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ABSTRACT It is generally regarded that some properties of the characteristic modes of multiconductor
transmission lines, such as per-unit-length impedance, admittance, or characteristic impedance, cannot be
meaningfully computed analytically. This inability arises from the nature of the definition of the modes – sets
of relative voltages and/or currents – which in the prevailing understanding may be arbitrarily scaled. Several
methods with which to compute scaling factors have been proposed, but often – and as demonstrated in this
work – the results of these processes do not agree with values determined directly from field quantities or
experiments. This work begins by examining several facets ofmulticonductor-transmission-linemodes under
the approximation of ideal TEM propagation: firstly, that transmission-line modes are normal, and secondly,
that as a result of possessing this property, it is postulated that total currents in the terminal domain may be
directly equated to those in the modal domain. It is then shown that these relations allow the scaling factors
to be determined to within a sign, and as a result, modal properties may be directly computed. This technique
allows for the extraction of the modal transmission-line properties for any arbitrary system of conductors.
Multiple examples are studied numerically, in which it is shown that the proposed process results in much
stronger agreement with field solution than other proposed processes, and further validation of the proposed
process is provided though experimentally obtained data.

INDEX TERMS Characteristic impedance, characteristic modes, decoupling, diagonalization, modal anal-
ysis, multiconductor transmission-line.

I. INTRODUCTION
Transmission-line (TL) theory is a powerful concept that
allows the fields of transverse electromagnetic (TEM) modes
to be expressed as unique voltages and currents, making it a
critical tool for high-accuracy circuit design. Basic TL sys-
tems contain only two conductors, whereas multiconductor
TL (MTL) systems generally contain three or more con-
ductors. The two common representations (strictly, bases,
or ‘‘domains’’, in which the quantities are expressed) of
MTLs are as follows:

1) The terminal domain (also referred to as the natu-
ral domain), in which the various TL parameters are
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defined between each conductor and a pre-selected,
common reference conductor. These parameters are
expressed as dense matrices that are generally fully
populated, implying that the various quantities evalu-
ated on each conductor are in general coupledwith each
other.

2) The modal domain (also referred to as the diagonal-
ized or decoupled domain), in which a TL’s prop-
erties are given in terms of the TL’s characteristic
modes (also referred to as propagation modes) and
expressed as diagonal matrices. The diagonality of
the matrices implies that the solutions are isolated
from one another and, due to this fact, each mode
may be considered akin to a that of a simple two-
conductor TL.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 219955

https://orcid.org/0000-0001-9362-6501
https://orcid.org/0000-0002-5280-4751
https://orcid.org/0000-0003-1287-7697


S. Barth, A. K. Iyer: Novel Scaling Process for the Computation of MTL Modal Properties

Terminal-domain parameters may be transformed into the
modal domain via diagonalization, and vice-versa [1]–[3].
This change of basis requires the use of transformation
matrices, which relate the propagating currents or voltages
between the two domains. These matrices are sets of eigen-
vectors, implying that their exact values are known only to
within a scale factor. This fact has historically resulted in the
conclusion that some modal properties such as characteristic
impedance, for which the scale factors do not cancel, cannot
be determined when transformed from the terminal domain
(although other methods may of course be used to obtain
these values, such as derivation from known modal field
quantities [1], [2], [4]–[6]).

Over roughly the last two decades, solutions have been
proposed in attempts to overcome this ambiguity [7]–[10],
and present similar processes to what will be introduced in
this work, but generally either use ambiguous normalizations
that lack physical bases, or produce sets of possible results.

The main contribution of this work is to demonstrate that
any such ambiguities can be resolved by noting that physical
quantities – specifically, total current – must be respectively
equal in both domains, since the transformation between them
is simply a change of basis. These physical constraints are
used together to eliminate the unknown eigenvector scaling
factors to within a sign and produce modal properties. The
novelty of the work is validated through comparison with
existing scaling methods, where it is found that the proposed
method both produces characteristic impedance results that
are in much closer agreement with numerical full-wave sim-
ulator HFSS, and also produces modal impedance values
which are confirmed through experiment.

More recently, it was claimed that modal values could
not be determined from terminal-domain equivalents, fun-
damentally due to the complex nature of the transforma-
tion matrices [11]. While this claim is surely valid if the
transformation matrices are assumed generally complex, it is
further demonstrated in this work that TL modes – under the
assumption of transverse electromagnetic (TEM) propagation
(referred to hereon as the TEM approximation) – are strictly
normal, which allows these matrices to always be expressed
as entirely real [3], [12].

The layout of this document is as follows: Sec. II begins
with a brief discussion on the validity of the TEM approxima-
tion under quasi-TEM conditions, followed by the analytical
process of the terminal-to-modal transformation. Section II
concludes with the derivation of the source of the ambiguous
scale factors and a brief overview of previously proposed
solutions. Background on the requirement that TL modes are
normal, and the application of the postulate of equality of
total charges to solving modal properties are presented in
Sec. III. Section IV presents full-wave simulation data for two
different MTLs (one canonical, and the other designed as a
lossy, asymmetric case meant to demonstrate the versatility
of the proposed method), and demonstrates how modal per-
unit-length properties may be directly computed using only
the terminal-domain per-unit-length values. The predicted

modal characteristic impedances of one of these MTLs are
experimentally validated in Sec. V. Lastly, the key findings
and proposed applications are summarized in Sec. VI.
As demonstrated in this work, the determination of modal

properties allows for, among a variety of other applications,
the matching of MTLs of differing geometries, even those
possessing different numbers of conductors and constructed
around different dielectrics, which is currently only possible
via parametric optimization or the use of a limited set of
closed-form expressions. Additionally, modern applications
of MTL theory, such as the analysis and design of periodic
MTLmetamaterials [13]–[17] would benefit greatly from the
process proposed in this work, since it would allow for the
direct determination ofBlochmodal properties, such as Bloch
impedance and effective constitutive medium parameters, for
periodic structures in which lumped reactive elements can
be incorporated into a host MTL. The properties at present
may only be determined through laborious analytical solu-
tions or extraction from the scattering of a finite array of
structures [18], [19], where it may be excessively difficult to
properly excite each mode and a small error will always be
present due to the finite extent of the array.

II. BACKGROUND
A. THE TEM APPROXIMATION
TL theory is able to express the electric and magnetic field
vectors of a given TL mode as scalar voltages and cur-
rents through the application of various properties of TEM
modes [1], [2]. The TEM condition requires that a TL’s
conductors have identically zero resistivity, and that the TL is
embedded in a homogenous medium. The former condi-
tion requires superconductivity, which is rather uncommonly
encountered in practical systems, while the latter can only be
realized in a completely enclosed system. These conditions –
if met – ensure that TL modes do not possess longitudinal
field components; however, it is commonly taken that in
many practical cases the longitudinal field components may
be ignored since they are much smaller than their tangential
counterparts. This assumption gives rise to the TEM approx-
imation, in which results derived for strictly ideal TEM cases
may be applied to realistic, quasi-TEM TL modes.

The TEM approximation will be used in exactly the same
spirit in this work: that is, the derivations made assuming
TEM conditions are presumed to hold in the cases of mild
conductor losses and/or inhomogeneous media – with some
small, but tolerable error being incurred as a result (it is
noted here that all of the practical examples given in Sec. IV
reasonably satisfy the TEM approximation).

