains at most 3.15 times more
qualified matchings. Robustness tests demonstrate that SAR-optical image matching based on KCG-GAN
is robust to rotation and scale changing. We also test three SIFT-like algorithms on matching original
SAR-optical image pairs and matching KCG-GAN synthesized optical-optical image pairs. Experimental
results show that our KCG-GAN significantly improves the performances of the three algorithms on SAR-
optical image matching.

INDEX TERMS Image matching, image synthesis, synthetic aperture radar (SAR), generative adversarial
networks (GANs).

I. INTRODUCTION
SAR-optical image matching is an important prerequisite for
manyEarth observation applications such as image fusion [1],
image classification [2], [3], land-cover analysis [4], [5],
land-use analysis [6], change detection [4], [7], and yield
monitoring [8], [9]. SAR-optical image matching remains
a challenging problem mainly because of SAR and opti-
cal sensors’ different imaging mechanisms and principles.

The associate editor coordinating the review of this manuscript and
approving it for publication was Qiangqiang Yuan.

These differences lead to significant global geometric distor-
tions and non-linear intensity differences, making it difficult
to detect control points or correspondences by automatic
algorithms or human eyes. [10], [11].

Recently, image synthesis emerges as a powerful tool to
solve the above problem by simplifying the SAR-optical
image matching to single-model image matching. In order
to provide qualified synthesis results for SAR-optical match-
ing, we present a K-means Clustering Guided Generative
Adversarial Networks (KCG-GAN) motivated by semantic
image synthesis methods [12]–[15]. Figure 1 illustrates an
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FIGURE 1. An example of using the 1D k-means algorithm and a trained KCG-GAN generator to automatically match a pair of SAR and
optical images.

example of using KCG-GAN to match a pair of SAR and
optical images. It can be seen that the SAR and optical images
provide obviously different properties of targets. Specifically,
the SAR image shows the physical properties of targets
whereas the optical image shows more structural details [16].
We use KCG-GAN to translate the SAR image to the optical
image, making the single-model image matching method can
be performed directly on matching the synthesized and real
optical images. To do this, we introduce k-means segmenta-
tions in KCG-GAN for controlling the spatial information in
the image synthesis process. More specifically, we feed both
SAR images and the corresponding k-means segmentations
to its generator, and we introduce feature matching loss,
L1 loss, and segmentation loss in the training process of
KCG-GAN. Note that the optical images used in KCG-
GAN are grayscale, not RGB, since the colorization of SAR
images is expected to be an ill-posed problem [16], and most
image matching methods only use grayscale information of
images to be matched [17], [18].

Moreover, to provide unified synthesizing results, SAR and
optical images in the training and test datasets should have
unified segmentation centers respectively. Hence, we decide
to obtain the clustering centers of SAR and optical images
from the corresponding training dataset separately. However,
it is impossible to use conventional k-means algorithms to
cluster massive images simultaneously because of the high
time or space complexities of the conventional algorithms.
For instance, for a dataset that has 10,000 grayscale training
images in the size of 256 × 256 pixels, the number of the
corresponding samples to be clustered reaches 655,360,000.
If clustering these samples by using conventional k-means
algorithms, a regular personal computer may run out of mem-
ory. In addition, the conventional algorithms cannot provide
repeatable segmentation, because they rely on initializing
centers by random sampling. Many sophisticated segmenta-
tion methods [19]–[23] have been developed for segmenting

remote sensing images. However, in this work, we focus
on whether the segmentation information could benefit the
SAR-optical image synthesis and matching results? There-
fore, we develop a straightforward 1D k-means algorithm for
efficiently obtaining repeatable segmentations from massive
grayscale images. The 1D means that the massive grayscale
images can be considered as a huge one-dimensional array.

Then the main contributions of this work are summarized
as follows:

1) We employ k-means segmentations to control the spa-
tial information in synthesizing optical images from
SAR images.

2) The repeatable k-means segmentations are efficiently
provided by our 1D k-means algorithm.

3) We discover that combining feature matching loss,
L1 loss, and segmentation loss to the training
progress can enhance the results of SAR-optical image
matching, although L1 loss often leads to blurry
images [12], [24].

4) There is a lack of quantitative analyses on the SAR-
optical image matching based on image synthesis.
In this work, we use 900 test image pairs to con-
duct a comprehensive quantitative comparison between
our KCG-GAN and leading image synthesis method—
pix2pixHD [12].

5) We conduct robust tests to our KCG-GAN, which
shows that the SAR-optical image matching based on
our KCG-GAN is robust to rotation and scale changing.

II. RELATED WORK
The SAR-optical matching methods can be classified into
two categories: 1. matching based on similarity metrics;
2. transforming multi-modal matching into single-mode
matching. The former tries to match multi-modal images
based on designing intensity similarity metrics [25], [26],
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local feature descriptors [10], [11], [27], or learning sim-
ilarity metrics [28]–[33]. The latter attempts to unify the
textures of multi-modal images using image synthesis
methods [34]–[36].

In this section, a literature review of SAR-optical image
matching is briefly given, according to the two categories:
A. Matching based on similarity metrics; B. Transforming
multi-modal matching into single-mode matching.

A. MATCHING BASED ON SIMILARITY METRICS
Recently, learning-based methods have shown promis-
ing results in matching SAR and optical images [28]–[33],
[37], [38], where Siamese and Pseudo-Siamese networks are
the most popular network architectures. In [28], a Siamese
network is proposed for learning the shift between SAR
and optical patches. The geo-localization accuracy of optical
images is improved by adjusting the optical sensor model
parameters based on tie points generated by the Siamese
network. To match very high-resolution SAR and optical
images, a Pseudo-Siamese network is proposed to determine
a point-wise similarity score [37]. In [29], hard negatives
are generated for the training dataset of a variational-GAN,
significantly decreasing the false positive rate of a Pseudo-
Siamese network [37] in SAR-optical image matching.
In [33], a Siamese fully convolutional network (SFcNet) is
developed. The SFcNet is trained with a novel loss function
for learning the descriptors of matching multi-modal patches.

Besides (Pseudo-)Siamese networks, many efforts have
also been made in other network architectures. In [31],
a Random Forest-based prediction framework is proposed to
transform the matching problem into a classification task.
It doubles the number of correspondences comparing to
the Scale-Invariant Feature Transform (SIFT) [39] method.
In order to improve the quality and diversity of the train-
ing, a generative matching network (GMN) is proposed.
It applies generative adversarial networks (GANs) to gener-
ate coupled training data [32]. In [40], a deep metric based
on a fully convolutional neural network (FCN) is proposed
to predict whether SAR-optical image pairs are aligned or
not. In [38], autoencoder-based matching techniques are
extended to semi-supervised learning for SAR-optical image
matching. To improve the geo-localization accuracy of opti-
cal images, [30] uses the HardNet [41] algorithm to clas-
sify matching and non-matching image pairs based on the
Euclidean distance.

