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ABSTRACT The research on reassembling broken objects has many important applications, such as cultural
relics restoration, medical surgery and solving puzzle. Because of the complicated surfaces of the fractured
object pieces, it is not easy to extract salient features from them. It becomes evenmore difficult and very time-
consuming to reassemble broken objects when the fragments are severely corroded or some of them are lost.
In order to improve the accuracy and speed of 3D fragment reassembling, an effective and efficient fragment
reassembling algorithm based on point clouds is proposed this article. This method first extracts keypoints
and their concavity and convexity according to the symbolic projection distance of the point cloud, and
then uses the local neighborhood information of the keypoints to construct a multi-scale covariance matrix
descriptor. Furthermore, by calculating the similarity of the covariance matrix descriptors, the initial pairs of
match points are obtained. Finally, the geometric constraints are gradually added to optimize the sampling so
as to find good hypotheses as quickly as possible. By doing so, the search space is narrowed continuously in
each iteration of the process to speed up the hypothesis test. We have conducted extensive experiments. The
results show that the proposed method can fuse multiple features of the fragments effectively and achieve
an outstanding matching effect on the defected fragments, and that the proposed method is faster than the
existing methods in literature.

INDEX TERMS Object reassembly, symbolic projection distance, multi-scale covariance descriptor,
geometric consistency, RANSAC.

I. INTRODUCTION
At present, the fragment reassembling has been of great
application value in the fields of cultural relics restora-
tion [1]–[3], medical research [4]–[7] and object recog-
nition [8]. An important task in the process of fragment
reassembling and repair is to recover the fragments based on
the geometric information identifying the region of fracture
of the adjacent fragments. Since the fragments are fragile and
may be of large quantity, they can be cumbersome to handle,
making it a problem to recompose the fragments by man-
ual operations. With the development of computer and 3D
scanning technology, the automatic fragment reassembling
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became available. However, the existing algorithms only
work well with perfect fragments. They cannot be applied
directly when there is the data loss on the fracture surface or
the contour ambiguity caused by the long-term corrosion after
the cultural relics are excavated. Therefore, the research on
reassembling three-dimensional fragments has far-reaching
theoretical and application values.

In the process of fragment reassembling, a 3D transfor-
mation matrix is determined by a certain method, so that
the common sections of the fragments can be matched
correctly. Depending on the thickness of the fragments,
the fragment reassembling methods can be classified broadly
into contour-based methods and fracture-based methods.
However, due to the complicated and uneven shape of the
fracture surface of the fragments, it is difficult to define the

220320 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-8601-2499
https://orcid.org/0000-0002-5671-0576
https://orcid.org/0000-0003-2900-1034
https://orcid.org/0000-0002-4604-2690
https://orcid.org/0000-0003-2558-552X


C. Jia et al.: Developing a Reassembling Algorithm for Broken Objects

significant features of the fracture surface during the reassem-
bling process. Some fragments even have tiny fracture blocks
on their surfaces due to corrosion, which results in the loss of
data andmakes the reassembling detection an evenmore chal-
lenging task. The contour-basedmethod is mostly suitable for
thinner fragments, while themethod based on fracture surface
is suitable for thicker fragments.

In order to make the fragment reassembling method more
versatile, a 3D fragment reassembling algorithm based on
keypoints is proposed in this article. This algorithm does not
need to extract the contour lines or the fracture surfaces of the
fragments, but focuses on the keypoints and their features of
the neighborhood points for restoration.

The algorithm mainly consists of the steps of keypoint
extraction, feature descriptors generation, feature matching
andmismatching rejection. In particular, the multi-scale sym-
bolic projection distance of point cloud is first calculated
to detect keypoints and their concavity and convexity. The
multi-scale Covariance Descriptor is then defined to describe
the local surface features of the keypoints. Next, the initial
matching of the fragments is obtained based on the similarity
of the Covariance Descriptor descriptors.

