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ABSTRACT Word embedding (i.e., word representation) transforms words into computable mathematical
expressions (usually vectors) according to semantics. Compared with human semantic representation, these
purely text-based models are severely deficient because they lack perceptual information attached to the
physical world. This observation promotes the development of multimodal word representation models.
Multimodal models have been proven to outperform text-based models on learning semantic word repre-
sentations, and almost all previous multimodal models only focus on introducing perceptual information.
However, it is obvious that syntactic information can effectively improve the performance of multimodal
models on downstream tasks. Therefore, this article proposes an effective multimodal word representation
model that uses two gatemechanisms to explicitly embed syntactic and phonetic information intomultimodal
representations and uses supervised learning to train the model. We select Chinese and English as examples
and evaluate the model using several downstream tasks. The results show that our approach outperforms the
existing models. We have made the source code of the model available to encourage reproducible research.

INDEX TERMS Word representation, multimodal word representation, natural language processing,
supervised learning.

I. INTRODUCTION
Word embedding is often used in natural language process-
ing (NLP) tasks such asmachine translation [59], text classifi-
cation [1], and dialogue systems [50]. There are various word
embedding models, such as word2vec [56], GloVe [20], etc.
Well-performing word embedding should reflect semantics
accurately. At present, most popular methods for learning
word embeddings are based on the distributional hypothe-
sis, which utilizes cooccurrence statistics from massive text
datasets. However, the process of humans understanding
semantics is known in psycholinguistics as language com-
prehension [16]. Humans are first stimulated by perceptual
information (text, sound, etc.), then extract implicit syntactic
information from the brain, and finally use the informa-
tion from their brain to reprocess the perceptual information
and understand semantics. Therefore, compared to human
semantic representation, these purely text-based models are
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severely deficient because they lack perceptual information
attached to the physical world. This observation has led to the
development of multimodal word representation models that
utilize both linguistic (e.g., text) and perceptual information
(e.g., images and audio). Suchmodels can learn better seman-
tic word representations than text-basedmodels, as evidenced
by a range of evaluations [8], [33].

A typical example is that the meaning of concrete words,
such as ‘‘bird’’ and ‘‘thunder’’ are mostly learned from per-
ceptual experiences of seeing, touching and listening. In con-
trast, more abstract words, such as ‘‘obscure’’ and ‘‘lovely’’,
are less associated with perceptual modalities and act as
relatively fixed parts in the sentence structure. According to
different types of words, information from different modal-
ities contributes differently to the meaning of words, which
has been found in cognitive psychology [21], [22] and com-
putational experiments [10].

However, the existing multimodal models focus on the
processing of perceptual information and ignore the introduc-
tion of syntactic information. Syntactic information, such as
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part of speech, refers to the results obtained by dividing the
combinatorial relations between words in a sentence accord-
ing to specific standards. Recently, Vashishth et al. [57] and
Wang et al. [52] completely addressed the word cooccur-
rence information collected implicitly based on the distri-
butional hypothesis as syntactic information. This approach
relies heavily on continuous context, which is the integrity
of the training corpus. For target words with multiple parts
of speech, if the contexts of a specific part of speech are
abundant but their occurrences in training data are low or
they do not appear, then the corresponding semantics will not
exist in the embedding of the obtained word representation.
For example, if the word representation for ‘‘break’’ does
not have the semantic corresponding to the noun but only
the semantic corresponding to the verb, then it is clearly not
ideal. For low frequency words, it is more difficult to obtain
syntactic information through the distributional hypothesis.

These factors inspire us to build a multimodal word rep-
resentation model that can embed syntactic and percep-
tual information effectively, and the model is called MSP.
To this end, two fusion mechanisms have been added to
the MSP: a modality-specific gate and a language-specific
gate. After constructing the perceptual and syntactic repre-
sentations, the modality-specific gate uses the seq2seq neural
network [2], [32], [35] to explicitly embed syntactic and
phonetic information in word representations and train the
model based on the supervised method. The second mech-
anism is a language-specific gate. It uses dynamic fusion
methods [52] to assign fusion weights to each modality to
increase the adaptability ofMSP to different language groups.
The reason is that in MSP, phonetic information acts as per-
ceptual information while different languages have different
emphases on phonetic information. For example, phonetic
languages (such as English) are more dependent on phonetic
information than ideographic languages (such as Chinese).
In addition, extensive analysis was conducted to clarify the
principles of the proposed method. In summary, we have two
major contributions:
• We propose the multimodal word representation model
called MSP. Compared with the existing word embed-
ding models, MSP explicitly embeds syntactic and pho-
netic information in the model, simulates multimodal
information fusion through two gate mechanisms, and
obtains a multimodal word representation model with
excellent performance through supervised training. The
core idea of this model is that it uses supervised training
to learn a set of general language information fusion
rules.

• The use of syntactic information can significantly
improve the performance of the multimodal word
representation model. On various NLP tasks, we use
multiple word representation models and pre-trained
language models as baselines to compare the perfor-
mance and set MSP- with no processing of syntactic
information as a control. The task results confirm this
conclusion.

II. RELATED WORKS
Researchers have been working on building multimodal rep-
resentation models for many years, most of which can be
divided into two types.

A. JOINT TRAINING MODELS
These models build multimodal representations with raw
inputs of both linguistic and perceptual resources. The
recently introduced work is an extension of the skip-gram
model [56]. For instance, Hill et al. [10] propose a corpus
fusion method that inserts the perceptual features of a word in
the training corpus, which is then used to train the skip-gram
model. Lazaridou et al. [31] proposed the MMSkip model,
which injects visual information in the process of learning
linguistic representations by adding a max-margin objective
function to minimize the distance between linguistic vectors
and visual vectors. The joint training methods implicitly
propagate perceptual information to word representations and
simultaneously learn multimodal representations. However,
the abovementioned models do not introduce syntactic infor-
mation. This weakens the effect of introducing perceptual
information and consequently leads to only limited improve-
ment. Vashishth et al. [53] incorporate syntactic and semantic
information in word representations by using graph convolu-
tional networks, and explicit embedded syntactic information
effectively improves the performance of the model; however,
this model does not introduce perceptual information.