B. PROPAGATION IN THE TERMINAL DOMAIN
Currents and voltages propagating along a MTL in the z-
direction may be expressed as [1]

∂

∂z
EVT = − [ZT ] EIT (1a)

∂

∂z
EIT = − [YT ] EVT (1b)
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where [ZT ] and [YT ] are the per-unit-length impedances and
admittances. Combining (1a) and (1b) yields the voltage and
current Helmholtz equations,

∂2

∂z2
EVT = [ZT ] [YT ] EVT (2a)

∂2

∂z2
EIT = [YT ] [ZT ] EIT (2b)

where the products [ZT ] [YT ] and [YT ] [ZT ] may be expressed
as the squares of the propagation constant matrices:[

γV T
]2
= [ZT ] [YT ] (3a)[

γI T
]2
= [YT ] [ZT ] (3b)

At a given plane (e.g., z = 0), the forward- and
backward-travelling components of voltages and currents
sum to the total:

EVT = EV
+

T +
EV−T (4a)

EIT = EI
+

T +
EI−T (4b)

and characteristic impedances [ZcT ] are defined by the
forward- or backward-travelling voltage and current waves

EV+T = [ZcT ] EI
+

T (5a)
EV−T = − [ZcT ] EI

−

T (5b)

Inserting (4) into (5) using (1) and (3), it may be shown that

[ZcT ] =
[
γV T

]−1 [ZT ] (6a)

[ZcT ] = [ZT ]
[
γI T

]−1 (6b)

C. MODAL-DOMAIN QUANTITIES
The characteristic modes of a MTL are defined as those for
which all of the voltages and currents incur phase at the same
rate – i.e., they are the voltages and currents that satisfy (2a)
and (2b) [3], [20]. In these cases, the solutions to these equa-
tions are typically of the following form (although there exist
some extremely uncommon pathological exceptions [21]):

EVT (z) = EV
+

T e
−γM z + EV−T e

γM z (7a)
EIT (z) = EI

+

T e
−γM z + EI−T e

γM z (7b)

where the propagation constants γM are those associated
with each characteristic mode. Inserting these solutions back
into (2a) and (2b) yields the characteristic equations:

γM
2 EVT = [ZT ] [YT ] EVT (8a)

γM
2EIT = [YT ] [ZT ] EIT (8b)

Equations (8a) and (8b) may be recognized as eigenmode
equations, and are typically solved via standard numerical
processes. In these cases, the eigenvalues are the squares of
the modal propagation constants, while the eigenvectors are
the sets of relative currents and voltages associated with each
of these eigenmodes.
Expanding on the notion of the eigenvectors, it is typ-

ical to relate the voltages and currents on each conductor

(i.e., the terminal-domain voltages and currents) to weighted
sums of voltages and currents of the eigenvectors (i.e.,
the modal voltages and currents EVM and EIM ). That is, if the
matrices [TV ] and [TI ] are the eigenvectors of (8a) and (8b),
respectively:

EVT = [TV ] EVM (9a)
EIT = [TI ] EIM (9b)

These relations are the critical link in establishing the
modal-domain properties, and their transformation from the
terminal domain. For these reasons, [TV ] and [TI ] shall be
referred to as the voltage and current ‘‘transformation matri-
ces’’, respectively. Inserting these definitions into (1), (2),
and (5), and comparing with their terminal-domain counter-
parts, yields the well-known relations:

[ZM ] = [TV ]−1 [ZT ] [TI ] (10a)

[YM ] = [TI ]−1 [YT ] [TV ] (10b)

[γM ]2 = [TV ]−1 [ZT ] [YT ] [TV ] (11a)

[γM ]2 = [TI ]−1 [YT ] [ZT ] [TI ] (11b)

[ZcM ] = [TV ]−1 [ZcT ] [TI ] (12)

which are necessarily diagonal matrices (when the character-
istic modes exist [21]). Other modal properties of MTLs may
be determined in a similar manner.

D. ORIGINS OF AMBIGUITY
Equations (10) through (12) specify that modal prop-
erties may be simply derived from a combination of
terminal-domain data and transformation matrices. Since the
terminal-domain data are unambiguously correct, any ambi-
guity in the modal-domain definitions must be inherited from
transformation matrices themselves. Considering the matri-
ces [TV ] and [TI ] in detail, it may be observed through (9)
that each column of these matrices is a vector that relates
currents and voltages on each conductor to the excitation
of a single mode. Such a vector shall be referred to as a
‘‘mode definition’’, with the set of all mode definitions com-
posing the transformation matrices. Equations (10) through
(12) specify that each mode definition is associated with
various properties, such as scalar impedance, admittance,
propagation constant, and characteristic impedance.

Because each mode definition is an eigenvector derived
from (8), the definitions may be arbitrarily scaled by any
scalar value. Inserting these scale factors into either of (11)
yields an intriguing conclusion: the modal propagation con-
stants are not affected by any scaling applied to the mode
definitions. Because of this fact, there is consensus that the
propagation constants of a MTL’s characteristic modes are
well defined, and uniquely determinable. However, the same
cannot be said of (10) and (12). In these equations, any scale
factor applied to the mode definitions does not cancel out,
and thus the modal per-unit-length impedance, admittance,
and characteristic impedances are directly and significantly
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affected by any arbitrarily chosen scale factor. As a conse-
quence of this fact, it has been historically agreed upon that
these modal quantities cannot be determined [1], [2], [7],
[11]. Still, the following section details some scale factors
that have previously been introduced in order to align the
calculated values of these modal properties with those deter-
mined via other methods, such as analytical or numerical field
integrations.

E. EXISTING SCALING PROCESSES
Presently, there exist some strategies for constraining the
transformation matrices in attempt to determine the appro-
priate scale factors. Two of the most common are based on
simple normalizations that are typically arbitrarily chosen
and applied; both were detailed extensively in [7]. The first is
the normalization of the product [TV ]T [TI ], for which it was
shown that the symmetric nature of [γM ]2, [ZT ], [YT ] leads
to the conclusion that

[TI ]T [TV ] = [TV ]T [TI ] = [D], (13)

where [D] is any diagonal matrix, typically (and arbitrarily)
chosen to be identity for convenience. The second method
involves a form of self-normalization of the matrix diagonals,
such that

[TI ]T [TI ] = [TV ]T [TV ] = [I ] (14)

Some work has also been done in attempting to normalize via
physical quantities such as voltage, current, and power [10],
[22]; however, the processes in [10] are not examined in the
context of producing modal values, while those in [22] do not
produce unique results for a given geometry.