The final step of this algorithm is mismatching rejection.
Random Sample Consensus (RANSAC) [22] is one of the
most widely used techniques for solving mismatching elim-
ination. The RANSAC methods usually find the optimal
solution using the brute-force search through an iterative eval-
uation. In each iteration, a minimal subset is sampled from the
initial matching point pairs and used to estimate and validate
a hypothesis. Such operations repeat until a satisfactory solu-
tion is obtained. However, although the RANSAC algorithm
can estimate the correct parameters of the transformation
matrix, the number of calculations will increase when there
are very few inner points, which will slow down the process.
Therefore, in this article a new effective sampling strategy
is introduced to improve RANSAC, which gradually adds
the geometric constraints to select the outlier-free subsets as
quickly as possible and consequently generate more accurate
hypotheses. The remaining matching point pairs can then be
verified one by one to ensure more correct point pairs are
recognized.

In the final step of our algorithm, the combination of the
geometric consistency and the above improved RANSAC is
used to eliminate false matching from the initial matching and
achieve an excellent reassembling result.

The rest of this article is organized as follows. The related
work is reviewed in Section 2. In Section 3, our fragment
pairwise matching method is presented in detail. In Section 4,
our improved RANSAC for eliminating mismatches is pre-
sented. The experimental results are presented and discussed
in Section 5. Finally, the conclusions are drawn in Section 6.

II. RELATED WORK
A. PAIRWISE MATCHING
At present, many methods have been proposed in the field
of 3D fragment reassembling, which can be roughly divided

into the following two types: 1) fragment reassembling based
on contour lines; 2) fragment reassembling based on fracture
surface.

A fragment reassembling method based on contour lines
obtains the contour lines of the fragment by boundary
extraction, and determines whether it should be reassembled
according to the matching degree of contour lines [9], [10].
The methods of this category are mostly used in the matching
of 2D images, or the cases with very thinner fragment fracture
surface, such as fresco matching [11], [12] and ceramics
matching [13]. They are not applicable to the fragments with
inconspicuous outlines and blurred boundaries.

The fragment reassembling method based on fracture sur-
face is the most common method, which completes match-
ing by identifying the similarities of the fractured regions
between adjacent fragments. At present, the methods of this
category are mostly based on the keypoints. Namely, the ver-
tices with significant features are extracted according to the
geometric information of each point and its neighbor points
in the point cloud model. Several similar feature point pairs
are obtained according to the similarity of the keypoints.
A particular matching optimization algorithm is then used to
determine whether the fractured surface matches.

The method proposed by Huang et al. [14] uses the integral
invariant to extract the surface features of the fragments
and realize the segmentation of the fracture surface, and
then completes the fragment reassembly by surface features
matching. Their method is difficult to identify and segment
fracture surfaces for the small fragments. Pokrass et al. [15]
proposed a partial shape matching method based on shape
descriptors, which sampled the fracture surfaces to receive a
number of sampling points and adopted the forward search
method to obtain the optimal matching. Their method only
finds similar parts and does not provide a point-to-point
correspondence relationship.

Altantsetseg et al. [16] used a Fourier transform-based
method to extract the curves on the fracture surfaces as
the features to match the sections. Sánchez-Belenguer and
Vendrell-Vidal [17] provided a general solution to the prob-
lem of unconstrained reorganization, in which the feature
points of the fragments were first extracted to generate the
PFH descriptors that were matched, and then the geometric
constraint was used to perform mismatch elimination.

Dongjuan [18] proposed a virtual reassembling method for
3D bronze fragments based on the combination of principal
component analysis and fast Fourier transform, in which the
contour line of the model and the corner points on the contour
line were extracted to divide the contour line into differ-
ent curve segments, and then the fragments were reassem-
bled according to the similarity of the segment curves.
Chaohua [19] proposed a 3D cultural relic fragment reassem-
bling method based on the thickness feature. It regarded
the thickness information of the fragments as a sequence,
achieved the coarse matching results by finding the longest
common subsequence (LCS), and executed the iterative clos-
est point (ICP) algorithm to complete fine matching.
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Son et al. [20] proposed a surface signature descriptor to
recompose the fragments. It performs the initial matching the
fragments according to the spin images, and then conducts
the mismatch elimination according to RANSAC and the dis-
tance from the point to the line. Wu and Wang [21] proposed
a sand particle recombination algorithm based on fracture
surface, which scanned the fracture surface and combined the
segmentation effect of the corresponding two-dimensional
image to recombine the fracture surface.