B. SEPARATE TRAINING MODELS
These models independently learn linguistic and percep-
tual representations and integrate them afterwards. The
simplest approach is concatenation, which fuses linguistic
and visual vectors by concatenating them. Concatenation
has been proven to be effective in learning multimodal
models [8], [10], [11]. Variations of this method apply trans-
formation and dimension reduction techniques, including the
singular value decomposition (SVD) [8] and canonical cor-
relation analysis (CCA), to the concatenation result [10].
In addition, Vashishth et al. [53] and Silberer et al. [54] use
a stacked autoencoder to learn multimodal representations
by embedding linguistic and visual inputs into a common
space with the objective of reconstructing the individual
inputs. However, the abovementioned methods can only gen-
erate multimodal representations of those words that have
image information, thus drastically reducing the multimodal
vocabulary. Wang et al. [52] build a multimodal model that
can dynamically fuse semantic representations of different
modalities according to different types of words. In the last
two years, the research of constructing multimodal word
representation using phonetic information has also been car-
ried out. Zhu et al. [58] propose enhanced double-carrier
word representation via phonetics and writing. It trained
written embedding based on phonetic embedding and the
final word representation fuses writing and phonetic embed-
ding. Zhu et al. [63] use a synchronized way that adopts an
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FIGURE 1. The four numbers correspond to the four steps of the method.
Lw , Pw and Sw are the linguistic representation, perceptual
representation and syntactic information of the target word w ,
respectively. In the fourth step, w and w̃ are semantic relational word
pairs.

attention model to utilize both text and phonetic perceptual
information in unsupervised learning tasks. In terms of the
two types of models discussed in this section, MSP belongs
to separate training model.

Based on the existing researches, the above methods are
all effective methods to generate multimodal word repre-
sentation. However, no matter the joint training model or
the separate training model, most of them only focus on the
introduction of a class of modality information during the
learning process. In contrast, MSP uses gate mechanisms to
introduce perceptual information and syntactic information in
the one model.

III. PROPOSED METHOD
Fig. 1 shows the framework of our proposed MSP, which
contains four stages:
• Build the perceptual representation — Language com-
prehension begins with receiving perceptual stimuli.
Most linguists believe that sound is the primary percep-
tual form of language, so the model processes the pho-
netic feature of words and treats the result as a perceptual
representation.

• Construct the syntactic information — Janda [27] have
experimentally demonstrated that syntactic information
plays an irreplaceable role in language comprehension.
In MSP, for each word, we construct the probabil-
ity distribution of the part of speech as the syntactic
information.

• Modality-specific gates and language-specific gates are
used to explicitly embed syntactic information in train-
ing and fuse the linguistic representation and perceptual
representation.We employ theGloVe andword2vec vec-
tors as our linguistic representations, which are trained
using global word cooccurrence statistics.

• We design the objective function and train the MSP
model using supervised learning.

A. CONSTRUCT PERCEPTUAL REPRESENTATION
The goal of this phase is to build the perceptual representation
Pw. According to linguistics, different perceptual information

of the word considers different information on concepts. For
example, image may include information such as shape and
color. By contrast, voice contain the concept of information
is less, but the phonetic context and the text context can’t be
regarded as duplicated, they are a complementary relationship
that provides a richer semantic for each other. For example,
in the case of disambiguation, ‘‘minute’’ has two meanings.
When the pronunciation of ‘‘minute’’ is [’mınıt], it indicates
a time unit, and when it is pronounced [maı’nju:t], it means
tiny. For words with similar sounds and different meanings,
the text can provide richer semantics for the model (such as
ship and sheep), and the difference in their writing helps us
distinguish the different meanings of the two words. More-
over, while every word has a corresponding pronunciation,
images do not have this natural advantage. In this article,
we choose sound, which is the primary perceptual stimulus,
as the perceptual information; therefore, the model needs to
obtain the phonetic representation of words. Specifically, the
automatic segmentation of spoken words has been success-
fully trained and reported previously [3], [6]. The training
audio corpus in the present work has been previously seg-
mented into phonetic words. We use theMel-scale Frequency
Cepstral Coefficient (MFCC) method— a common approach
to obtain the phonetic features of the audio — to convert the
speech frames of words into vectors. Those vectors contain
a considerable amount of noise, such as background noise
and speaker characteristics; however, what we want to obtain
is the phonetic structure [61], which is not changed by the
environment or the speaker. To disentangle the phonetic struc-
ture and noise, we use an end-to-end approach to process
phonetic vectors and obtain the results as perception repre-
sentations [58].

B. CONSTRUCT SYNTACTIC REPRESENTATION
MSP uses part of speech (POS) information to construct
syntactic representations. Part of speech is the most common
syntactic structure. It is the result of the classification of
words based on grammatical features (including syntactic
functions and morphological changes) and helps people to
collocate and understand the meanings of words. Modern
English words can be divided into fourteen parts of speech,
but only five are used most often — nouns, verbs, prepo-
sitions, adverbs and adjectives. In this model, GCNW uses
WordNet to structure syntactic information. WordNet is an
English dictionary based on cognitive linguistics in which
the relationship between words is human annotated [14].
It can label the POS tag of a word in each specific context.
Handling polysemy is the key to constructing POS features.
The problem of obtaining the POS tag can be formulated as
p = F(w, c), where F is the mapping function that obtains
the corresponding POS tag p based on the target word w and
specific context c.

First, we use WordNet to label the POS tag of each word
in the corpus. Note that the same word may be labeled
differently in different contexts. Next, for target word w in
the corpus, we count the occurrence Occwp of each POS p.
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FIGURE 2. Overview of the modality-specific gate, where Lw , Pw and Sw
represent the linguistic representation, perceptual representation and
syntactic feature, respectively, of the target word w .