F. SPECIAL CASES: REPEATED AND INDETERMINABLE
EIGENVALUES
It must be noted that a suitable diagonalization to deter-
mine modal quantities may not always be possible [1], [2],
[21], [23]. The cases of non-diagonalizable matrices (equiv-
alently, the non-existence of characteristic modes), will not
be investigated, nor will the cases of repeated eigenvalues in
TEM systems be explicitly studied. It is important to clarify
that this works seeks to demonstrate that modal properties
may be accurately determined analytically, given specific
mode definitions.1

G. COMPUTATION FROM NUMERICAL FULL-WAVE
SOLVERS
The properties of MTL modes may be determined directly
from numerical full-wave solvers. For example, in an
eigenmode simulation of a TL’s transverse cross-section,
electric (EE) and magnetic ( EH ) fields are present, which not
only allow for the computation of power, but also currents and

1As to how those modes are determined in difficult and uncommon
scenarios is outside the scope of this work, but the interested reader is referred
to [1], [2], [21], [23].

voltages, through integration of the fields along appropriate
paths [4]–[6], [22], [24]–[26].
The modal properties may then be defined in terms of

these quantities; e.g., characteristic impedance is famously
computed from both voltage and current (‘‘VI’’), or power
and current (‘‘PI’’), or power and voltage (‘‘PV’’). The reason
these different definitions exists is that typically quasi-TEM
modes are being solved for. For strictly TEM modes, all
of these methods will return the same results; however,
for quasi-TEM modes the EE and EH fields possess some
non-negligible longitudinal components, and definitions of
voltage and current are not unique. However, once again,
the variation in results produced by the differing methods is
seen to be satisfactorily small for most quasi-TEMmodes [9];
in other words, the (tolerable) error in the large majority of
quasi-TEM cases justifies the use of the TEM approximation.

III. SOLUTION PROCESS
A. INITIAL POSTULATES AND TERMINOLOGY
Modal-terminal domain transformations rely on the fact that
both domains are equally valid representations of the same
physical system. Therefore, various physical properties must
be equivalent in both domains, foremostly, total energy and
total current (charge); that is, these properties must be invari-
ant to any change in basis such as EIT → EIM . In the fre-
quency domain, these are directly related to total power and
current. It is well known and accepted that power is equal
between terminal and modal domains; however, there exists
some confusion in the literature as to whether this applies to
total (i.e., complex) power [11] or instead the real, or time-
averaged power [7], which affects the ability to determine
mode definitions. Therefore, it will be demonstrated that
complex power is equivalent in both domains, which is a
direct consequence of one set of restrictions on the scaling
factors of the transformationmatrices. This will be elaborated
on in Sec. III-C. The second restriction is established via
postulate, where it is taken that

The total currents of a given phase in the modal
domain are equal to the total of those of the same
phase in the terminal domain.

This will be investigated in Sec. III-D. The reader may note
that the abovementioned postulate does not, in any way,
restrict the phase relationship between currents in a given
domain. In order to apply the equality of currents between
domains, it is necessary to first demonstrate also that the
currents of the characteristic modes may be separated into co-
and contra-directed sets. Such a behavior is a characteristic
of normal modes, in which all field points are simultane-
ously either in-phase or 180◦ out-of-phase. It is shown in
the following section that TL modes (that is, those under the
TEM approximation) must be normal.

While the total voltages and currents in the terminal
domain ( EVT and EIT , respectively) generally represent a super-
position of excited modes, it will be of interest to examine the
effects of a single excitedmode in the terminal domain. In this
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case, these terminal voltages and currents will be expressed
as

EVT
∣∣∣
n
= [TV ] EδnVMn (15a)

EIT
∣∣∣
n
= [TI ] EδnIMn (15b)

where VMn and IMn are the voltage and current of the excited
mode n, respectively, and the delta vector Eδn is defined as

Eδn =

{
1, if i = n
0, otherwise

∀ indices i. (16)

The inner product will be used to represent sums over vectors;
that is, for vectors Ea and Eb,∑

k

akbk = Ea · Eb = EaT Eb. (17)

In this manner, the sum of the elements in a single vector may
be expressed as ∑

k

ak = E1T Ea, (18)

where E1 is a vector, the entries of which are each unity.

B. NORMAL MODES
The per-unit-length impedances and admittances from Sec. II
may be separated into their real and imaginary components:

[ZT ] = [RT ]+ jω [LT ] (19a)

[YT ] = [GT ]+ jω [CT ] (19b)

where [RT ], [LT ], [GT ], and [CT ] are the per-unit-length
terminal domain resistance, inductance, conductance, and
capacitance matrices (respectively) of the TL. All of these
matrices are symmetric, real, and invertible. Substituting (19)
into (8a) yields(

[RT ] [GT ]− γ 2
M [I ]− ω2 [LT ] [CT ]

+jω ([LT ] [GT ]− [RT ] [CT ])

)
EVT = E0 (20)

The requirement that [RT ]→ 0 for TEM modes yields(
γ 2
M [LT ]−1 + jω [GT ]− ω2 [CT ]

)
EVT = E0 (21)

Invoking another requirement of TEMmodes – that theymust
be supported inside a homogenous medium [1] – gives the
requirement that [GT ] = σ

ε
[CT ]. Pre-multiplying by [TV ]T

and invoking (9a) yields:

[TV ]T
(
γ 2
M [LT ]−1 + jω

σ

ε
[CT ]− ω2 [CT ]

)
[TV ] EVM = E0

(22)

In order for this system to be support a complete set of modes,
[LT ]−1 and [CT ] must be simultaneously diagonalizable via
the congruence transform by [TV ]. This occurs if and only if
thematrix product [LT ] [CT ] is diagonalizable [27]. However,
given the previously enforced TEM conditions, this statement

is equivalent to the existence of the modal propagation con-
stants in (11a). Since the existence of modal propagation con-
stants is generally taken as a pre-supposition to conducting
modal analysis, it is assumed to hold true henceforth.

It may then be demonstrated that the eigenmodes of
such a system are real. The similarity transformation
[TV ]−1 [LT ] [CT ] [TV ] can be factored into the product of two
individual similarity transformations:

[TV ]−1 [LT ] [CT ] [TV ]

=

(
[TV ]−1 [LT ]−1 [TV ]

)−1 (
[TV ]−1 [CT ] [TV ]

)
(23)

Since each of [LT ]−1, [CT ] is real and symmetric, it is guaran-
teed that each of these has eigenvalues. Since the eigenvalues
of the matrix product are simply the product of these matri-
ces’ eigenvalues, it is the case that each of the eigenvalues
of the left-hand side of (23) are real as well. Lastly, it is
the case that if both the matrix product [LT ] [CT ] and its
eigenvalues are real, then its eigenvectors (i.e., [TV ]) may
be expressed as entirely real as well – which is necessarily
true for normal modes. A similar derivation demonstrates that
[TI ] may also be expressed as entirely real. These results
stand in contraction to the foundational assumptions used in
works such as [11], such that their conclusions – that modal
properties cannot be determined in the TEM approximation
– may not be substantiated.

C. POWER EQUIVALENCE
It may be demonstrated that the equality of total power
between domains is a direct consequence of a particular
constraint on the transformation matrices. Comparing (11a)
with the transpose of (11b), and noting again that [ZT ] and
[YT ] must be symmetric, yields the constraint

[TI ]T [TV ] = [I ], (24)

which is noted in [1]. Then, it may be proven that power is
equivalent in both domains using (9a) and (9b), since:

EI∗T EVT = EI
∗
M [TI ]T [TV ] EVM = EI∗M EVM (25)

D. CURRENT EQUIVALENCE
Consider first a single excited mode, n, which is modelled
with a two-conductor TL. The current magnitude for this
mode is expressed, in accordance with the previous defini-
tions, as IMn. While this is a single quantity, there are of
course two currents present: one on each conductor. Let the
magnitude of the current on one of the conductors be labelled
I+zM n, and the magnitude of the current flowing in the opposite
direction – that is, on the other conductor – be labelled I−zM n.
Taking a sign to signify direction of propagation, the conser-
vation of current (or charge) enforces that the currents sum to
zero: I+zM n + I

−z
M n = 0, or equivalently, I+zM n = −I

−z
M n.