The key of the surface matching algorithms is the correct
segmentation and feature matching of the fracture surfaces.
However, these algorithms typically require the fragments to
contain sufficient feature information. When the fragments
are damaged severely on the fracture surface or the fragments
have the very narrow fracture surface, it is difficult to ensure
the correctness of the matching. Therefore, a reassembling
method based on keypoints is proposed in this article, which
improves the robustness of versatility of the method and is
more accurate.

B. RANSAC
RANSAC is a robust estimation method introduced by
Fischler and Bolles [22], which is divided into two processes:
Hypothesis and Test. Its main idea is to use an iterativemethod
to estimate the correct model from the data containing the
outer points and then find the inner points.

In general, RANSAC is mostly used in image match-
ing [23], [24]. When performing the homography matrix
estimation in image matching, four corresponding point pairs
are required to preserve the changes of the viewpoint, while
three corresponding point pairs are required for the purpose
of rotational and translational parameter estimation.

In this article, the RANSAC algorithm is used to filter
the mismatched feature point pairs, which has to estimate
the parameters of the transformation matrix as accurately as
possible from the data samples containing incorrect matching
points, and iteratively find the estimation result satisfying the
error condition.

A classical RANSAC algorithm consists of the following
steps: 1) Randomly select a minimum sample subset from
the initial matched feature point pairs, which is three pairs of
feature matching points, and set the upper limit of the number
of iterations; 2) Compute the transformation matrix M based
on RANSAC samples; 3) Determine whether the other fea-
ture point pairs in the sample set satisfy the transformation
matrix M according to the error threshold; 4) If there are
enough sample feature point pairs to satisfy M, then M is
reserved, otherwise the estimation is considered wrong and
the RANSAC sample is reselected; 5) Repeat steps 1-4 until
the number of iterations reaches the upper limit.

The RANSAC has good noise resistance and can be bet-
ter implemented. But it also has the disadvantages. Many
scholars conducted the research on robust parameter estima-
tion and proposed different improved RANSAC [25]. For
instance, Lu et al. [26] adopted an improved RANSAC
to eliminate mismatches, in which a pre-test is added

based on the distance constraint, and then the samples
were selected and verified according to the conventional
RANSAC. Zhao et al. [27] added the distance and angle con-
straints to improve the sampling efficiency and estimated the
initial matching set, and then refined the point set with a
smaller threshold to obtain the optimal feature point matching
set. Chu and Xi [28] designed the cascaded filter to remove
false matches, which improves the proportion of inliers of
initial matches and guarantees the accuracy of global motion
parameter. In the existing literature, there is still no better
trade-off between the evaluation reliability and speed. When
evaluating the existing methods, each model must be evalu-
ated for all the matches in order to obtain reliable evaluation
results. Even if the current model has been proved to be
optimal, the evaluation process cannot be terminated halfway.
To solve this problem, this article uses the false matching rate
as an evaluation criterion. When the false matching rate of a
given model is worse than the current criteria value during
the evaluation, there is no need to go through the rest of the
evaluation any longer.

For most randomized methods, sampling results directly
affect the runtime. The termination of the iterative algorithm
relies largely on its ability to quickly identify the uncontam-
inated subsets. Therefore, to overcome the low efficiency of
the RANSAC algorithm, this article identifies the minimum
sample subset by gradually adding geometric constraints in
Hypothesis, so that a more accurate sample subset can be
extracted. In Test, the point pairs of the test set are tested
one by one. Our method does not select the point pair from
scratch in each RANSAC iteration, but reuses the previous
calculation results, which speeds up the processing. Our
experimental results show that that our algorithm can achieve
better accuracy without compromising the efficiency.

III. PAIRWISE MATCHING BASED ON SALIENT
CONCAVE-CONVEX REGIONS
Figure 1 illustrates a framework of the presented method.
In this figure, the symbol projection distance is calculated to
obtain the keypoint set of the source and target 3D model
in Step 1-source and Step 1-target, respectively. In Step
2-source and Step 2-target, the descriptor sets of the source
and target 3D models are generated respectively by comput-
ing the feature descriptor based on the keypoints and their
neighborhood. In Step 3, the corresponding keypoint pairs are
computed by measuring the similarity of feature descriptor
between source model and target model; Finally in Step 4,
the improved RANSAC is used to eliminate the mismatching
pairs in the corresponding keypoint pairs to obtain the final
keypoint matching pairs.