In equation (1), m is the total number of times that word w
has occurred in the corpus,

Occwp =
∑m

i=0
T (F (w, c))T (F (w, c)) =

{
1, F (w, c) = p
0, F (w, c) 6= p

(1)

Then,Occwp is normalized; thus, the probability distribution
of part of speech of the word w is obtained,

Prowp =
Occwp∑′

p Occ
w
p′
p, p

′

∈ {noun, verb, prep, adv, adj} (2)

Finally, we treat the probability distribution of the POS as
the syntactic information of word w and construct it into a
feature vector that is used in the next phase.

C. GENERATE REPRESENTATION IN MSP
In this phase, the model explicitly uses two fusion mecha-
nisms, fusing linguistic representation and perceptual repre-
sentation, to introduce syntactic information in training.

1) MODALITY-SPECIFIC GATE
To simulate the role of syntactic information in language
comprehension, namely, the reprocessing of perceptual infor-
mation, we add a modality-specific gate to the model. The
modality-specific gate is basically a seq2seq model based on
the attention mechanism [2], [55], which is a training method
that transforms sequences in different domains. As shown
in Fig. 2, the seq2seq model consists of two parts — an
encoder and a decoder. The encoder generates intermediate
semantic c using the hidden state h of the bidirectional RNN.
Ehi represents the hidden layer state of the forward RNN,
←

h i represents the hidden layer state of the reverse, and the
two are spliced to obtain hi, namely, hi =

[
Ehi :

←

h i
]
. The

decoder uses long short-termmemory networks (LSTM) [39]
to decode c to obtain output sequence y. For the output
sequence [y1, y2 . . . , yi−1] and the current i

th dimension input

X , yi can be expressed as:

yi = p (yi | y1, . . . ,yi−1,X) = g (yi−1, si, ci) (3)

For the M -dimension phonetic representation used as the
input, yi is determined by three factors as g (yi−1, si, ci) the
hidden state si at the ith dimension, the intermediate semantic
vector ci, and the output yi−1 at the i-1th dimension, where
si is related to the hidden state si−1, and ci is obtained by
equation (4). In equation (4), eij is the alignment model in the
attention mechanism and is used to measure the influence of
the jth dimension information of the input sequence on the ith

dimension information of the output sequence.

ci =
M∑
j=1

exp(eij)∑M
k=1 exp(eik )

· hj (4)

The encoder needs to initialize the parameters during train-
ing at which time the effect of the syntactic information
is reflected. The model uses the syntactic feature vector of
word w to initialize the parameters Ehi and

←

h i in training. The
network output yi of the end-to-end type is the probability
distribution. Softmax calculations are performed on each
dimension of the sequence [y1, y2,. . . , yM], and p′ whose
dimension is equal to the input phonetic representation is
obtained. Finally, a linguistic representation and p′ are con-
catenated to obtain Outputms.

2) LANGUAGE-SPECIFIC GATE
In linguistics, languages can be divided into ideographic
languages and phonological languages according to the
dependence of text and sound. Ideographic languages
(Chinese, etc.) focus more on text than phonological
languages (English, etc.). The use of neural networks to
dynamically fuse different modalities has been proven to be
effective [52]. Based on this observation, in order to improve
the applicability of the model, we add the language-specific
gate to assign weights for the linguistic representation and
the perceptual representation. In the joint training phase, the
model uses a neural network to simulate the current lan-
guage’s dependence on different modalities, and the weighted
linguistic representation and weighted phonetic representa-
tion will be concatenated to obtain Output ls.

3) JOINT TRAINING
In this phase, the model will integrate the outputs of the
two gates. According to the literature [8], [52], dynamic
weighted fusion is an effective method. Thus, we add a set
of variable weights {wms,wls } to the network to weight the
outputs and superimpose the results to generate OutputMSP
as equation (5).

OutputMSP =
∑
i∈A

Output i · wi, A ∈ {ms, ls} (5)

To train the model, WordNet is introduced as the training
dataset. WordNet can search the synonym set corresponding
to the target word according to semantic conditions, and
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the semantic similarity is also human annotated. In the joint
training phase, according to equation (6), the model first
calculates the mean cosine similarity between MSP represen-
tations corresponding to words in the synonym set.

Similarity (w, sw) = cos (θ ) =
⇀w · s⇀w∥∥∥⇀w∥∥∥× ∥∥∥s⇀w∥∥∥

=

∑n
i wi · swi√∑n

i (wi)
∧2
×

√∑n
i (swi)

∧2
(6)

Then, according to the training objective, the model min-
imizes the loss, namely, the difference between the mean
cosine similarity and the human-annotated similarity. The
model performs iterative training, during which the MSP
representations will be updated with the network.

Suppose the dictionary contains M words, each word w
corresponds to N synonyms w̃, and the human-annotated
similarity between w and w̃ is Sim(w, w̃). To train the model
and learn the network parameters, we minimize the objective
function as follows:

ss =
M∑
m

N∑
n

‖Similarity (wm, w̃n)− Sim (wm, w̃n)‖∧2 (7)

Although WordNet provides a set of annotated synonyms
for almost all words, this does not mean that all words can
find a synonym set. For some unqualified words, the model
deletes them before training.