Next, consider a TL with more than two conductors,
as described in the terminal domain. It is certain that the
conservation of current specifies that the sum of the cur-
rents on all conductors must be zero, and also therefore,
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that the sums of the magnitudes of the individual positive-
and negative-directed currents must be equal (noting that
magnitude does not refer to magnitude of the vector):∑

n

ITn = 0 ⇒
∑
n

I+zTn = −
∑
n

I−zTn (26)

where EI+zT and EI−zT are the sets of positively and
negatively-directed currents, respectively. Since it has been
established that TL modes are normal, it must be the case
(for TEMmodes: strictly; and for quasi-TEMmodes: approx-
imately) that although these currents are solved as complex
quantities, they may only only possess given phases θ or
θ ± 180◦, which are used to assign membership to the +z
or −z sets.

The same relations may be applied in the modal domain.
The conservation of currents still enforces that the currents
sum to zero, such that:∑

n

IMn = 0 ⇒
∑
n

I+zMn = −
∑
n

I−zMn (27)

The postulate of equality of total currents simply states that
the sums of the modal- and terminal-domain currents in each
directed set are equal: i.e.,∑

n

I+zMn =
∑
n

I+zTn ,
∑
n

I−zMn =
∑
n

I−zTn (28)

These relations are then inserted into the MTL formalisms
of Sec. II. The set of total currents on all conductors may be
expressed as the vector:

EIT = EI
+z
T +

EI−zT (29)

where EI−zT will then contain an entry of zero wherever EI+zT
has a nonzero entry, and vice-versa, such that all vectors
have the same length (which is the number of conductors
in the TL). It is known from (9b) that the distribution of
terminal-domain currents is dictated by the transformation
matrix [TI ] – that is, if a single mode is excited, the currents
on each conductor are specified by the corresponding column
of [TI ]. Let the transformation matrix then be separated into
two new matrices – one, labelled

[
T+zI

]
, consisting of the

magnitudes of the components related to the set of currents
EI+zT , and another labelled

[
T−zI

]
consisting of the magnitudes

of the components related to the set of currents EI−zT . Then,

[TI ] =
[
T+zI

]
−
[
T−zI

]
(30a)

EI−zT =
[
T−zI

]
EIM (30b)

EI+zT =
[
T+zI

]
EIM (30c)

Then, consider the case of a single excited mode n. Applying
the expression form of (18), the postulate (28) then may be
expressed as:

IM−zn = E1
T EI−zT

∣∣∣
n

(31a)

IM+zn = E1
T EI+zT

∣∣∣
n

(31b)

Invoking (15b) and (30b) allows the previous expressions to
be expanded to

I−zM n =
E1T
[
T−zI

]
EδnI
−z
M n (32a)

I+zM n =
E1T
[
T+zI

]
EδnI
+z
M n (32b)

The scalars I−zM n and I
+z
M n can then be cancelled to yield the

expressions:

1 = E1T
[
T−zI

]
Eδn (33a)

1 = E1T
[
T+zI

]
Eδn (33b)

which simply imply that the sum of each column n in
[
T−zI

]
and

[
T+zI

]
must be equal to unity.

E. PROPOSED SOLUTION PROCESS
A procedure for the determination of the transformation
matrices [TV ] and [TI ] may then be developed by utilizing
the equality of power (24) and the equality of currents (33).
Specifically, the scaling factor of [TI ] may be determined
through the use of the equality of current, with the equality
of power being used to relate [TV ] to [TI ]. Let the scaled
transformation matrix [TI ] be defined as:

[TI ]scaled = [TI ]unscaled · [g] (34)

where [g] is the matrix of scaling factors determined via the
application of the equality of total currents, which will be
defined shortly. Firstly, the unscaled transformation matrix
may be determined using (11b) via an eigenmode process in
which [TI ]unscaled are returned as eigenvectors. If [TV ]unscaled
is solved from (11a), [TI ]unscaled may be determined through
the application of (24).

Secondly, the equality of current is applied to [TI ]unscaled,
where a minor technicality adds some complication: specifi-
cally, that the currents excited on the reference conductor are
typically not included in either the set of currents EIT , nor the
transformation matrix [TI ]. However, it will be the case that
either this current is positive, negative, or zero. In the case
that it is positive, it would be found that the sum of

[
T−zI

]
Eδn

would be smaller than that of
[
T+zI

]
Eδn. In the case that it is

negative, it would be found that the sum of
[
T−zI

]
Eδn would

be larger than that of
[
T+zI

]
Eδn. If it were zero, the sums of the

two vectors would be equal. Therefore, for the equivalence
of current to hold, at least one of the sums is required to be
equal to one, with the other being less than or equal to one.
The columns of the two matrices

[
T+zI

]
and

[
T−zI

]
are then

compared, and the one with the larger sum is selected. The
corresponding value of [g] (which is diagonal) is then the
inverse of this sum, in order to normalize the total currents,
i.e.:

gnn = max
[(
E1T
[
T−zI

]
Eδn

)
,
(
E1T
[
T+zI

]
Eδn

)]−1
(35)

Lastly, the equality of power (24) is used to obtain
[TV ]scaled from [TI ]unscaled and [g], that is:

[TV ]scaled =
(
[g] [TI ]Tunscaled

)−1
(36)
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A proposed algorithm for scaling the transformation matri-
ces with the proposed process and associated discussion are
given in Appendix A.
Of course, the sorting of terminal domain currents into

either of EI−zT or EI+zT possesses some inherent ambiguity: the
sets are simply distinguished by sign, and may easily be
reversed when applied in (30a). This results in an arbitrary
sign being applied to the entire column of [TI ], which may
be physically understood as an arbitrary choice of conductors
supporting negative current and voltage. For example, in a
symmetric three-wire system, the differential mode will have
oppositely directed currents; but the choice of conductor
carrying the ‘‘negative’’ current is arbitrary; the mode’s prop-
erties do not change if the signs of the currents are reversed.

IV. EXAMPLES
This section will examine two realistic examples of deter-
mining a MTL’s modal properties. Ansys HFSS was used
to extract the per-unit-length inductance and capacitance
matrices in the terminal domain, as well as determine
the propagation constants and characteristic impedances in
the modal domain (chosen since these are the only avail-
able modal-domain properties), all computed at a frequency
of 1 GHz. Since HFSS is understood to correctly compute
the modal quantities from field data (using the built-in modal
solver in the Driven Terminal simulation type), the results it
produces may be considered physically accurate. The con-
vergence criteria for the HFSS simulations were chosen to
be extremely strict, in order to rigorously verify the proposed
method. These criteria enforced a minimum of 20 converged
passes with a convergence 1 |S| of 0.0001 and 16 S of 0.1◦.
The validity and effectiveness of the proposed process is
established by the corroboration of the HFSS modal values,
given only the known terminal values.