However, the corresponding image patches used in
learning-based methods are mostly generated manually,
resulting in time-consuming and cost-intensive [42]. For the
learning-based methods that do not generate image patches
manually, their image patches’ centers are usually located
by using feature detectors, such as Harris, DOG (Difference
of Gaussians), etc. However, as these feature detectors are
developed to match single-mode images, the large intensity
and texture differences of the multi-modal images lead to low
repeatability of the extracted features [11].

B. TRANSFORMING MULTI-MODAL MATCHING INTO
SINGLE-MODE MATCHING
Transforming multi-modal matching into single-mode
matching is based on minimizing the non-linear radiomet-
ric differences between multi-modal data. With the rapid
development of GANs, much effort has been spent on SAR-
to-optical or optical-to-SAR image synthesis methods [34],
[35], [43], [44]. In [16], a comprehensive analysis of the
optimization, opportunities, and limits of using conditional
generative adversarial networks (cGANs)-based SAR-optical
image translation for remote sensing tasks is presented.
In addition, the potential of cGANs for SAR-optical image
matching is explored in [34] and [35]. They use cGANs-
based image synthesis techniques to transfer multi-modal
matching into single-mode matching firstly. They then use
well-designed single-modal matching methods (e.g., nor-
malized cross-correlation (NCC), SIFT, and binary robust
invariant scalable key (BRISK)) to match the synthesized
and the corresponding real images. The experimental results
showed that they both obtained better results than directly
using single-mode matching methods for matching SAR
and optical images, demonstrating this kind of approach’s
great potential. In [45], the pix2pix [24] is adopted to SAR-
to-optical image synthesis. Reference [45] confirms that,
based on pix2pix, a sufficient number of correspondences
can be estimated. However, quantitative evaluations of image
matching results are not provided in [45].

Another way to transform moti-modal matching into
single-mode matching is using a style transfer technique
to blend original structures with target textures. In [36],
a pre-trained deep convolutional neural network (CNN)—
VGG19 [46]—is introduced to extract deep pyramid fea-
tures from SAR and optical images. Then, a bidirectional
nearest neighbor field search (NNF) [47] is used to obtain
the correct mapping relationship. Finally, the reconstructed
images could obtain the correct texture features from other
types of images. The experimental results showed that
this method outperforms the histogram-of-orientated-phase-
congruency (HOPC) method [10] in multi-modal image
matching.

All of the above results have confirmed the potential of
transforming multi-modal matching into single-mode match-
ing. However, the existing SAR-optical image synthesis
methods are still unable to work in a completely satisfying
manner [42]. In this work, we aim to enhance image synthesis
performance and quantitatively analyze the enhanced image
synthesis method on SAR-optical image matching.

III. KCG-GAN
The goal of KCG-GAN is to learn a mapping from the
combination of a SAR image and its k-means segmentation to
the corresponding optical image:G (x, S1 (x))→ y, where x,
S1 (x), and y are a real SAR image, the k-means segmentation
of the SAR image, and the corresponding real optical image,
respectively.
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FIGURE 2. An example of obtaining k-means segmentations of training and test images (either for a SAR dataset or an optical dataset)
using the 1D k-means algorithm.

Hence, KCG-GAN model involves two parts: 1) k-means
segmentor—1D k-means; 2) k-means based generator.
We introduce these two parts in Section III-A and III-B
respectively.

A. 1D K-MEANS ALGORITHM
Like other k-means-type algorithms, the clustering problem
of the 1D k-means algorithm can be defined as: given an
integer k and a set of n samples in R1, the goal is to choose k
centers so as to minimize the objective function [48], [49]:

φ=min
∑
a∈A

‖f (C, a)− a‖2, (1)

where A is the set of n samples, a is a sample in A, C is the
set of k centers, f (C, a) returns the nearest centers c (c ∈ C)
to a, and ‖·‖2 returns (L2 norm) Euclidean distance.
The difference between 1D k-means and other k-means

algorithms is that 1D k-means algorithm is specifically devel-
oped for clustering the large 1D array. Utilizing 1D arrays’
property that it can be easily sorted in ascending/descending
order, the 1D k-means figures out a straightforward way
of generating repeatable centers and reducing computational
and space complexities. An example of using 1D k-means
for generating segmentations from training and test images
is illustrated in Figure 2. The dataset in this example stands
for either a SAR or an optical dataset, and it only contains
three training images and two test images (in the size of 2×2
pixels). In other words, the cluster centers of SAR and
optical images should be obtained separately. As shown
in Figure 2, the three 2D training images are first reshaped
into a 1D array. Then the 1D array is sorted in ascending order.
We denote the reshaped/original and sorted 1D arrays by A
and P respectively. Hence the array A refers to the variable
A in Equation 1. Then, after initializing and updating the
centers, a 1D label array in ascending order (denoted by LP)
and the final centers (denoted by C) can be obtained. Finally,
the k-means segmentations of training images are generated
by restoring and reshaping LP. The k-means segmentations of
the two 2D test images are derived based on C . In summary,

the 1D k-means algorithm contains three main steps: 1. data
pre-processing; 2. repeatable center initialization; 3. cluster
updating and generation.

1) DATA PREPROCESSING
Because the mapping relation from sorted array (P) to the
original array (A) is needed to recover the original order of
label array, we provide mapping functions as follows:

P = MAtoP(A), (2)

A = MPtoA(P), (3)

where MAtoP and MPtoA are mapping functions of A to P and
P to A respectively.

2) REPEATABLE CENTER INITIALIZATION
The mean tree (MT) center initialization algorithm is pre-
sented to initialize repeatable centers. A toy example of using
the MT algorithm for initializing five centers from the sorted
array (P) is shown in Figure 3, whereC[1] toC[5] are the five
candidate centers, C_L and C_R are the starting and ending
indices of the candidate centers, and (·)L and (·)R are the left
and right parts of (·). More Specifically, for the left part of
P, which is denoted by PL , its candidate centers’ starting and
ending indices are (C_L)L and (C_R)L . As can be seen from
the figure, the MT algorithm’s main idea is to keep dividing
the sorted array (P) until there is only one candidate center
in it. The midpoint of each division is determined by the
corresponding array’s mean value. Moreover, if the number
of candidate centers is odd, we extract the middle candidate
center and assign it by the corresponding array’s mean value.
We program the MT algorithm as a recursive function and
describe it in Algorithm 1. Note that the number of clusters—
k is equal to C_R − C_L + 1, where the C_R and C_L are
the input values given before running Algorithm 1.