IV. TASK EVALUATION
A. BASELINE ALGORITHMS
Word2vec is the most common word representation model.
It includes two training modes, CBOW and skip-gram. In the
tasks, we compare MSP with word2vec implemented with
the CBOW structure. GloVe [20] is another efficient word
representation model that incorporates global word cooccur-
rence information.DFM [52] is a multimodal model that uses
three novel dynamic fusion methods to assign importance
weights to each modality, and the weights are learned under
the weak supervision of word association pairs. DCWE [58]
is enhanced double-carrier word representation model via
phonetics and writing, and it trained written representation
based on phonetic representation and the final word repre-
sentation fuses text and phonetic embedding. DPWR [63]
is trained in a synchronized way that adopts an attention
model to utilize both linguistic and phonetic information
in unsupervised learning tasks. SynGCN [57] incorporates
syntactic and semantic information in word embeddings by
using graph convolutional networks. GloVe-ph is a multiple
information connection model that directly concatenates the
linguistic representation and the perceptual representation.
MSP is the multimodal word representation model generated
by the method described in this article in which the linguistic
representation is represented by GloVe. MSP-w2v changes
the linguistic representation inMSP fromGloVe toword2vec.
MSP- removes the modality-specific gate in MSP to verify

the effectiveness of the method described in this article.
We also compare the pre-trained language models, including
ELMo and BERT, on tasks; however, considering the con-
straints of the pre-trained language model on task types, they
are only used for text classification task. ELMo [36] is a
pretrained language model that trains a model with multiple
BiLSTM layers, and the output of the model is a sentence rep-
resentation. BERT [19] is a pretrained transformer network
model. In the comparative experiment, the model consists of
12 layers, 768 hidden layers, 12 heads, and 110Mparameters.

B. EXPERIMENTAL SETUP
For the English linguistic representation, we use the
300-dimensional GloVe and word2vec, which are trained on
the Common Crawl corpus consisting of 840 B tokens and
a vocabulary of 2.2 M words. For the Chinese linguistic
representation, we also use the 300-dimensional GloVe and
word2vec, and those vectors are trained on theWikipedia data
set and web news corpus and use Jieba1 for word segmenta-
tion. The dimension of the perceptual representation in the
MSP is set to 100. To control the dimensions, other word
representation models used for comparison are also retrained
according to the dimensions of the MSP. The MSP model is
implemented by using TensorFlow. We set the initial learning
rate to 0.02 and the batch size to 100, and we randomly
initialize the parameters of the model according to a normal
distribution. We set the minimum word frequency to 5 by
default. If a word appears in the document less than 5 times,
it is discarded. The related data and code will be posted on
GitHub for replication2.

We use four intrinsic and two extrinsic evaluation meth-
ods to evaluate MSP. Intrinsic evaluation methods include
concept categorization task, word similarity task, word anal-
ogy task and part of speech tagging task. Those methods
focus on measuring lexical internal pattern information, such
as semantic information. However, a language model that
performs well in an intrinsic evaluation does not necessar-
ily produce similar performance in an extrinsic evaluation.
Therefore, this chapter added text classification task and text
similarity task as extrinsic evaluation methods to verify the
applicability of MSP to different types of tasks.

C. CONCEPT CATEGORIZATION TASK
1) DATASET AND EVALUATION CRITERION
Concept categorization involves grouping nominal concepts
into natural categories. For instance, computers and phones
should belong to the electronic products class. In our experi-
ments, we evaluate the models on the AP (Almuhareb, 2006),
Battig (Baroni and Lenci, 2010), BLESS (Baroni and Lenci,
2011), and ESSLI (Baroni et al., 2008) datasets. We calculate
the classification accuracy σ% to evaluate the models, and a
higher accuracy corresponds to a better model.

1https://github.com/fxsjy/jieba
2https://github.com/JayJosby/MSP
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TABLE 1. Task results σ% of the concept categorization task.

TABLE 2. Word similarity datasets.

2) RESULTS AND DISCUSSION
Table 1 lists the results of the concept categorization task.
Overall, we found that MSP is superior to existing word
representation methods in all four data sets, and MSP-w2v
also performs well. On average, we obtain an approximately
1.4% absolute increase in performance on the concept cat-
egorization task compared to the best performing baseline.
The concept classification task needs to calculate the topic
similarity (topically related words) between different words
rather than the functional similarity (in place substitutable
words). The supervised learning method used by MSP in the
training captures the topic similarity of words by utilizing
the synonymous relationship between words, which provides
advantages for the performance of the model on the task.

D. WORD SIMILARITY TASK
1) DATASET AND EVALUATION CRITERION
We used WordSim-353 (L. Finkelstein, 2010), MC30
(S. Hassan and R. Mihalcea. 2009), Mturk287 (G. Halawi
et al., 2012),Mturk771 (G. Halawi et al., 2012),WS-240 and
WS-296 as the evaluation datasets. All datasets contained a
list of word pairs along with human-annotated similarities.
Table 2 lists the information of those datasets.

The task uses the cosine similarity between a pair of word
representations as the similarity of semantics and employs
the Pearson correlation ρ to evaluate the relation between
the human-annotated semantic similarity and the cosine sim-
ilarity. A larger ρ indicates a higher correlation and a better
model.

2) RESULTS AND DISCUSSION
The results are listed in Table 3 and Table 4. For English,
when the Pearson coefficient ρ is the evaluation criterion,
MSP and MSP-w2v perform the best for all four datasets
at 1.1∼5.9% higher than the state-of-the-art baseline models.
For Chinese, MSP performs the best for both datasets. These
results show that MSP generated better performances than
the existing models. However, because the word similarity

TABLE 3. The results of the word semantic similarity task in English.

TABLE 4. The results of the word semantic similarity task in Chinese.

information is introduced into the objective function, the
results of the word similarity task cannot be used alone to
prove the good performance ofMSP. The addition of the word
similarity task is intended to validate the applicability of the
model over different language sets.

Further analysis shows that the task performances aremuch
lower than those of the text-based models when the linguis-
tic and perceptual representations are directly concatenated.
This indicates that the direct concatenating representations
increase the information of the word representation, but this
approach is not applicable to the subsequent tasks.

E. WORD ANALOGY TASK
1) DATASET AND EVALUATION CRITERION
This task is to predict word b2 given three words
a1, a2, and b1 such that the relation b1: b2 is the same as
the relation a1: a2. We compare models on SemEval-2012
(Jurgens et al., 2012) andMSR (Mikolov et al., 2013c) using
the Pearson correlation.

2) RESULTS AND DISCUSSION
The evaluation results on the word analogy task are summa-
rized in Table 5. Overall, we find that MSP outperforms all
the existing word representation models.