A. CONDUCTOR-BACKED COPLANAR STRIPLINE
This conductor-backed coplanar stripline (CBCPS) MTL
(which is equivalent to a pair of coupledmicrostrips), detailed
in Fig. 1, consists of three rectangular solid copper conductors
of thickness t = 35 µm (bulk conductivity σ = 58 MS/m)
on a Rogers RO-3003 substrate (εr = 3.0, tan δ = 0.0013)

FIGURE 1. Physical arrangement and properties of the conductor-backed
coplanar stripline (CBCPS). Conductor 0 and the dielectric extend much
further along the horizontal axis than shown (30 mm).

with thickness h = 1.524 mm. The dielectric and conductor 0
(taken to be the reference conductor) have a total width
of 30 mm, which is not shown to scale in Fig. 1. The upper
conductors 1 and 2 are symmetric with widths s = 1.7 mm
and spacing g = 0.4 mm. The terminal-domain per-unit-
length TL parameter matrices are 2× 2 in size and extracted
in HFSS as

[RT ] =
[
5.6364 0.1963
0.1963 5.6364

]
�/m

[LT ] =
[
0.3827 0.1452
0.1452 0.3827

]
µH/m

[GT ] =
[

4.7759 −1.0613
−1.0613 4.7759

]
mS/m

[CT ] =
[

73.1102 −21.6745
−21.6745 73.1102

]
pF/m (37)

which are used to solve the terminal-domain voltage propa-
gation constants and characteristic impedances:[
γV T

]
=

[
0.0582+j31.2759 −0.0107+j1.4645
−0.0107+j1.4645 0.0582+j31.2759

]
rad/m

[ZcT ]=
[
75.6818−j0.0488 25.6249+j0.0179
25.6249+j0.0179 75.6818−j0.0488

]
�

(38)

Using (3a) in (11a) yields the modal propagation constants
and characteristic impedances:

[γM ] = diag
[
0.0689+ j29.8114
0.0476+ j32.7403

]
rad/m

[ZcM ] = diag
[
50.0570− j0.0667
101.3070− 0.0309

]
� (39)

along with the (unscaled) transformation matrices (where
diag indicates the entries on the lead diagonal of a diagonal
matrix, in which the off-diagonal entries are zero):

[TV ]unscaled = [TI ]unscaled =
1
√
2

[
−1 1
1 1

]
(40)

which are the well-known mode definitions of the even and
odd modes of the system [1], [7], [10], [28]. HFSS gives the
modal propagation constants and characteristic impedances:

[γM ]HFSS = diag
[
0.0733+ j29.8120
0.0458+ j32.7410

]
rad/m

[ZcM ]HFSS = diag
[
100.2400− j0.1369
50.3630− j0.0124

]
� (41)

where it may be confirmed that the modal propagation
constants are very similar (percent differences of less than
0.01% between HFSS direct eigenmode simulation and
the data computed from the terminal-domain values). The
characteristic impedances appear to have values that are inter-
changed relative to those predicted by the typical mode defi-
nitions (40): a coincidence for this system that, nonetheless,
illustrates that these mode definitions – based on unscaled
transformation matrices – are expectedly in rather strong
disagreement with HFSS.
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Investigating the mode definitions in more detail, it can be
noted that the unscaled matrices satisfy the equality of total
power (24). However; the current transformation matrix [TI ]
does not satisfy the equality of total current (33), which is
integral to the scaling process proposed in this work. Scaling
the mode definitions through the application of this proposed
constraint yields the matrices

[g] = diag

 √2√2
2


[TV ]scaled =

[
−0.5 1
0.5 1

]
[TI ]scaled =

[
−1 0.5
1 0.5

]
(42)

which have also been noted in the recent literature [22], [29].
Using these definitions in (12) gives:

[ZcM ] = diag
[
100.1140− j0.1334
50.6534− j0.0154

]
� (43)

which are now in good agreement with percent differences
of 0.13% and 0.57%, for the odd and even mode, respectively,
to the modal values given by HFSS (41) as compared
with those in (39). The dramatic improvement in accu-
racy seen in this case validates the proposed process, while
the minor remaining discrepancies are limited to firstly the
TEM approximation, and secondly errors introduced through
numerical processing.

B. ASYMMETRIC SHIELDED CONDUCTOR-BACKED
COPLANAR WAVEGUIDE
This MTL, which exhibits physical asymmetry along both
transverse axes, consists of five rectangular solid copper
conductors of thickness t = 35 µm (bulk conductivity
σ = 58 MS/m) on a Rogers RO-3010 substrate (εr = 11.2,
tan δ = 0.0035) with thickness hl = 1.270 mm. The width of
the simulation domain is 10 mm. The various other geometric
parameters detailed in Fig. 2 are s1 = 1.8 mm, s2 = 3.1 mm,
s3 = 0.8 mm, g1 = 2.4 mm, g2 = 1.3 mm, g3 = 0.6 mm,
hu = 20mm. The domain is bounded on the sideswith perfect
magnetic conductors (PMCs). The terminal-domain per-unit-
length TL parameter matrices are then 4× 4 in size, with

[RT ]

=


5.7410 0.6158 0.4285 1.3669
0.6158 3.4829 0.7249 1.3292
0.4285 0.7249 9.7946 1.2298
1.3669 1.3292 1.2298 2.6073

�/m
(44a)

[LT ]

=


0.4871 0.0589 0.0375 0.1613
0.0589 0.2844 0.0969 0.1613
0.0375 0.0969 0.5967 0.1612
0.1613 0.1613 0.1612 2.6769

µH/m
(44b)

FIGURE 2. Physical arrangement and properties of the shielded
conductor-backed coplanar waveguide. The vertical dashed lines on the
sides indicate perfect-magnetic-conductor (PMC) boundary conditions.

[GT ]

=


4.1004 − 0.0920 − 0.0183 − 0.0004
−0.0920 7.3164 − 0.2782 − 0.0005
−0.0183 − 0.2782 3.0389 − 0.0016
−0.0004 − 0.0005 − 0.0016 0.0001

mS/m
(44c)

[CT ]

=


192.9900 − 6.9559 − 0.7568 − 1.0823
−6.9559 346.2750 − 17.4292 − 1.8796
−0.7568 − 17.4292 145.6230 − 0.7419
−1.0823 − 1.8796 − 0.7419 4.4208

 pF/m
(44d)

which are used to solve the terminal-domain voltage propa-
gation constants and characteristic impedances:

[
γV T

]
=


0.1597 0.0139 0.0033 0.0002
0.0078 0.1646 0.0051 0.0001
0.0050 0.0110 0.1733 0.0002
0.0394 0.0680 0.0244 0.0012



+ j


60.5802 5.1182 1.1871 0.0215
2.9128 61.2832 2.9531 0.0191
1.7954 7.4158 57.7375 0.0214
12.1225 20.9886 8.3301 21.0419

 rad/m
(45a)

[ZcT ]

=


50.1787 3.5449 2.0584 14.9098
3.5449 28.6587 6.7518 14.8751
2.0584 6.7518 63.9974 14.8850
14.9098 14.8751 14.8850 770.0090