3) CLUSTER UPDATING AND GENERATION
In this step, we update the clusters only between adjacent
centers because the array to-be-clustered has been sorted in
ascending/descending order. Hence, the computational and
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FIGURE 3. A toy example of the MT centers initialization for initializing five centers from an array P , where C = MT(·)
means the MT algorithm described in Algorithm 1.

Algorithm 1 The Mean Tree (MT) Center Initialization
Algorithm
Input: P: a 1D pixel array sorted in ascending order; C_L:

the starting index of candidate centers; C_R: the ending
index of candidate centers; C : a 1-by-k array of zeros.

Output: C : k centers initialized by the algorithm.
1: function C =MT(P, C_L, C_R)
2: MeanValue = mean(P);
3: if C_L == C_R then% only one candidate center in the

current P
4: C(C_L) = MeanValue
5: return
6: end if
7: w = C_R− C_L + 1;
8: if w is odd then
9: MiddleCenter = C_L+floor((w/2);
10: C(MiddleCenter) = MeanValue;
11: end if
12: MiddlePoint = the index of the first sample that is larger

than MeanValue;
13: PL = P(1 : MiddlePoint);
14: PR = P(MiddlePoint + 1 : end);
15: (C_R)L = C_L+floor(w/2)− 1;
16: (C_L)R = C_R−floor(w/2)+ 1;
17: C =MT(PL , C_L, (C_R)L);
18: C =MT(PR, (C_L)R, C_R);
19: end function

space complexities of 1D k-means can both be reduced to
O(n) (see Section IV-C.1), where n is the number of samples.
We keep updating the clusters until they no longer change.

Finally, we obtain a 1D label array in the sorted order, and we

can obtain the label array in the original order as follows:

LA = MPtoA(LP), (4)

where LP is the label array in the sorted order, and LA is the
label array in the original order.

B. K-MEANS BASED GENERATOR
We use spatially aligned SAR and optical image pairs to train
the generator and the discriminator of KCG-GAN, i.e., the
KCG-GAN is fully supervised. To provide spatial guidance,
the generator’s inputs contain a SAR image and the SAR
image’s k-means segmentation. The objective function com-
prises four terms: adversarial loss, segmentation loss, L1 loss,
and feature matching loss. Moreover, we apply cGANs in
KCG-GAN since cGANs is more suitable than GANs for
image synthesis tasks [24], and cGANs has already been
adapted to tasks in multi-sensor remote sensing success-
fully [16]. Figure 4 shows the structure of KCG-GAN. It can
be seen that the SAR and optical image pairs are spatially
aligned, and an input image (the SAR image) is served as a
condition of the discriminator.

1) ADVERSARIAL LOSS
The adversarial loss expresses the key idea of GAN—training
a pair of networks (generator: G, and discriminator: D) in a
minimax two-player game. The G learns to generate realis-
tic images, and D learns to discriminate whether the image
comes from G or training data. We apply the adversarial loss
to the mapping of G (x, S1 (x)) → y, where x and y are the
SAR and optical images respectively, S1 is the segmenter built
by 1D k-means and the SAR training dataset, and S1 (x) is the
segmentation of x.
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FIGURE 4. Training KCG-GAN to obtain the mapping of
SAR(x)→optical(y ). G is the generator that learns to synthesize optical
images; D is the discriminator that learns to classify between synthesized
image combinations and real image combinations; S1 and S2 are the
segmenters that provides k-means segmentations of SAR and optical
images, respectively.

The traditional adversarial loss with the conditional setting
is formulated as [24]:

Ladv = E(x,y)
[
logD (x, y)

]
+Ex

[
log (1− D (x,G (x, S1 (x))))

]
, (5)

where G learns to synthesize optical images G (x, S1 (x))
that fool the discriminator—D; D learns to classify between
synthesized image combinations—G (x, S1 (x)) and y—and
real image combinations—x and y; D (·) returns the clas-
sification/discrimination results; E(x,y)

1
= E(x,y)∼pdata(x,y)

and Ex
1
= Ex∼pdata(x); E(·)∼pdata(·) [f (·)] returns the expec-

tation of f (·) with respect to the data-generating distribution
pdata(·) [50].
In this work, instead of using the negative log-likelihood

objective, we use LSGAN [51] for stable training. Therefore,
Equation (5) becomes:

LLSGAN−adv = E(x,y)
[
(D (x, y)− 1)2

]
+Ex

[
(D (x,G (x, S1 (x))))2

]
. (6)

2) SEGMENTATION LOSS
We introduce the segmentation loss [15] to maintain the
spatial information of the synthesized images with respect
to their corresponding real images. The segmentation loss is
formulated as:

LSeg = E(x,y) [H (S2 (y) , S2 (G (x, S1 (x))))] , (7)

where S2 (·) returns optical k-means segmentations, andH (·)
computes a pixel-wise cross-entropy by:

H (a, b) = −
∑
i∈I

∑
j∈J

ai,j log bi,j, (8)

where a and b are two k-means segmentations whose image
and label spaces are I and J .

3) L1 LOSS
We use L1 loss to guarantee that the synthesized images
generate similar content to the corresponding real images.
The L1 loss [24] is expressed as:

LL1 = E(x,y)
[
‖y− G (x, S1 (x))‖1

]
. (9)

4) FEATURE MATCHING LOSS
We adopt feature matching loss [12], [52] to stabilize the
training and produce a natural high-frequency structure. The
feature matching loss minimizes the difference of features
extracted from multiple layers of the discriminator while
identifying the synthesized and real optical image combina-
tions. The feature matching loss is defined as:

LFM = E(x,y)
M∑
m=1

1
Nm

[∥∥∥∥Dm (x, y)−Dm (x,G (x, S1 (x)))

∥∥∥∥
1

]
, (10)

where Dm is the mth layer feature extractor of D, Dm (·)
returns features extracted from the mth layer of D, M is
the total number of feature layers, and Nm is the number of
elements in the mth layer.

5) FINAL OBJECTIVE FUNCTION
The final objective function of KCG-GAN is:

LKCG−GAN = LLSGAN−adv + λ1LSeg + λ2LL1 + λ3LFM ,
(11)

where λ1, λ2, and λ3 are hyper-parameters that control the
relative importance of the segmentation, L1 and, feature
matching losses, respectively. The goal of the KCG-GAN is
to solve:

G∗ = argmin
G

max
D

LKCG−GAN . (12)

6) NETWORK ARCHITECTURE
We adopt the generative network architecture from Wang
et al. [12], who has demonstrated remarkable results for high-
resolution image synthesis. The original architecture in [12]
is constructed with a multi-scale generator and discriminator,
but in this work, we only use the global generator and dis-
criminator in KCG-GAN.