Compared to the best performing baseline model,
on average, MSP obtains an approximately 3.6% increase
in performance. The results demonstrate that the learned
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TABLE 5. The results of the word analogy task.

TABLE 6. The results of the part of speech tagging task.

representations from MSP more effectively capture the
semantic and syntactic properties of words.

F. PART-OF-SPEECH TAGGING TASK
1) DATASET AND EVALUATION CRITERION
Part-of-speech (POS) tagging aims at associating with each
word, a unique tag describing its syntactic role. For evaluat-
ing word representation models, we use Lee et al.’s LSTM
model [64] on Treebank POS dataset (Marcus et al., 1994)
and evaluate performance with tagging accuracy.

2) RESULTS AND DISCUSSION
Table 6 shows the experimental results of part-of-speech
tagging task. Compared with the existing word representation
models, MSP has a better performance—MSP gets an excel-
lent result like grammar enhancement model SynGCN, which
is 2.2% more accurate than the text-based word represen-
tation models and 1.5% more accurate than the multimodal
models. The introduction of syntactic information effectively
improves the performance of multimodal model.

Combining the results of other intrinsic evaluation tasks,
it can be concluded that the word representation generated
by the MSP model contain more semantic and syntactic
information, and that such information can be used in relevant
downstream tasks.

G. TEXT CLASSIFICATION TASK
1) DATASET AND EVALUATION CRITERION
We also perform a text classification task to check our
method’s applicability. The task is based on several public

TABLE 7. Accuracy σ% of the text classification with the MSP and word
representation models.

TABLE 8. Accuracy σ% of the text classification with the MSP and
pre-trained language models.

datasets, including scale, IMDB, and Yelp reviews. The scale
v1.0 dataset, which we obtained from (Pang and Lee, 2005),
is used as the evaluation dataset; and this dataset con-
tains 5004 samples with review texts labeled with 1-4 stars.
The IMDB data set contains 50,000 film reviews, including
25,000 opinion-filled reviews for training and 25,000 reviews
for testing; and these data set can be used for classification.
We also use Yelp reviews as a dataset, which we obtained from
(Zhang et al., 2015). This dataset contains 1,569,264 samples
of review texts labeled with 1-4 stars. For the text classi-
fication task, we use the mean of the word representations
to represent a sentence or document. The text classifier was
trained with LIBLINEAR3 [65]. For the corpus that does not
distinguish between the training and testing sets, 75% of the
characters are selected as the training set, and the remaining
25% are used for testing. We calculate the classification
accuracy σ% to evaluate the models

2) RESULTS AND DISCUSSION
Table 7 and Table 8 list the results of the text classification
task. Compared to other baseline word representationmodels,
MSP performs the best for all datasets, which shows thatMSP
not only significantly improves the model performance, but
it is also applicable to different downstream tasks. Moreover,
other models with embedded syntactic information, such
MSP-w2v and SynGCN, also perform well. This shows the
effectiveness of the introduced syntactic information for this
type of task. When compared to the pre-trained language
models, the difference between other models’ and MSP’s
performance on the text classification task is slight. However,
BERT and other language models are only applicable to tasks

3https://www.csie.ntu.edu.tw/∼cjlin/liblinear/
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TABLE 9. The results of the text similarity task.

with larger granularity, such as those at the sentence level;
and they require extremely large numbers of parameters and
training costs. Therefore, MSP has its own advantages in this
application.

H. TEXT SIMILARITY TASK
1) DATASET AND EVALUATION CRITERION
The content of text similarity task is to calculate the similarity
s1 of a pair of sentences, and thenmeasure the performance of
the model by comparing the difference between the similarity
s1 and the similarity s2 of manual annotation.
We superimpose the word vectors in the sentence,

express the average vector as the sentence representation, and
take the cosine similarity between the two sentence vectors
as the similarity s1. Pearson correlation coefficient is used to
calculate the correlation between s1 and the s2. We experi-
mented with the SICK and STS datasets. The SICK data set
contained 9,927 pairs of sentences (4,500 pairs of training
sets /4,927 pairs of test sets /500 pairs of validation sets). The
STS data set consists of 8,628 sentence pairs, divided into
training sets (5,749 of training sets /1,500 of test sets /1,379
of verification sets).

2) RESULTS AND DISCUSSION
Table 9 list the results of the text similarity task. According to
the results, MSP performs best across all data sets. Compared
with text-based word representation and multimodal word
representation without introduction of syntactic information,
the results obtained byMSP are improved by 0.016 and 0.012
respectively.

Based on the results of the extrinsic evaluation methods in
this chapter, it can be concluded that MSP not only performs
well in the intrinsic evaluation method, but also gets similar
results in the extrinsic evaluation, which indicates that MSP
not only can effectively improve the internal mode informa-
tion represented by words, but also has good applicability for
different types of tasks.

V. MODEL ANALYSIS
Compared with the existing word embedding models,
MSP achieves a great improvement. Its gate mechanisms

TABLE 10. The weights of the modalities.

effectively integrate multimodal information, which is
reflected by its good performance. The MSP consistently
performs better than the MSP- model on all task results; and
when MSP removed the modality-specific gate, the perfor-
mance of the model experienced a significant decrease but
was still higher than that of GloVe-Ph. This suggests that
after the removal of the modality-specific gate, the model
loses the reinforcement effect of syntactic information. How-
ever, language-specific gates still play a role in adjusting the
weights of the modality; and without this mechanism, MSP
would completely degenerate to GloVe-ph.

For the text classification task, when compared to other
text-based models and multimodal models, MSP is still better
than MSP- and has the best performances in three datasets.
Moreover, the improvement effect is better than those for the
other tasks, indicating that the introduced syntactic informa-
tion plays a role in making MSP more suitable for tasks that
utilized syntactic information.