Step 1, Step 2 and Step 3 in Figure 1 are presented in detail
in Section 3.1 and Section 3.2, respectively. Step 4 is will be
presented in Section 4.

A. KEYPOINTS EXTRACTION
Due to the complicated geometrical structures on the surface
of the cultural relics model, the point cloud data obtained
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FIGURE 1. Frame Diagram of the method proposed in this article.

by 3D scanners is very large. There may be a large amount
of redundant data. In order to improve the quality of the
surface reconstruction and reduce the influence of noise on
the extraction of the geometric features, it is necessary to
simplify the data of the point cloud model. In this article,
the point cloud data are first simplified conformally by uni-
form sampling [29], that is, a three-dimensional voxel grid
is created for the point cloud, and then the point closest to
the center point of each voxel is taken as the sampling point.
The keypoints are then determined by calculating the sym-
bolic projection distance, and the concavity and convexity of
keypoints are judged according to the symbol of the symbolic
projection distances.

For any point pi in the point cloud, the centroid in its
spherical neighborhood is found to form a vector from point
pi to centroid of its neighboring point, where the projection
distance is formed by projecting the vector onto the normal
vector of point pi. The smoother the surface is, the closer to
zero the projection distance is, and vice versa.

For a given point cloud {p1, p2, · · · , pM }, when a query
point pi is given, a spherical neighborhood N (pi) is con-
structed by taking pi as the center and r as the radius, and
a covariance matrix is also constructed:

Cpi =
∑
j∈N (i)

(
pij − p̄i

) (
pij − p̄i

)T (1)

where p̄i = 1
N

N∑
j=1

pij, pij is the neighborhood points of point

pi, and N is the number of points in N (pi).
Covariance matrix Cpi is a 3 × 3 matrix, for which the

singular value decomposition (SVD) is executed to get:

[U , S,V ] = svd
(
Cpi
)

in which, the feature vector corresponding to the minimum
eigenvalue is the normal vector, that is, the third column of the
matrix Cpi . In order to prevent the ambiguity arising from the
direction of the normal vector, it is necessary to standardize
the normal vector.

The normal vector is standardized through the given
point pi and the neighborhood points

{
pi1, · · · , pij, · · · , piN

}
,

FIGURE 2. Point cloud symbolic projection distance.

FIGURE 3. Results of keypoint detection.

j = 1, · · · ,N

npi =

npi
〈
npi ,
−−−−→
pi − pij

〉
≥ 0

−npi
〈
npi ,
−−−−→
pi − pij

〉
< 0

(2)

The multi-scale symbolic projection distance is defined:

SDr (pi) =
〈
−−−−−→
(pi − pi), npi

〉
〈a, b〉 indicating the dot-product operation
In Figure 2, the red dot indicates the points in salient

regions, the blue dot indicates a relatively flat point, and the
five-pointed star indicates the centroid in the corresponding
neighborhood. Procedure for calculating the symbolic projec-
tion distance is shown in Figure 2.

When the absolute value of SD is greater than a certain
set threshold, the point is regarded as being of salience and
can be considered as the keypoint in the next step in this
article. Otherwise it is ignored. When SD is greater than 0,
the point is a concave point in the neighborhood. On the
contrary, when SD is a negative value, the point is a convex
point. The extreme points of the SD in the local neighborhood
are taken as keypoints. The concavity and convexity of each
keypoint are also identified.

∀j SDr (pi) > SDr
(
pj
)
,
∥∥pi − pj∥∥ ≤ r ∧ SDr (pi) > 0

∀j SDr (pi) < SDr
(
pj
)
,
∥∥pi − pj∥∥ ≤ r ∧ SDr (pi) < 0 (3)

The detection results of the keypoints for the model venus
are shown in Figure 3. The green points are the original model
points while the red points are the detected keypoints. It can
be seen that there are fewer feature points in the smooth
region, but more feature points in the salient region.
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B. KEYPOINT MATCHING BASED ON SALIENT FEATURES
Usually, the corresponding regions of matching fragments
must be complementarily concave and convex. Therefore,
if the fragments are intact, the neighborhood of the corre-
sponding fracture region should also be similar. Based on this
attribute, amulti-scale covariancematrix descriptor is utilized
to describe the initial matching of the model in this article.