The generator architecture consists of: c7s1-64,
d128, d256, d512, d1024, R1024, R1024,
R1024, R1024, R1024, R1024, R1024, R1024,
R1024, u512, u256, u128, u64, c7s1-3,
where c7s-k is a 7 × 7 Convolution-InstanceNorm-ReLU
layer with k filters and stride 1; dk is a 3 × 3 Convolution-
InstanceNorm-ReLU layer with k filters and stride 2; Rk is
a residual block that contains two 3× 3 convolutional layers
with the same number of filters on both layers; and uk is
a 3 × 3 fractional-strided-Convolution-InstanceNorm-ReLU
layer with k filters and stride 1/2.
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FIGURE 5. A toy example of the space occupying of 1D k-means, k-means++ and Ckmeans.1d.dp algorithms for clustering nine samples
into three classes. The circles represent the samples sorted in ascending order, and we assume that the distance between adjacent
samples is one; the blocks represent the distance arrays used by the three algorithms, and the numbers are the distances from samples to
corresponding centers.

FIGURE 6. Processing time of the four algorithms on datasets with various image numbers (left) and cluster numbers (right). The lines and shadows
represent the average and range of processing time of the four algorithms in each experiment.

We use 70 × 70 PatchGANs [12], [24], [53], [54] for
the discriminator networks. The discriminator architecture is:
C64-C128-C256-C512, where Ck is a 4×4 Convolution-
InstanceNorm-LeakyReLU layer with k filters and stride 2.
The leaky ReLUs are used with a slope of 0.2.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, the implementation details about KCG-GAN
are shown in Section IV-A; the datasets and set-up of 1D
k-means and KCG-GAN are introduced in Section IV-B;
a quantitative comparison of the presented 1D k-means
algorithm against three k-means-type algorithms is provided
in Section IV-C; the image synthesis and matching results
of the presented KCG-GAN and pix2pixHD are given in
Section IV-D.

A. IMPLEMENTATION DETAILS
We use the Adam solver [55] to train the KCG-GAN and
pix2pixHD from scratch.

In order to determine the number of clusters in KCG-GAN,
we random sample one-hundred optical images from the
SEN-12 dataset and cluster these images in different num-
bers of clusters by using the 1D k-means algorithm. Then,
we use the Elbowmethod to determine the number of clusters
based on clustering results’ MSE values (see the bottom
row and middle column of Figure 6). The Elbow method
returns the ‘‘Elbow-point’’ of the MSE values, i.e., the sec-
ond derivative’s minimum. In the case of MSE values
in Figure 6, the ‘‘Elbow-point’’ is at three clusters. Hence,
the number of clusters is chosen as three in this work. The
source codes of 1D k-means and KCG-GAN are available at
https://github.com/WenliangDu/KCGGAN.

B. DATASETS AND SET-UP
We gather the training and test images from SEN1-2
dataset [56] (256 × 256 pixels for each image) that
contains 282,384 pairs of aligned SAR-optical images.
Specifically, in order to evaluate image synthesis methods
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on rural, semi-urban, and urban scenarios, we select
image pairs from s1(2)_0, s1(2)_3, s1(2)_6, s1(2)_7,
s1(2)_9, s1(2)_10, s1(2)_14, s1(2)_15, s1(2)_17, s1(2)_18,
s1(2)_26 and s1(2)_35 folders of the ROIs1158 spring sub-
group. Moreover, since image pairs that mostly contain sea
and forest scenarios are naturally hard to be matched, these
kinds of image pairs are removed from the dataset. Finally,
9,459 image pairs are selected. Specifically, 8, 559 pairs are
used for training, and 900 pairs are used for testing (300 pairs
for each scenario), and there is no test image overlapping
training images.

To discuss the generalization of pix2pixHD and KCG-
GAN, we select image pairs from s1(2)_2, s1(2)_5, s1(2)_20,
s1(2)_25, and s1(2)_27 folders of the ROIs1158 spring sub-
group to construct a generalization dataset. We remove the
image pairs that mostly contain sea and forest scenarios from
the generalization dataset, just like what we have done to the
training and test image pairs. Finally, we have 5, 665 SAR-
optical image pairs in the generalization dataset.

We coarse-tune the values of the three hyper-parameters
in a small dataset because optimizing them in Equation (11)
requires a huge computational power and time. The small
dataset consists of 1,025 SAR-optical image pairs collected
from the s1_3 (SAR) and s2_3 (optical) folders of the spring
season of the SEN1-2 dataset [56], where 936 pairs for
training, and 89 pairs for testing. We found that the weights
of feature matching (λ3) loss, segmentation (λ1) loss, and
L1 (λ2) loss can be used to adjust the details, structures, and
textures of the synthesized images, respectively. We set the
weight of feature matching loss (λ3 in Equation (11)) to 10,
which is also the default setting in pix2pixHD [12]. We then
set weights of the segmentation and content (L1) losses
(λ1 and λ2) to 10 and 50 for balancing the matching and
synthesis results of KCG-GAN. Note that this setting is for
reference only, not the optimal setting for all kinds of SAR-
optical images. If applyingKCG-GAN to other types of SAR-
optical images, users should re-tune the weights of losses
according to the properties of corresponding SAR-optical
images for obtaining better image synthesis and matching
results.

The experiments of k-means-type algorithms are per-
formed on a personal computer with an Intel i5-6600 CPU
and 20 GB RAM. The training and tests of image synthesis
are conducted on a server with 2 Intel Xeon Gold 5117 CPU
processors, 24 GB RAM, and an NVIDIA Tesla P100 with
16 GB HBM2 memory. For the image synthesis, we set the
number of epochs to 200, and we set the number of channels
of input and output to one since the training and test images
used in this work are grayscale.

C. EXPERIMENTS OF 1D K-MEANS ALGORITHM
We compare 1D k-means algorithm with three k-means
type algorithms: k-means++ [48], mini-batch [49],
and Ckmeans.1d.dp [57] algorithms. We implement our
1D k-means algorithm with MATLAB code. In con-
trast, we implement the three algorithms based on the

corresponding library or package since we want to repro-
duce their best performance. Specifically, the k-means++
algorithm is implemented by using the function—kmeans
from the MATLAB Library; the mini-batch algorithm is
implemented by using python code based on the sklearn
package [58], and the batch size of the mini-batch algorithm
is set to one-hundred for better results; the Ckmeans.1d.dp
algorithm is implemented by using R code based on the
Ckmeans.1d.dp package [59]. Then, we discuss space
complexities of the four algorithms in Section IV-C.1, and
we evaluate the four algorithms on datasets with various
image numbers and cluster numbers (i.e., the value of k) in
Section IV-C.2.