The applicability of MSP to different languages is also
quantitatively analyzed. Table 10 presents the combination
weights of the linguistic and perceptual representations
learned in language-specific gates for English and Chi-
nese. The ratio between the linguistic information and per-
ceptual information was 0.8225:0.1775 for English and
0.8976:0.1024 for Chinese. Linguistic representation has a
higher weight for both languages, which indicates that text is
more important for carrying information. However, phonetic
languages such as English have a stronger dependence on
phonetic information than ideographic languages such as
Chinese, which is in line with the linguistic viewpoint. The
above results indicate the following:

• MSP is a word embedding model with better compre-
hensive performance because the MSP includes extra
multimodal information and uses effective mechanisms
to process that information. This is demonstrated in a
series of tasks.

• Adding syntactic information can effectively improve
the performance of the model. Similar to perceptual
information, syntactic information is also needed for
building multimodal representations and can effectively
improve the performance of the model on downstream
tasks.

• MSP is applicable to different languages. The learned
weights show clear differences between phonetic and
ideographic languages.

VI. CONCLUSION
Based on the observation that almost all previous multimodal
models only focus on introducing perceptual information
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and ignore syntactic information, we propose the new mul-
timodal word representation model MSP. MSP uses two
fusion mechanisms to embed explicit syntactic informa-
tion and phonetic information and uses supervised training
to learn performance-enhancing multimodal word represen-
tations. Experimental evaluations show that our proposed
model achieves substantial gains on all benchmarks. Qual-
itative analysis further proved the validity and applicability
of MSP.

As one of the main research directions related to the
development of language representations, the performance
of multimodal models depends not only on the source of
the perceptual information but also on the method used to
incorporate that information. Such an incorporation method
should not be limited to the incorporation of only two kinds
of information and should also be capable of incorporating
information frommore than twomodes. Future work includes
exploring better representations of semantic words by com-
bining information from other modalities. We believe that
the multimodal model is of great significance in promoting
the development of applications related to natural language
processing.

REFERENCES
[1] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, ‘‘Bag of tricks for

efficient text classification,’’ 2016, arXiv:1607.01759. [Online]. Available:
http://arxiv.org/abs/1607.01759

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. 31st
Conf. NIPS Adv., San Diego, CA, USA, 2017, pp. 5998–6008.

[3] A. J. Anderson, D. Kiela, S. Clark, andM. Poesio, ‘‘Visually grounded and
textual semanticmodels differentially decode brain activity associatedwith
concrete and abstract nouns,’’ Trans. Assoc. Comput. Linguistics, vol. 5,
pp. 17–30, Dec. 2017.

[4] A. K Vijayakumar, R. Vedantam, and D. Parikh, ‘‘Sound-Word2 Vec:
Learning word representations grounded in sounds,’’ 2017,
arXiv:1703.01720. [Online]. Available: http://arxiv.org/abs/1703.01720

[5] A. Neelakantan, J. Shankar, A. Passos, and A. McCallum, ‘‘Efficient
non-parametric estimation of multiple embeddings perword in vector
space,’’ in Proc. EMNLP, 2014, pp. 1059–1069.

[6] D. Kiela and S. Clark, ‘‘Learning neural audio embeddings for ground-
ing semantics in auditory perception,’’ J. Artif. Intell. Res., vol. 60,
pp. 1003–1030, Dec. 2017.

[7] D. Kiela and S. Clark, ‘‘Multi- and cross-modal semantics beyond vision:
Grounding in auditory perception,’’ in Proc. Conf. Empirical Methods
Natural Lang. Process., 2015, pp. 2461–2470.

[8] E. Bruni, N. K. Tran, and M. Baroni, ‘‘Multimodal distributional seman-
tics,’’ J. Artif. Intell. Res., vol. 49, pp. 1–47, Jan. 2014.

[9] F. Hill and A. Korhonen, ‘‘Learning abstract concept embeddings from
multi-modal data: Since you probably can’t see what I mean,’’ in Proc.
Conf. Empirical Methods Natural Lang. Process. (EMNLP), Stroudsburg,
PA, USA, 2014, pp. 255–265.

[10] F. Hill, R. Reichart, and A. Korhonen, ‘‘Multi-modal models for concrete
and abstract concept meaning,’’ Trans. Assoc. Comput. Linguistics, vol. 2,
pp. 285–296, Dec. 2014.

[11] G. Collell, T. Zhang, and M.-F. Moens, ‘‘Imagined visual representa-
tions as multimodal embeddings,’’ in Proc. 31st AAAI Conf. Artif. Intell.,
Menlo Park, CA, USA, 2017, pp. 4378–4384.

[12] G. Halawi, G. Dror, E. Gabrilovich, and Y. Koren, ‘‘Large-scale learning
of word relatedness with constraints,’’ in Proc. 18th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining (KDD), New York, NY, USA, 2012,
pp. 1406–1414.

[13] G. Segal, ‘‘Representing representations,’’ in Language and Thought,
P. Carruthers and J. Boucher, Eds. Cambridge, U.K.: Cambridge Univ.
Press, 1998.

[14] G. A. Miller, ‘‘WordNet: A lexical database for English,’’ Commun. ACM,
vol. 38, no. 11, pp. 39–41, 1995.

[15] G. K. Pullum and W. A. Ladusaw, Phonetic Symbol Guide. Chicago, IL,
USA: Univ. Chicago Press, 1996.

[16] Andrews, ‘‘Language comprehension as structure building,’’ J. Pragmat-
ics, vol. 26, no. 3, p. 436, 1996.

[17] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[18] J. De Villiers and P. de Villiers, ‘‘Linguistic determinism and the
understanding of false beliefs,’’ in Children’s Reasoning and the Mind,
P. Mitchell and K. Riggs, Eds. New York, NY, USA: Psychology Press,
2000.

[19] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805. [Online]. Available: http://arxiv.org/abs/1810.04805

[20] J. Pennington, R. Socher, and C. Manning, ‘‘Glove: Global vectors for
word representation,’’ in Proc. Conf. Empirical Methods Natural Lang.
Process. (EMNLP), Stroudsburg, PA, USA, 2014, pp. 1532–1543.