1) MULTI-SCALE COVARIANCE DESCRIPTOR
Numerically, the covariance matrix can be used to represent
the interaction of multiple variables. Covariance was orig-
inally used as a descriptor in image processing [30], and
later in 3D point cloud registration [31]. Covariance matrix
descriptors can fuse different types of features, reflecting not
only the spatial and geometric properties of the described
objects, but also the correlation of these features. We use
the covariance matrix to illustrate the relationship among
different features. The values distributed in the main diagonal
of the covariance matrix indicate the variation for each fea-
ture. Other elements represent the similarity between the two
characters. According to the definition of covariance matrix
descriptor, a set of random variables correspond to a set of
geometric features extracted from a point cloud, such as 3D
coordinates, normal vectors, curvature, and so on. Therefore,
it is necessary to first construct the feature selection function.
In the function, a keypoint p is given, and pi is the point in the
point cloud that can satisfy all the spherical neighborhoods
within the radius r of the distance point p(denoted by N (p)).

8(p) =
{
ϕpi

∣∣ |p− pi| ≤ r}
ϕpi = {cosα, cosβ, cos γ, δ1 (p) , δ2 (p) , δ3 (p) ,H (p)}

(4)

As shown in Figure 4, α represents the angle between the
normal vector of point pi and the line segment −→ppi, β repre-
sents the angle between the normal vector of point p and the
line segment−→ppi, and γ represents the angle between the point
npi and np. In order to reduce the calculation time, the cosine
value is calculated when calculating the angle values. H rep-
resents the average curvature of the point p, obtained by
the calculation method in [32]. All of the extracted features
are invariant for the rigid transformation, which is of great

FIGURE 4. Local geometric features of the point cloud model.

importance formatching. These features can be calculated by:

cosα =
−→ppi · npi
‖ppi‖2

δ1 (p) =
λ1 − λ2

λ1

cosβ =
−→ppi · np
‖ppi‖2

δ2 (p) =
λ2 − λ3

λ1

cos γ = npi · np δ3 (p) =
λ3

λ1
(5)

where λ1, λ2, λ3 (λ1 ≥ λ2 ≥ λ3) indicate the eigenvalue
obtained by performing the principal component analy-
sis (PCA) calculation based on the neighborhood of the point
p. λi (i = 1, 2, 3) describes the range of data distribution on
the corresponding eigenvector. The feature δ1 (p) , δ2 (p) and
δ3 (p) describe the structural features of the neighborhood of
point p. If λ1 ≥ λ2 and λ1 ≥ λ3, δ1 (p) is greater than δ2 (p)
and δ3 (p). In this case, a linear structure is represented by the
neighborhood of point p. If λ1 ≈ λ2 ≥ λ3, δ2 (p) is the largest
one. A planar structure is represented by the neighborhood of
point p in this case. Finally, λ1 ≈ λ2 ≈ λ3 means that δ3 (p)
is larger than δ1 (p) and δ2 (p), which means that a scatter
structure is represented by the neighborhood of point p.

Given a keypoint p, its covariance descriptor can be
expressed as:

Cr (ϕ (p, r)) =
1

N − 1

N∑
i=1

(ϕ (pi)− µ) (ϕ (pi)− µ)T (6)

where µ is the average of a series of eigenvectors
{
φpi
}
, and

N is the number of points inN (p). The result is a 7∗7 positive
definite matrix Cr , whose diagonal elements represent the
change in the distribution of each feature while the elements
on the non-diagonal represent the correlation between the
feature point and the neighborhood point. According to the
geometric characteristics of a point cloud, the use of covari-
ance descriptors can guarantee the rotation and translation
invariance and viewpoint invariance of the model.

2) SIMILARITY OF MULTI-SCALE COVARIANCE DESCRIPTORS
In this article, we use the metric introduced by Förstner and
Boudewijn [33]. It is defined in Equation (7) and widely used
in the comparison of the covariance descriptors in Riemann
Metric.