1) SPACE COMPLEXITY
Figure 5 shows a toy example of the spaces occupying of the
1D k-means, k-means++ and Ckmeans.1d.dp algorithms.
It can be seen that for updating the nearest centers of each
sample, k-means++ and Ckmeans.1d.dp algorithms should
compute the distances of all samples to the centers. Therefore,
their space complexities are O(nk), where n is the number
of all the samples, and k is the number of clusters. In con-
trast, the 1D k-means algorithm only computes the distance
between the samples and their adjacent centers (see Figure 5)
since the array to be clustered has been sorted in ascending
order. Hence, the space complexity of 1D k-means algorithm
is only O(n).
As for the mini-batch algorithm, its space complexity

should be O(km) based on its original article [49], where
m is the batch size, and m is usually much smaller than n.
However, in practice, running mini-batch, k-means++ and
Ckmeans.1d.dp algorithms occupied an unacceptable amount
of memory, which caused our personal computer (see
Section IV-B) to run out of memory when we clustered more
than 7,000 images (256 × 256).

2) COMPARISONS OF THE FOUR
K-MEANS-TYPE ALGORITHMS
We evaluate the four k-means-type algorithms on datasets
with various image and cluster numbers. For the experiments
of various image numbers, we randomly sample different
numbers of optical images from the 9,459 image pairs (see
Section IV-B) to construct the datasets. Then, we use the
four algorithms to cluster each dataset into three classes. For
the experiments of various cluster numbers, we randomly
sample one-hundred optical images from the 9,459 image
pairs, and use the four algorithms to cluster each dataset
in different classes. Note that ten independent datasets are
prepared for each experiment to obtain reliable experimental
results. In addition, we test k-means++ and mini-batch algo-
rithms for ten times on each dataset because their results are
random. Furthermore, we have sorted all the datasets of each
experiment in ascending order before they were clustered by
the four algorithms.

The left column of Figure 6 shows the four algorithms’
processing times on various image and cluster numbers.
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TABLE 1. NOQMs of different variants of pix2pixHD and KCG-GAN on 900 test image pairs. Feat and L1 are feature matching and L1 losses, respectively;
GG and GM are global and multi-scale generators, respectively; DS and DM are single and multi-scale discriminators, respectively; SegIn represnets using
segmentations as one of the generator’s inputs; Seg is segmentation loss.

It is obvious that the processing time of k-means++
increased dramatically when increasing the number of
images or clusters, while the processing time of mini-batch,
Ckmeans.1d.dp, and 1D k-means is much more stable. More
importantly, the processing time of 1D k-means is always
less than 11 seconds, even when the number of images is
reached 2,000.

The middle column of Figure 6 shows the four algorithms’
mean square errors (MSEs) in various image and cluster num-
bers. The MSE is derived from

√
φ, where φ is obtained by

Equation (1). As we can see that 1D k-means obtains the low-
est MSE in all experiments, which means 1D k-means could
provide more reasonable centers than the other algorithms.

We evaluate the stability of four algorithms by using the
center shift. The right column of Figure 6 shows the four
algorithms’ center shift values in different image and cluster
numbers. Remember that ten independent datasets are pre-
pared for each experiment, and the k-means++ and mini-
batch algorithms are tested ten times for each dataset. Hence,
for a certain experiment, the value is obtained by the max-
imum center shift among the ten datasets. It can be seen
that only Ckmeans.1d.dp and 1D k-means could attain a zero
center shift since they do not rely on initializing the centers
randomly. In summary, the presented 1D k-means algorithm
can provide repeatable segmentations and are much more
efficient than the other three algorithms.

D. EXPERIMENTS OF KCG-GAN
We firstly introduce evaluation criteria in Section IV-D.1.
Then, we compare the image synthesis and matching
results of our KCG-GAN against a leading method—
pix2pixHD [12]—in Section IV-D.2. Then, we discuss the
generalization and robustness of KCG-GAN and pix2pixHD
in Section IV-D.3 and IV-D.4. Finally, in Section IV-D.5,
we test three SIFT-like algorithms—SIFT, SAR-SIFT [60]
and PSO-SIFT [61] on directly matching SAR-optical image
pairs and KCG-GAN synthesized optical-optical image pairs.

1) EVALUATION CRITERIA
We chose six criteria to conduct quantitative evaluations
of image synthesizing and matching. Two of them are

used for evaluating the quality of image synthesizing: peak
signal-to-noise ratio (PSNR) and structural similarity index
(SSIM) [62].

The rest four criteria are used for evaluating image match-
ing. Specifically, the first criterion is the number of correct
correspondences (NOCCs), where the correspondences are
obtained from the coarse matching [63] of SIFT descriptors.
Since the SAR and optical images are spatially aligned in
the test dataset, a correct correspondence is chosen as the
correspondence whose Euclidean distance is less than three
pixels [34], [35]. The second criterion is the number of qual-
ifiedmatchings (NOQMs), which is defined as the matching
whose NOCCs is equal or greater than eight because the
fundamental matrix can be derived by at least eight correct
correspondences [64], [65]. The remaining two criteria are
outlier ratio (a.k.a. false-matching ratio), and root mean
square error (RMSE) [66], where the RMSE values are
obtained by matching results of the locally linear transform-
ing (LLT) method [67]. The RMSE of LLT (RMSELLT ) is
derived as follows:

RMSELLT =
√
E
(
‖uLLT − vLLT ‖22

)
, (13)

where uLLT and vLLT are the correspondences of synthesized
and transformed images preserved by the LLT method.

2) RESULTS OF IMAGE SYNTHESIS AND MATCHING
COMPARISON OF FULL VERSIONS AGAINST VARIANTS
The full version of pix2pixHD involves a global or multi-
scale generator (GG or GM ), a single or multi-scale discrim-
inator (DS or DM ), and adversarial (GAN), feature matching
(Feat), VGG losses. Specifically, the number of a multi-scale
discriminator in DM is two in this work. We test six vari-
ants of pix2pixHD and show their quantitative comparisons
in Table 1. Obviously, GAN+Feat+GG+DM is the best vari-
ant of pix2pixHD. This result indicates that although feature
matching and VGG losses, and the multi-scale generator and
discriminator are all used for expressing more natural details,
their effects are not simply superimposed. In other words,
if too many actions of generating details were taken in image
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FIGURE 7. Image synthesis results of pix2pixHD and our KCG-GAN on
three typical images pairs. The top right of each image shows its
segmentation obtained by 1D k-means algorithm.

synthesis, needless details may be generated, which harms the
subsequent SAR-optical matching.