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+ j


0.0380 0.0041 0.0020 0.0169
0.0041 0.0204 0.0107 0.0177
0.0020 0.0107 0.0224 0.0224
0.0169 0.0177 0.0215 0.0229

�
(45b)

Using (3a) in (11a) yields the modal propagation constants
and characteristic impedances (in vector form):

[γM ] = diag


0.0014+ j21.0236
0.1610+ j54.2975
0.1570+ j58.2701
0.1795+ j67.0516

 rad/m

[ZcM ] = diag


661.2290− j0.1385
38.7598+ j0.0520
48.6598− j0.0094
53.0236+ j0.0383

� (46)

along with the (unscaled) transformation matrices:

[TV ]unscaled

=


−0.0005 0.2043 0.8007 0.5056
−0.0004 −0.4522 −0.2335 0.5187
−0.0005 0.8682 −0.5516 0.5115
0.9999 0.0069 0.0056 0.4624



+ j


0.0000 −0.0015 0.0005 0.0001
0.0000 0.006 −0.0011 0.0000
0.0000 0.008 0.0012 −0.0005
0.0000 0.0003 −0.0002 0.0003


(47a)

[TI ]unscaled

=


−0.2314 0.1880 0.8215 0.4624
−0.3967 −0.7764 −0.4031 0.8263
−0.1591 0.6015 −0.4033 0.3216
0.8739 0.0000 0.0000 0.0007



+ j


−0.0001 −0.0011 −0.0002 0.0001
−0.0002 0.0006 0.0017 0.0000
−0.0002 0.0011 0.0013 −0.0004
−0.0001 0.0000 0.0000 0.0000


(47b)

It may be noted that although [TV ]unscaled and [TI ]unscaled are
complex matrices, the mode definitions still imply that the
characteristic modes are approximately normal, as previously
indicated should be the case. HFSS gives the modal propaga-
tion constants and characteristic impedances:

[γM ]HFSS = diag


0.0014+ j21.0240
0.1621+ j54.3010
0.1576+ j58.2720
0.1799+ j67.0550

 rad/m

[ZcM ]HFSS = diag


756.1500− j0.0521
57.6910+ j0.1264
71.6100− j0.0361
16.8950+ j0.0133

� (48)

where it may be confirmed that the modal propagation con-
stants are very similar (percent differences of less than 0.01%

in both cases), while the characteristic impedances differ
greatly from those predicted in (46) through application
of (12). Scaling the transformation matrices yields:

[g]= diag


1.1443+ j0.0001
−1.2666− j0.0009
−1.2173− j0.0003
0.6207+ j0.0001



[TV ]scaled=


−0.0005 −0.1769 −0.6751 0.9847
−0.0004 0.3916 0.1969 1.0102
−0.0005 −0.7518 0.4651 0.9962
0.9996 −0.0057 −0.0048 0.9006



[TI ]scaled=


−0.2648 −0.2381 −1.0000 0.2871
−0.4542 0.9834 0.4906 0.5129
−0.1818 −0.7619 0.4909 0.1996
1.0000 0.0000 0.0000 0.0004


(49)

Using these definitions to compute the modal impedances
yields:

[ZcM ] = diag


756.9000− j0.0452
56.6762+ j0.0177
70.2499+ j0.0474
16.8991− j0.0130

� (50)

which are now in good agreement (percent differences
of 0.01%, 1.77%, 1.92%, 0.02% to the modal values given
by HFSS (48) as compared with those in (46). It may be
noted that the two modes with a roughly even distribution
of fields in both dielectrics are those two that exhibit the
highest error. This is unsurprising, since the contrast between
relative permittivities of 1.0 and 11.2 is very high, and these
modes are stretching the limitations of the TEM approxima-
tion, thereby incurring the most error when using processes
derived for strictly TEM modes. This example illustrates,
however, the robustness of the proposed process even in such
extreme cases.

C. SUMMARY AND CONTRADICTIONS WITH OTHER
PROCESSES
The results given in these examples demonstrate that the
proposed process achieves agreement with computed field
quantities. Moreover, the invocation of physical arguments
such as the equality of total currents implies that this process
is uniquely required to achieve that agreement – and that
therefore, other methods should result in inherent contradic-
tions. The two predominant methods of scaling are given
in (13) and (14), which are examined for inconsistencies with
the field solutions.

It may be readily observed that (13) conflicts with
the equality of total power (24), such that any diagonal
matrix [D] (13) which is not identity represents a system
in which total power is dependent on the chosen basis of
voltages and currents: a physical contradiction. Therefore,
(13) is superseded by (24).

Self-normalization of the current or voltage eigenvectors
as described in (14) is typically used by most eigenmode
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solvers; indeed, this can be seen to be the case in the unscaled
mode definitions of (40) and (47). Since it was demonstrated
that these do not produce results in agreement with at least
the field solutions studied previously, this scaling process
may also be discounted as invalid. Quantitative results of
these conclusions are provided in Table 1, which details
comparisons of modal characteristic impedance values com-
puted via self-normalization of eigenvectors (as well as the
less commonly used case of solving the eigenmodes of the
terminal-domain characteristic impedance matrix [30] given
in Appendix B) with the values computed from HFSS.

TABLE 1. Comparison of percent differences in modal characteristic
impedances produced by various computational methods
with respect to data produced by HFSS.

V. EXPERIMENTAL VALIDATION
A. EXPERIMENT MODELLING AND SETUP
The modal characteristic impedance values predicted by the
proposed scaling process, as well as the simulations, may
also be confirmed via experiment, which also illustrates the
value of knowing the modal impedances when interfacing
MTLs with other TLs. Modal characteristic impedances of
two different CBCPS MTLs are confirmed though the exci-
tation of each of their two propagation modes. Specifically,
the proposed setup consists of a length of CBCPS, con-
nected on either end to a feeding two-conductor TL. The
equivalent-circuit models of two such designs are shown
in Figs. 3 and 4. The validation occurs in observing the
scattering of the total system: since the impedances of the
two-conductor feeding TLs are well known as well as deter-
minable, and if the feed lines excite predominantly a single
mode of the MTL, then the observed scattering parame-
ters should correspond to particular modal impedances. For
example, the return losses should be low (at least 20 dB over
a wide bandwidth) for a matched modal impedance, and high
for an unmatched case, both with a predictable frequency
response corresponding to the MTL lengths.

In order to excite each mode of the CBCPSMTLs, two dif-
ferent feed TLs are designed. Since the characteristic modes
are simply the odd and even modes (described by the mode
definitions in (42)), a CPS TL may be used to excite the
odd mode, and a microstrip (MS) TL may be used to excite
the even mode. The impedances of these lines are chosen
to be 100 � and 50 �, respectively, such that the design in
Sec. IV-A should represent the matched case for both even
and odd modes. Designed on the same RO-3003 substrate,
the MS has a width of 3.8 mm, and the CPS has a strip
width s = 1.4 mm and spacing g = 0.2 mm. The second

FIGURE 3. Equivalent-circuit models of the experimental even-mode
structures: (a) the terminal domain layout, and (b) the equivalent
modal-domain circuit.

FIGURE 4. Equivalent-circuit models of the experimental odd-mode
structures: (a) the terminal domain layout, and (b) the equivalent
modal-domain circuit.