[21] J. Wang, J. A. Conder, D. N. Blitzer, and S. V. Shinkareva, ‘‘Neural
representation of abstract and concrete concepts: A meta-analysis of neu-
roimaging studies,’’ Hum. Brain Mapping, vol. 31, no. 10, pp. 1459–1468,
Oct. 2010.

[22] J. R. Binder, L. L. Conant, C. J. Humphries, L. Fernandino, S. B. Simons,
M. Aguilar, and R. H. Desai, ‘‘Toward a brain-based componential seman-
tic representation,’’ Cognit. Neuropsychol., vol. 33, nos. 3–4, pp. 130–174,
May 2016.

[23] J. Wieting, M. Bansal, K. Gimpel, and K. Livescu, ‘‘Charagram: Embed-
ding words and sentences via character n-grams,’’ in Proc. Conf. Empirical
Methods Natural Lang. Process., 2016, pp. 1504–1515.

[24] J. P. Turian, L.-A. Ratinov, andY. Bengio, ‘‘Word representations: A simple
and general method for semi-supervised learning,’’ in Proc. ACL, 2010,
pp. 384–394.

[25] K. Levin, A. Jansen, and B. Van Durme, ‘‘Segmental acoustic indexing
for zero resource keyword search,’’ in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), Piscataway, NJ, USA, Apr. 2015,
pp. 5828–5832.

[26] U. Khandelwal, H. He, P. Qi, and D. Jurafsky, ‘‘Sharp nearby, fuzzy far
away: How neural languagemodels use context,’’ 2018, arXiv:1805.04623.
[Online]. Available: https://arxiv.org/abs/1805.04623

[27] L. A. Janda, ‘‘Cognitive linguistics,’’ SSRN Electron. J., vol. 3,
pp. 129–141, 2009.

[28] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolfman,
and E. Ruppin, ‘‘Placing search in context: The concept revisited,’’ in Proc.
10th Int. Conf. World Wide Web, New York, NY, USA, 2001, pp. 406–414.

[29] L. Qiu, Y. Cao, Z. Nie, Y. Yu, and Y. Rui, ‘‘Learning word representation
considering proximity and ambiguity,’’ in Proc. AAAI Conf. Artif. Intell.,
Menlo Park, CA, USA, 2014, pp. 1572–1578.

[30] L. Talmy, ‘‘Cognitive linguistics,’’ in Encyclopedia of Language & Lin-
guistics, K. Brown, Ed. Amsterdam, The Netherlands: Elsevier, 2006.

[31] A. Lazaridou, N. T. Pham, and M. Baroni, ‘‘Combining language and
vision with a multimodal skip-gram model,’’ in Proc. NAACL, 2015,
pp. 153–163.

[32] T. Liu, K. Wang, L. Sha, B. Chang, and Z. Sui, ‘‘Table-to-text generation
by structure-aware seq2seq learning,’’ 2017, arXiv:1711.09724. [Online].
Available: https://arxiv.org/abs/1711.09724

[33] M. Andrews, G. Vigliocco, and D. Vinson, ‘‘Integrating experiential
and distributional data to learn semantic representations,’’ Psychol. Rev.,
vol. 116, no. 3, pp. 463–498, 2009.

[34] M. Hiscock, ‘‘Imagery and verbal processes,’’ PsycCRITIQUES, vol. 19,
p. 487, 1974.

[35] A. Sriram, H. Jun, S. Satheesh, and A. Coates, ‘‘Cold fusion: Training
seq2seqmodels together with language models,’’ 2017, arXiv:1708.06426.
[Online]. Available: https://arxiv.org/abs/1708.06426

[36] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, ‘‘Deep contextualized word representations,’’ in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang. Tech-
nol., 2018, pp. 2227–2237.

[37] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, ‘‘Deep contextualized word representations,’’ in Proc.
Conf. NAACL, Stroudsburg, PA, USA, 2018, pp. 2227–2237.

[38] O. Levy and Y. Goldberg, ‘‘Dependency-based word embeddings,’’ in
Proc. Annu. Meeting ACL, Stroudsburg, PA, USA, 2014, pp. 302–308.

223314 VOLUME 8, 2020



W. Zhu et al.: Learning Multimodal Word Representations by Explicitly Embedding Syntactic and Phonetic Information

[39] O.Melamud, J. Goldberger, and I. Dagan, ‘‘Context2vec: Learning generic
context em-bedding with bidirectional LSTM,’’ in Proc. InCoNLL, 2016,
pp. 1–11.

[40] P. Jin and Y. Wu, ‘‘SemEval-2012 task 4: Evaluating Chinese word simi-
larity,’’ in Proc. Joint Conf. Lexical Comput. Semantics, Stroudsburg, PA,
USA, 2013, pp. 374–377.

[41] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, ‘‘Deep contextualized word representations,’’ 2018,
arXiv:1802.05365. [Online]. Available: https://arxiv.org/abs/1802.05365

[42] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, ‘‘Enriching word
vectors with subword information,’’ Trans. Assoc. Comput. Linguistics,
vol. 5, pp. 135–146, Dec. 2017.

[43] R. Varley, P. Carruthers, and J. Boucher, Eds., Language and Thought.
Cambridge, U.K.: Cambridge Univ. Press, 1998.

[44] R. Varley, M. Siegal, and S. C. Want, ‘‘Severe impairment in grammar
does not preclude theory of mind,’’ Neurocase, vol. 7, no. 6, pp. 489–493,
Jan. 2001.

[45] R. C. Schank and R. P. Abelson, ‘‘Scripts, plans, and knowledge,’’ in
Proc. 4th Int. Joint Conf. Artif. Intell. San Francisco, CA, USA: Morgan
Kaufmann, 1975, pp. 151–157.