The full version of our KCG-GAN involves a global gen-
erator, a single discriminator, a segmentation component,
GAN loss, feature matching loss, and content (L1) loss. The
segmentation component consists of the segmentation loss
and using k-means segmentations as one of the inputs
of the generator. One reason for not using the multi-scale
generator and discriminator is that the size of the images
in the SEN1-2 dataset is only 256 × 256. Another reason
is that we only want to build the general architecture of
KCG-GAN in this work. The quantitative results of three
variants of KCG-GAN are shown at the bottom of Table 1.
It can be seen that, based on the pix2pixHD basic version,
if we only add segmentations as the generator’s inputs or
only add segmentation loss, none of the qualified matchings
could be obtained. If simultaneously adding them as the
segmentation component, we could obtain more qualified
matchings than the basic structure of pix2pixHD for the semi-
urban and urban scenarios. Moreover, the L1 loss improved
the matching results substantially, and the L1 loss combined
with the segmentation component can further enhance the
matching results in rural and urban scenarios. Overall, for
the 900 test image pairs, the SAR-optical image matching
based on the full version of KCG-GAN can obtain 1.86, 2.43,
and 3.15 times more qualified matchings than those based on
the best variant of pix2pixHD in rural, semi-urban, and urban
scenarios, respectively. Note that the following comparisons
are based on the full version of KCG-GAN and the best
variant of pix2pixHD.

QUALITATIVE ILLUSTRATION OF IMAGE
SYNTHESIS RESULTS
Figure 7 presents three examples of image synthesis results
obtained by pix2pixHD and our KCG-GAN. The corre-
sponding k-means segmentation results are illustrated at the

FIGURE 8. Correct correspondences obtained by pix2pixHD and our
KCG-GAN from the three typical images pairs (red cycles: correct matched
points in synthesized images; green cycles: correct matched points in real
images; and yellow lines: lines between correct matched points).

FIGURE 9. Enlarged optical images and the corresponding enlarged
synthesized images.

top-right of each image. The three image pairs are picked
from rural, semi-urban, and urban scenarios of the 900 test
image pairs. It can be seen that the synthesizing results of
pix2pixHD are more visually appealing than the synthe-
sizing results of KCG-GAN since more details are synthe-
sized based on the multi-scale discriminator of pix2pixHD.
Nevertheless, KCG-GAN preserves more spatial structures
than pix2pixHD since the content and structure information
constrained by the L1 loss and segmentation component of
KCG-GAN. Moreover, we enlarge one typical part of each of
the three optical images and their corresponding synthesized
images (see Figure 9). Obviously, KCG-GAN can preserve
more spatial structures than pix2pixHD in the three exam-
ples. Figure 8 shows the correct correspondences obtained
by pix2pixHD and KCG-GAN from the three typical image
pairs. It can be seen that, based on KCG-GAN, more correct
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FIGURE 10. NOCCs of the qualified matchings obtained by the two methods.

FIGURE 11. Outlier ratios of the qualified matchings obtained by the two methods.

TABLE 2. PSNRs and SSIM indexes of the two methods in three scenarios.

correspondences are obtained. It reveals that without con-
straining the synthesis of spatial information, the features
can not be precisely synthesized to the demand for image
matching.

QUANTITATIVE COMPARISONS OF IMAGE SYNTHESIS
AND MATCHING RESULTS
We show quantitative comparisons of image synthesizing
results of KCG-GAN and pix2pixHD in Table 2. It can
be seen that pix2pixHD obtains slightly higher maximum
and average PSNRs than KCG-GAN in rural and semi-
urban scenarios. In contrast, KCG-GAN achieves the best
SSIM results for all three scenarios and obtains significantly
higher PSNRs than pix2pixHD in the urban scenario. Hence,
in general, KCG-GAN synthesized higher-quality images
than pix2pixHD. Taken together with image synthesis results
shown in Figures 7 and 9, although KCG-GAN synthesized
blur images due to the L1 loss [12], images synthesized by
KCG-GAN are more similar to the real optical images than
the images synthesized by pix2pixHD.

We use NOCCs, outlier ratio, and RMSE [66] of LLT to
provide the quantitative evaluation of imagematching results.
Figure 10 shows the NOCCs of the qualified matchings

obtained by the two methods from 900 test image pairs.
Note that the NOCCs obtained by KCG-GAN are ranked in
ascending order, and the NOCCs obtained by pix2pixHD are
arranged in terms of the same image-pairs of KCG-GAN.
We see that there are only a few cases that the pix2pixHD
obtains more NOCCs, and, in these cases, the differences
between NOCCs obtained by the two methods are small.
While, in most cases, our KCG-GAN obtains much more
NOCCs than pix2pixHD. Specifically, eighty percent of qual-
ified matchings obtained by KCG-GAN have more than
twelve, sixteen, and thirteen NOCCs in rural, semi-urban, and
urban scenarios, respectively. In contrast, eighty percent of
qualified matchings obtained by pix2pixHD only have more
than nine NOCCs in all the three scenarios.

On the other hand, NOCCs obtained by the pix2pixHD
in Figure 10 show rise trends except for the last two cases
in the semi-urban scenario. It means that the pix2pixHD can
obtain a qualified matching with a higher probability for
the image pair that KCG-GAN already obtained a qualified
matching.

Next, we show the corresponding outlier ratios and
RMSELLT in Figure 11 and Figure 12. The two methods’
outlier ratios show declining trends with increased NOCCs
(except for the last two qualified matchings of pix2pixHD in
the semi-urban scenario). In contrast, there is a relatively low
correlation between RMSE and NOCCs. For instance, for the
twenty-third qualified matching obtained by KCG-GAN in
the urban scenario, the outlier ratio is 77.2% (Figure 11), and
the NOCCs is 13 (Figure 10). Still, the LLT can not preserve
more than seven correspondences to derive the fundamental
matrix (Figure 12). We name this kind of experiment as the
failed experiment and set the corresponding RMSE to NaN
(not a number). It is because even the correct correspondences
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FIGURE 12. RMSEs of LLT obtained by the two methods from the qualified matchings, where NaN represents failed experiments.

FIGURE 13. Overview of robustness tests of KCG-GAN.

TABLE 3. PSNRs and SSIM indexes of the two methods on matching
image pairs of other domains.

are good enough for the subsequent processing, but it may
also be hard for image matching methods to discriminate
them from outliers.

The average values of the outlier ratio and RMSELLT are
shown at the legends of Figure 11 and Figure 12. Obviously,
KCG-GAN provides a lower outlier ratio and RMSELLT than
pix2pixHD.