CBCPS, representing the mismatched case, is designed on an
identical substrate with geometrical parameters s = 0.23 mm
and g = 0.55 mm, for which the proposed analytical process
predicts impedances of roughly 200� and 100� for the odd
and even modes, respectively.

The connections between the two-conductor feed lines
and the MTLs are also detailed in Figs. 3 and 4. The even
mode is excited in the MTLs through shorting the MS to
both upper-layer conductors, such that they possess the same
voltage and the currents are equally divided between them.
The conductor backing of both the feed and CBCPS are
connected directly together. The odd-mode feed connects
each conductor of the CPS directly to each of the upper-layer
conductors of the CBCPS, while the conductor backing of
the CBCPS is left floating with no connection. This ensures
that the currents and voltages are equal and opposite on the
upper-layer conductors.

Both feed line types are connected to a Vector Net-
work Analyzer (VNA) via SMA connectors and coaxial
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phase-stable measurement cables. The MS TL is directly
connected to one SMA connector, while the two conductors
of the CPS are split and individually connected each to
a SMA connector (the details of this transition are given
in Appendix C), such that the odd mode must be differ-
entially excited. These transition sections are included in
the modal-domain equivalent-circuit models of Figs. 3b and
4b, and their computed scattering parameters are given by
the dotted curves in Figs. 5 (the matched case) and 6 (the
mismatched case). The entire system of connectors, transi-
tion sections, feed lines, and CBCPS sections are then sim-
ulated in ANSYS HFSS, the layouts of which are shown
in Figs. 7 and 8, and the results are given in Figs. 5 and 6
via the dashed curves.

FIGURE 5. Scattering parameters of the matched MTL (dotted:
equivalent-circuit model, dashed: HFSS simulation, solid: experimental
data, red curves: S11, blue curves: S21): (a) even-mode MS excitation,
(b) odd-mode CPS excitation.

FIGURE 6. Scattering parameters of the mismatched MTL (dotted:
equivalent-circuit model, dashed: HFSS simulation, solid: experimental
data, red curves: S11, blue curves: S21): (a) even-mode MS excitation, (b)
odd-mode CPS excitation.

FIGURE 7. Simulation models of the matched CBCPS structures:
(a) even-mode MS excitation, (b) odd-mode CPS excitation, where the
dashed lines indicate the location of the conductor backing.

The devices are then fabricated using a LPKF U3 laser-
based milling machine, which is calibrated to achieve
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FIGURE 8. Simulation models of the mismatched CBCPS structures:
(a) even-mode MS excitation, (b) odd-mode CPS excitation, where the
dashed lines indicate the location of the conductor backing.

a positional accuracy of at least 10 µm across each PCB.
Shown in Figs. 9, the fabrications are visually inspected and
the positional inaccuracies are estimated to be at most 2 µm
in the regions of interest; particularly, the 50 µm gaps in the
CPS feed transitions sections.

FIGURE 9. Fabricated CBCPS structures: (a) even-mode MS excitation,
(b) odd-mode CPS excitation.

The devices are connected to a four-port VNA, as shown
in Fig. 10, where a styrofoam base has been used to sup-
port the structures and mitigate parasitic coupling with any
metallic features in the table below. The measured scattering
parameters are given in Figs. 5 and 6 via the solid curves,
where the odd-mode scattering parameters are obtained via
modal transformation from the four-port terminal-domain
data as described in Appendix D.

B. DISCUSSION ON RESULTS
Comparing the results of the two simulation models and
experimental data (Figs. 5 and 6), it may be observed that
the measured data are in close agreement with the simulation
data, indicating the modal-domain circuit models of Figs. 3b
and 4b are valid, high-fidelity representations of the corre-
sponding terminal-domain circuit models of Figs. 3a and 4a.
With the return loss of the matched cases better than 20 dB
over the very large bandwidth of 0.1 to 5.0 GHz, it may be
concluded that, indeed, the MTL is well matched to 50 and

FIGURE 10. Experimental setup of the odd-mode-excited CBCPS test
structure connected to a four-port VNA.

100 � for the even and odd modes, respectively, which must
then be its modal impedance values, as predicted by the
proposed scaling process. It is critical to note that this stands
in stark contrast to the modal impedances computed with the
common (unscaled) mode definitions (40), which predict that
these MTL sections would always be mismatched (these data
are provided in Appendix E) – lending further credibility to
the proposed process. Additionally, the scattering parameters
of the mismatched cases align readily with the those pre-
dicted by the equivalent-circuit model, indicating that these
predicted values are indeed those observed in experiment.

The finite – but small – S11 ripples observed in Figs. 5
below −20 dB are attributed to impedance mismatches
between theMTL and the feed lines. Theseminormismatches
arise from the fact that the modal impedances of the MTL
sections (with values given in (41) are not identical to those
of the feed lines. The MTL modal impedance are not exactly
50 and 100 � due to the consideration of a minimum geo-
metrical step size of 0.01 mm in simulation, which is also
likely close to the actual fabrication error of the laser milling
system.

Since both modes are validated, both in the matched and
mismatched cases, it has been experimentally established
that a) the modal characteristic impedances of the MTLs are
not arbitrary; their values do affect matching with standard
two-conductor TLs, and furthermore, b) these modal values
may be successfully predicted by scaling of the mode defini-
tions using the proposed process.

To further establish that the data in Figs. 5a and 5b do
indeed represent the matched case, and that other mismatched
cases may be predicted via their modal impedance values,
additional parametric sweeps of the CBCPS modal domain
impedances and associated scattering parameters are pre-
sented in Appendix E.
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VI. CONCLUSION
It has been demonstrated that various properties of the char-
acteristic modes of MTLs may be predicted analytically
through the application of the equality of total currents to
the modal-terminal-domain transformation process. It was
shown that the characteristic modes are normal, and that as
a result, physically-based scaling factors for a MTL’s volt-
age and current transformation matrices may be extracted
using the equivalence of total current between terminal and
modal domains. Various examples further demonstrated the
use and accuracy of the proposed scaling process, through
comparison with HFSS simulations, and finally validated
experimentally, where it is shown that predictions made with
common, well-accepted definitions fail. The determination of
the properties of TL modes may find meaningful applications
in matching MTLs of differing geometric configurations,
as well as in areas such as electromagnetic compatibility
or mutual coupling analysis; and signal and power integrity
in printed-circuit-board environments and power system cir-
cuits. It also allows the for the analytical computation of
Bloch modal properties for periodic MTL-based structures
such as transmission-line metamaterials, which presently
cannot be directly computed from circuit models.

.

APPENDIX A PROPOSED SCALING ALGORITHM
Obtaining the sum of each of the (non-reference-conductor)
components of the columns of [TI ] will yield two quantities:
if these values are equal, then it can be stated conclusively
that the current component on the reference conductor is zero,
and that the value of gI nn is simply the inverse of either the
positive or negative sum. If the two sums do not have the
samemagnitude, then the larger sum is the correct value (with
the difference being the current component on the reference
conductor), the inverse of which is gI nn. With this knowledge,
the pseudocode Alg. 1 is proposed, where all scalar or matrix
values are assumed to be of a complex, floating-point type,
unless they are indices (in which case they are integer values).