[46] R. C. Schank and R. P. Abelson, Scripts, Plans, Goals, and Understanding:
An Inquiry into Human Knowledge Structures. Hove, U.K.: Psychology
Press, 2013.

[47] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, ‘‘Liblin-
ear: A library for large linear classification,’’ J. Mach. Learn. Res., vol. 9,
pp. 1871–1874, Aug. 2008.

[48] S. Bengio and G. Heigold, ‘‘Word embeddings for speech recognition,’’ in
Proc. 15th Conf. ISCA, Amsterdam, The Netherlands, 2014, pp. 1–5.

[49] S. Hassan and R. Mihalcea, ‘‘Cross-lingual semantic relatedness using
encyclopedic knowledge,’’ in Proc. Conf. Empirical Methods Natural
Lang. Process. (EMNLP), 2009, pp. 1192–1201.

[50] S. Ryu, S. Kim, J. Choi, H. Yu, andG. G. Lee, ‘‘Neural sentence embedding
using only in-domain sentences for out-of-domain sentence detection in
dialog systems,’’ Pattern Recognit. Lett., vol. 88, pp. 26–32, Mar. 2017.

[51] S. Wang, J. Zhang, and C. Zong, ‘‘Associative multichannel autoencoder
for multimodal word representation,’’ in Proc. Conf. Empirical Methods
Natural Lang. Process., Stroudsburg, PA, USA, 2018, pp. 115–124.

[52] S. Wang, J. Zhang, and C. Zong, ‘‘Learning multimodal word representa-
tion via dynamic fusion methods,’’ in Proc. 32nd AAAI Conf. Artif. Intell.,
Menlo Park, CA, USA, 2018, pp. 5973–5980.

[53] C. Silberer and M. Lapata, ‘‘Learning grounded meaning representations
with autoencoders,’’ in Proc. ACL, 2014, pp. 721–732.

[54] C. Silberer, V. Ferrari, and M. Lapata, ‘‘Visually grounded meaning rep-
resentations,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 11,
pp. 2284–2297, Dec. 2017.

[55] I. Sutskever, O. Vinyals, and Q. V. Le, ‘‘Sequence to sequence learning
with neural networks,’’ in Proc. Adv. Neural Inf. Process. Syst., 2014,
pp. 3104–3112.

[56] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation of
word representations in vector space,’’ 2013, arXiv:1301.3781. [Online].
Available: http://arxiv.org/abs/1301.3781

[57] S. Vashishth, M. Bhandari, P. Yadav, P. Rai, C. Bhattacharyya,
and P. Talukdar, ‘‘Incorporating syntactic and semantic information
in word embeddings using graph convolutional networks,’’ 2018,
arXiv:1809.04283. [Online]. Available: https://arxiv.org/abs/1809.04283

[58] W. Zhu, X. Jin, S. Liu, Z. Lu, W. Zhang, K. Yan, and B. Wei, ‘‘Enhanced
double-carrier word embedding via phonetics and writing,’’ ACM Trans.
Asian Low-Resource Lang. Inf. Process., vol. 19, no. 2, pp. 1–18, 2019.

[59] Y. Wu et al., ‘‘Google’s neural machine translation system: Bridging the
gap between human and machine translation,’’ 2016, arXiv:1609.08144.
[Online]. Available: https://arxiv.org/abs/1609.08144

[60] X. Liu, ‘‘Contrastive study on similarities and differences between Chinese
and English characters,’’ in Proc. ICCESE. Paris, France: Atlantis Press,
2017, pp. 1–4.

[61] Y.-C. Chen, S.-F. Huang, C.-H. Shen, H.-Y. Lee, and L.-S. Lee, ‘‘Phonetic-
and-semantic embedding of spoken words with applications in spo-
ken content retrieval,’’ 2018, arXiv:1807.08089. [Online]. Available:
http://arxiv.org/abs/1807.08089

[62] X. Zhang, J. Zhao, and Y. LeCun, ‘‘Character-level convolutional networks
for text classification,’’ in Proc. Adv. Neural Inf. Process. Syst., 2015,
pp. 649–657.

[63] W. Zhu, X. Xu, K. Yan, S. Liu, and X. Yin, ‘‘A synchronized word
representation method with dual perceptual information,’’ IEEE Access,
vol. 8, pp. 22335–22344, 2020.

[64] K. Lee, L. He, and L. Zettlemoyer, ‘‘Higher-order coreference resolution
with coarse-to-fine inference,’’ in Proc. Conf. North Amer. Chapter Assoc.
Comput. Linguistics, Hum. Lang. Technol., vol. 2. Stroudsburg, PA, USA:
Association for Computational Linguistics, 2018, pp. 687–692.

[65] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, ‘‘LIB-
LINEAR: A library for large linear classification,’’ J. Mach. Learn. Res.,
vol. 9, pp. 1871–1874, Jun. 2008.

WENHAO ZHU was born in 1979. He received
the bachelor’s, master’s, and Ph.D. degrees from
Zhejiang University in 2002, 2006, and 2009,
respectively. From 2012 to 2013, he was a Visiting
Scholar with the Computer Laboratory, Univer-
sity of Cambridge, for one year. He is currently
an Associate Professor with the School of Com-
puter Engineering and Science, Shanghai Univer-
sity, China. His research interests are in the areas
of text representation, information extraction, and
web data mining.

SHUANG LIU is currently pursuing the mas-
ter’s degree with Shanghai University. His main
research fields include artificial intelligence, nat-
ural language processing, and machine learning.

CHAOMING LIU is currently pursuing the mas-
ter’s degree with Shanghai University. His main
research fields include artificial intelligence, nat-
ural language processing, and machine learning.

XIAOYA YIN is currently pursuing the mas-
ter’s degree with Shanghai University. Her main
research fields include artificial intelligence, natu-
ral language processing, and machine learning.

XIAPING XV is currently pursuing the mas-
ter’s degree with Shanghai University. Her main
research fields include artificial intelligence, natu-
ral language processing, and machine learning.

VOLUME 8, 2020 223315