In addition, both of the two methods obtain the best
NOCCs, NOQMs (see Table 1), and outlier ratio in the urban
scenario. This may be because the urban images naturally
contain more features than images from the other two sce-
narios.

3) GENERALIZATION DISCUSSION
We test KCG-GAN and pix2pixHD on five other domains—
s1(2)_2, s1(2)_5, s1(2)_20, s1(2)_25, and s1(2)_27 folders
of the ROIs1158 spring sub-group. As shown in Table 3,
KCG-GAN obtains better PSNR and SSIM results than
pix2pixHD, which indicates L1 loss and segmentation com-
ponent improve the generalization of SAR-to-optical image
synthesis.

FIGURE 14. Calculating RMSECP based on nine pairs of checkpoints,
where the red and green squares are the checkpoints, the green crosses
are the projected checkpoints, the yellow lines represent correct
correspondences, and the cyan dashed lines and arrows represent the
projection.

However, neither of the two methods acquires qualified
matchings from image pairs in the five domains. Hence,
same to other data-driven deep learning models in remote
sensing [68], improving generalization of image synthesis
based SAR-optical image matching is still a challenge.

4) ROBUSTNESS TESTS
In this section, we conduct robustness tests of our KCG-GAN
with pix2pixHD in the cases of rotation and scale changing
(see Figure 13). The correct correspondence of a matching
can be expressed as:

‖ulT − vl‖2 ≤ ε, (14)
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FIGURE 15. The number of qualified matchings of rotation tests.

FIGURE 16. Outlier ratios of rotation tests, where markers and shadows represent averages and ranges of outlier ratios.

where ul and vl are the lth correspondences obtained from
synthesized and transformed (rotated or scaled) optical
images, T is the transformation matrix, which is known since
the angles of rotation and scale factors are setting manually,
and ε is the threshold of discriminating correct correspon-
dence. We set ε to three pixels, which is the same as the
threshold of correct correspondence in Section IV-D.1.

In order to evaluate the reliability of correct corre-
spondences, we introduce another evaluation criterion—the
RMSE of checkpoints, denoted by RMSECP. In particular,
we sample one-hundred pairs of gridded checkpoints from
the images to be matched. Then, we project the check-
points from transformed images to the synthesized images
according to TCC . TCC is the transformation matrix con-
structed by the correct correspondences from synthesized
images, denoted by uCC , and the correct correspondences
from transformed images, denoted by vCC . TCC is expressed
as TCC = uCC/vCC . Finally, we can obtain RMSECP by
obtaining the RMSE between the projected and the origi-
nal checkpoints in the synthesized image. Figure 14 gives
an example of projecting nine gridded checkpoints from a
rotated optical image to a synthesized optical image. The pro-
jected (red squares) and original checkpoints (green crosses)
are almost identical. It implies that the correct correspon-
dences (yellow lines) derived by this matching are reliable
to the subsequent processing. The quantitative criterion—
RMSECP is expressed as:

RMSECP =
√
E
(
‖uCP − vCPTCC‖22

)
, (15)

where E (·) returns the mean value, ‖·‖22 returns squared
Euclidean distance, uCP and vCP are the gridded checkpoints
from synthesized and transformed images, respectively.

We evaluate the robustness on the same 900 test image
pairs from Section IV-D.2. We use NOQMs, outlier ratio,
RMSELLT , and RMSECP to evaluate the robustness quantita-
tively. Specifically, for each case, the outlier ratio, RMSELLT ,
and RMSECP are presented by the corresponding average,
maximum, and minimum values of qualified matchings.
In particular, for the RMSELLT , the results of failed exper-
iments are not taken into account. The failed experiments
have been introduced in the Quantitative Comparison of
Section IV-D.2.

CASES OF ROTATION CHANGING
We rotate the original optical images by 15, 30, and
45 degrees. Then we evaluate the matching results of
synthesized and rotated optical images. We also give
the matching results of synthesized and original images.
Figures 15, 16, and 17 show the NOQMs, outlier ratio, and
RMSECP of the two methods in various rotation angles. It can
be seen that the NOQMs of the two methods only decrease
slightly with increased angle of rotation. Meanwhile, for
the three scenarios, the average outlier ratios of KCG-GAN
and pix2pixHD are distributed among 70.6% ∼ 74.8% and
76.3% ∼ 82.2% respectively, and the average RMSECPs of
KCG-GAN and pix2pixHD are distributed among 2 ∼ 2.8
and 2.4 ∼ 3.3 respectively. It reveals that the NOQMs
of the two methods are both robust to rotation changing,
and the correct correspondences derived by the two methods
can provide reliable matchings for subsequent processing.
Moreover, KCG-GAN significantly outperforms pix2pixHD
in NOQMs and outlier ratio comparisons of rotation tests.
It implies that spatial information constraints of KCG-GAN
keep the superior in generating correct correspondences in
varying rotation angles.
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FIGURE 17. RMSECP s of rotation tests, where markers and shadows represent averages and ranges of RMSECP s.

FIGURE 18. RMSELLT s of rotation tests, where markers and shadows represent averages and ranges of RMSEs.

FIGURE 19. The number of qualified matchings of where scale tests.

FIGURE 20. Outlier ratios of scale tests, where markers and shadows represent averages and ranges of outlier ratios.

On the other hand, the values of RMSELLT s show rising
trends with increased angles of rotation (see Figure 18).
It is because that although the SIFT descriptors of correct
correspondences are rotation-invariant, the ability to remove
outliers of the LLT method declines with increased angles of
rotation.

CASES OF SCALE CHANGING
We use bicubic interpolation to scale up the original optical
images to 1.25, 1.5, 1.75, and 2 times. Then we evaluate the
matching results of synthesized and scaled optical images.

Figures 19, 20, 21, and 22 show NOQMs, outlier ratio,
RMSECP, and RMSELLT s of the two methods in different
scale factors, respectively. It can be seen that only NOQMs of
the two methods slightly decline with increased scale factors.
In contrast, the average values of outlier ratio, RMSECP, and
RMSELLT s of the two methods are stable with respect to the
different scale factors. Specifically, for the three scenarios,
the average outlier ratios of KCG-GAN and pix2pixHD are
distributed among 71% ∼ 75.3% and 76% ∼ 82.6%, respec-
tively; the average RMSECPs of KCG-GAN and pix2pixHD
are distributed among 2 ∼ 2.6 and 2.3 ∼ 3.1, respectively;
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FIGURE 21. RMSECP s of scale tests, where markers and shadows represent averages and ranges of RMSECP s.