This algorithm has an outermost loop which iterates over
each column. The inner loop has fourmain processes: in order
of operation, the positive and negative sums are computed,
and the larger sum is selected and evaluated. The column’s
g is then multiplied by the inverse of the sum. Lastly, once
the complete [g] matrix has been calculated for all columns,
the scaled [TI ] can be calculated, and utilizing the power
equality, [TV ] is calculated directly from this. Both scaled
matrices are then returned.

APPENDIX B CHARACTERISTIC IMPEDANCE VALUES
OBTAINED FROM DIAGONALIZATION OF [ZcT ]
Some works such as [30] indicate that the modal charac-
teristic impedance matrix [ZcM ] may be calculated as the
eigenvalues of the terminal-domain characteristic impedance
matrix [ZcT ] (there appears to be no theoretical validation for
this statement). Using this process, the modal characteristic
impedance matrices from the examples in section IV-A were

Algorithm 1 [TV ] and [TI ] Scaling Procedure
1: procedure ScaleTvTi([TV ] , [TI ])
2: [g]← [I ] F Initialize [g] with identity
3: for Each Column n do
4: NegSum← 0
5: PosSum← 0
6: LargerSum← 0
7: for Each Row k do
8: a← <{TI (k, n)× g (n, n)}
9: if a ≤ 0 then
10: NegSum← NegSum− a
11: else
12: PosSum← PosSum+ a
13: end if
14: end for
15: if NegSum ≥ PosSum then
16: LargerSum← NegSum
17: else
18: LargerSum← PosSum
19: end if
20: g (n, n)← g (n, n)÷ LargerSum
21: end for
22: [TI ]← [TI ]× [g]
23: [TV ]← [TI ]−1

T

24: return ([TV ] , [TI ])
25: end procedure

found to be:

[ZcM ] = diag
[

50.057− j0.0667
101.3070− j0.0309

]
� (51a)

[ZcM ] = diag


770.9380− j0.0204
65.1615+ j0.0259
49.8871+ 0.0365
26.8548+ j0.0160

� (51b)

where diag indicates the entries on the lead diagonal of a
diagonal matrix, in which the off-diagonal entries are zero.
These data are compared with those obtained using other
methods in Table 1, where it may be observed that in general
these values are significantly different from those produced
by HFSS as compared with the method proposed in this work.

APPENDIX C LAYOUT OF ODD-MODE FEED TRANSITION
Since the VNA interfaces with its test devices via coaxial
modes, an inherent unbalance of currents will always develop
whenever a transition to planar TLs is used. In order to
excite a pure balanced mode for the odd-mode feedline of
Sec. V, two connections are used to excite a single mode
in a differential fashion [24]. While electrically small, this
transition section still needs to be precisely designed in order
to achieve the low levels of reflection required for this work.
This design consists of two individual 61 � slotlines (SLs)
which merge into one 100 � line. 61 � was chosen as the
SL impedance instead of the ideal 50 �, due to the fact that,
on the chosen substrate, the required SL gap would be smaller
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FIGURE 11. Geometric parameters of the CPS feed to SMA connectors
transition.

FIGURE 12. Simulated scattering parameters of the SMA connectors and
transition regions for: (a) even-mode excitation, (b) odd-mode excitation.

than 50 µm, which was deemed the smallest that could be
reliably fabricated via the LPKF ProtoLaser U3 laser milling
machine. Even still, a return loss of greater than 29 dB was
achieved for the transition. The geometric parameters of the
feed section are given in Fig. 11, where c = 0.05 mm,
w = 5.00 mm, f = 4.00 mm, l = 1.05 mm, d = 2.50 mm,
g = 0.20 mm, s = 1.40 mm. The simulated magnitudes
of the scattering parameters of these feed-line transitions are
shown in Fig. 12, where the SMA connectors are at port 2 and
the waveport-excited TLs at port 1. It may be observed that
excellent matching is achieved; the scattering parameters of
the even-mode MS transition (SMA to MS) is also shown for
comparison purposes, showing comparable matching levels.

APPENDIX D TERMINAL-TO-MODAL CONVERSION OF
SCATTERING PARAMETERS
When the terminal-domain impedances of all ports are the
same, simple voltage-based scattering parameters may be

FIGURE 13. S11 of equivalent even-mode circuit models with various MTL
modal impedances (ZcM ): (a) frequency-domain data, (b) maximum S11
over the frequency range as a function of modal impedance.

used (as opposed to the more general power-wave scattering
parameters needed for the case of differing impedances). This
formulation may be expressed as:

EV−NT = [ST ] EV
+

NT (52)

where EVNT are the vectors of voltages at all ports of a
multi-port network, and [ST ] are the terminal-domain scat-
tering parameters. Noting that the modal-terminal transfor-
mations apply to single travelling waves as well (i.e., EV+T or
EV−T , instead of just their sum EVT ), yields the relation:

EV+T = [TV ] EV
+

M (53a)
EV−T = [TV ] EV

−

M (53b)

where for a given MTL,

EV+NT =
[
EV+T , EV

+

T

]
(54a)

EV−NT =
[
EV−T , EV

−

T

]
(54b)
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FIGURE 14. S11 of equivalent odd-mode circuit models with various MTL
modal impedances (ZcM ): (a) frequency-domain data, (b) maximum S11
over the frequency range as a function of modal impedance.

If each of (53) details the terminal-modal transformations at
a each end of the TL, then this network may be transformed
by substituting (53) back into (52):[

[TV ] 0
0 [TV ]

]
EV−M = [ST ]

[
[TV ] 0
0 [TV ]

]
EV+M (55)

such that we may define

[SM ] =
[
[TV ] 0
0 [TV ]

]−1
[ST ]

[
[TV ] 0
0 [TV ]

]
(56)

This is a common transformation found in the literature, espe-
cially those concerning the measurement of balanced/single-
ended scattering parameters.

It should be noted that the transformation matrix [TV ] does
not need to be scaled in this case, since any scale factors
applied to the mode definitions will cancel out; however, for
a more general analysis involving power waves, this will not
be the case – and scaling is required.

APPENDIX E PARAMETRIC SWEEPS OF MODAL
IMPEDANCE AND ASSOCIATED SCATTERING DATA
In order to alleviate concerns that the chosen two impedances
may have coincidentally matched or mismatched, this
appendix provides additional scattering data, demonstrat-
ing that the predicted modal impedances are indeed the
best match for the designed two-conductor feed lines, and
that MTLs with other impedances scatter as expected.
Figs. 3b and 4b detail the layout of the modal-domain circuits
for the even- and odd-mode feeds, respectively.

The scattering parameters of these circuits are presented
for various values of the characteristic impedances (ZcM ) of
the MTL sections (blue, labelled ‘‘Even Mode’’ and ‘‘Odd
Mode’’) in Figs. 13a and 14a, respectively. Additionally,
the maximum |S11| data over the entire frequency range are
plotted in Figs. 13b and 14b.

The ZcM values corresponding to the minimum |S11| indi-
cate the presence of a matched impedance – since these
optimal impedance values are indeed only those predicted by
the proposed method (50 � and 100 � for the even and odd
modes, respectively), coincidence is effectively ruled out as a
factor in producing a matched system.
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