FIGURE 22. RMSELLT s of scale tests, where markers and shadows represent averages and ranges of RMSEs.

the average RMSELLT s of KCG-GAN and pix2pixHD are
distributed among 3 ∼ 4.1 and 2.9 ∼ 7.4, respectively.
It reveals that SAR-optical image matchings based on KCG-
GAN and pix2pixHD are both robust to scale changing, and
the correct correspondences are also easy to be identified by
the LLT method. Moreover, KCG-GAN continues to outper-
form pix2pixHD in scale tests significantly.

In summary, the correct correspondences generated by
the matchings based on KCG-GAN and pix2pixHD are
robust to the rotation and scale changing. This is because
the two image synthesis methods transform the SAR-optical
image matching into optical-optical image matching. Then,
the scale, rotation, and illumination invariant single-mode
feature descriptor could be applied to achieve robust image
matching, e.g., SIFT [39], Speeded-Up Robust Features
(SURF) [69], etc.

TABLE 4. NOQMs of coarse matching results of the three SIFT-like
algorithms on matching original and KCG-GAN synthesized SAR-optical
images.

5) COMPARISONS OF THE THREE SIFT-LIKE ALGORITHMS
We firstly show the NOQMs of coarse matching results of the
three SIFT-like algorithms on original SAR-optical matching
and KCG-GAN based SAR-optical matching in Table 4. The
SAR-optical images are the 900 test image pairs introduced

in Section IV-B. Obviously, based on KCG-GAN, the three
algorithms obtain at least 4.8 times more qualified match-
ings (PSO-SIFT tests in the semi-urban scenario) than those
used to match the original SAR-optical images directly.
It means that our KCG-GAN significantly improves the per-
formances of the three algorithms on matching SAR-optical
images.

We then use another three criteria—NOCCs (Figure 23),
outlier ratios (Figure 24), and RMSELLT s (Figure 25) to show
more details of the comparisons. Two things are worth noting
about the three criteria. The first one is that the three criteria
are obtained from matching KCG-GAN synthesized SAR-
optical images. The second one is that the NOCCs of SIFT
in Figure 23 are ranked in ascending order, and the NOCCs
obtained by PSO-SIFT and SAR-SIFT are arranged in terms
of the same image-pairs of SIFT. As a result, the outlier ratios
and RMSEs of the three algorithms shown in Figure 24 and 25
are arranged in terms of the same image-pairs of NOCCs
in Figure 23.
Among the three algorithms, PSO-SIFT obtains the most

qualified matchings from both original and KCG-GAN syn-
thesized SAR-optical images (see Table 4). This is because
PSO-SIFT increases the number of correct correspondences
by combining the position, scale, and orientation of each
keypoint [61] (see Figure 23). However, PSO-SIFT also
preserves much more outliers than other two algorithms
(see Figure 24), making the outliers removing algorithm—
LLT hard to discriminate correct correspondences from so
many outliers (see Figure 25). On the other hand, although
SAR-SIFT preserves the lowest outlier ratios (see Figure 24),
it doesn’t preserve the lowest RMSEs. This is because the
SAR-Harris detector of SAR-SIFT generates some corre-
spondences that are too close to each other [60], resulting in
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FIGURE 23. NOCCs of the qualified matchings obtained by the three SIFT-like algorithms based on KCG-GAN.

FIGURE 24. Outlier ratios of the qualified matchings obtained by the three SIFT-like algorithms based on KCG-GAN.

FIGURE 25. RMSELLT s of qualified matchings obtained by the three SIFT-like algorithms based on KCG-GAN, where NaN represents failed experiments.

FIGURE 26. Applying the LLT algorithm on removing outliers of image matching results of three SIFT-like algorithms based on KCG-GAN (yellow lines:
lines between correct matched points; blue lines: lines between incorrect matched points).

an imprecise transformation matrix generation. SIFT obtains
the lowest RMSELLT s and preserves the medium NOCCs and
outlier ratios compared to PSO-SIFT and SAR-SIFT.

We show a typical example of image matching results
of the three SIFT-like algorithms with and without the LLT
algorithm in Figure 26. In this example, NOCCs preserved by
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SIFT, PSO-SIFT, and SAR-SIFT are 83, 109, and 63, respec-
tively; outlier ratios of SIFT, PSO-SIFT, and SAR-SIFT
are 41%, 57%, and 31%, respectively. Hence, PSO-SIFT
preserves the most correct correspondences, and SAR-SIFT
obtains the lowest outlier ratio. However, after removing out-
liers by the LLT algorithm, outliers ratios of SIFT, PSO-SIFT,
and SAR-SIFT decline to 21%, 50%, and 31%, respectively;
RMSELLT s obtained by SIFT, PSO-SIFT, and SAR-SIFT are
3.51, 6.62, and 4.01, respectively. It reveals that outliers
generated by SIFT are much easier to be removed by LLT
than outliers generated by PSO-SIFT and SAR-SIFT.

Therefore, in this work, we use the original SIFT algorithm
for achieving the low RMSEs. Meanwhile, the original SIFT
matching results are more general than the other SIFT-like
algorithms’ matching results because the original SIFT is not
designed for any specific kinds of images.

V. CONCLUSION
In this work, we presented a KCG-GAN to improve the
image quality of synthesizing by controlling the spatial
information. We used k-means segmentations as one of the
inputs of KCG-GAN and applied feature matching loss, seg-
mentation loss, and L1 loss to the training of KCG-GAN.
Moreover, we developed a straightforward 1D k-means algo-
rithm to obtain the repeatable k-means segmentations from
massive grayscale images, which is more efficient than the
state-of-the-art k-means algorithms. We conducted qualita-
tive, quantitative, generalization, and robustness tests for
KCG-GAN compared with pix2pixHD. Qualitative results
indicated that KCG-GAN could preserve more spatial struc-
tures than pix2pixHD. Quantitative results showed that,
compared with pix2pixHD, KCG-GAN synthesized higher-
quality optical images and obtained 1.86, 2.43, and 3.15 times
more qualified matchings in rural, semi-urban, and urban
scenarios, respectively. Generalization testing results showed
that KCG-GANobtains better generalization than pix2pixHD
in SAR-to-optical image synthesis. Robustness testing results
showed that KCG-GAN is robust to rotation and scale chang-
ing. We also tested three SIFT-like algorithms on original
SAR-optical matching and KCG-GAN based SAR-optical
matching. Experimental results showed that, based on our
KCG-GAN, the three algorithms obtained at least 4.8 times
more qualified matchings than those directly used to match
original SAR-optical images.

Future work will focus on applying sophisticated segmen-
tation methods [19]–[23] to SAR-to-optical image synthe-
sis for improving the generalization and accuracy of the
SAR-optical image matching.
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