δ (X ,Y ) =
√
trace

(
log2

(
X−(1/2)YX−(1/2)

))
(7)

where X and Y represent two covariance matrices, respec-
tively, and log (·) represents the logarithm of the matrix.
This metric incurs a large amount of calculation. In recent
years, researchers proposed to use the logarithmic European
Riemannian Metric instead [34], which is defined in Eq. 8.

δ (X ,Y ) = ‖log (X)− log (Y )‖F (8)

where ‖·‖F represents the F norm of the matrix. The smaller
the value, the smaller the difference between two models.

In order to improve the description to the keypoints, our
method obtains the multi-scale Covariance Descriptor, which
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changes the number of neighborhood points by changing the
radius r . The covariance descriptors at different scales can be
described as:

CM (p) = {Cr (ϕ (p, r)) ,∀r ∈ {r1, · · · , rs}} (9)

The distance between multi-scale Covariance Descriptors
can be measured by the mean value of the similarity between
sets of single-scale covariance descriptors, as shown in
Equation (10).

δM

(
C1
M ,C

2
M

)
=

1
s

∑
i=r1···rs

δ
(
C1
i ,C

2
i

)
(10)

where C1
i and C2

i represent the covariance descriptors the
radius at the scale of ri (i = 1, · · · , s) respectively, and
δ
(
C1
i ,C

2
i

)
represents the similarity of the covariance descrip-

tors at the single scale calculated by Equation (8).

IV. ELIMINATING MISMATCHING THROUGH THE
IMPROVED RANSAC
There are commonly used methods for eliminating the
mismatching, such as Geometric Consistency [35], the game
theory [36] and RANSAC [37]. The procedure of a game the-
oretic method converges to a limited set of correspondences
by successively removing false correspondences. The Geo-
metric Consistency method divides the potential correspon-
dences into different groups using the geometric constraints,
and selects the group with the largest geometrical consistency
to estimate the transformation matrix. The RANSAC method
usually finds the optimal solution using the brute-force search
through an iterative evaluation. At each iteration, a subset of
candidate correspondences are randomly selected. However,
in order to reduce the number of iterations and increase the
effectiveness of RANSAC as much as possible, purifying
the feature matching point pairs is an indispensable step.
The accuracy of the randomly selected samples also directly
affects the number of iterations of the RANSAC algorithm.
Therefore, in this article, the minimum subset of RANSAC
is determined by gradually adding geometric constraints.
In each RANSAC iteration, the search space is reduced con-
tinuously to increase the efficiency of the algorithm, so as to
speedup the RANSAC algorithm and improve its accuracy.

A. SAMPLING
Complementary fragments have similar structures in the cor-
responding regions. According to this property, there must
be similar geometric feature structures between the correct
feature matching point pairs. As a matter of fact, the uncon-
taminated samples should be selected as early as possible.
It is because this strategy can contribute not only to obtaining
the optimal parameters of the model, but also to speeding
up the convergence of the algorithm. Therefore, in order to
find a better sampling set from initial feature matching point
pairs set, the minimum sampling subset (which is three pairs
of feature matching point pairs) is determined by gradually
adding geometric constraints to ensure the accuracy of the
initial sample.

Assume that P and Q are the two fragments of point cloud
models to be recomposed, respectively, S is the initial feature
matching point pairs, S = {(p1, q1) , (p2, q2) , · · · , (pn, qn)},
and n is the number of feature matching point pairs.

We select a pair of point pairs (pi, qi) randomly in the
initial featurematching point pairs set S as the first fixed point
pair, and determine the second feature matching point pair(
pj, qj

)
in the remaining initial point pair set S according to

the following three Rules, in which, d (x, y) represents the
Euclidean distance between point x and point y, εd > 0 is
the distance threshold. εangle > 0 is the angle threshold, and
εr > 0 is the direction threshold.
1) Distance consistency constraint:∣∣d (pi, pj)− d (qi, qj)∣∣ < εd ,

2) Angle consistency constraint:∣∣〈npi , npj 〉− 〈nqi , nqj 〉∣∣ < εangle,

3) Direction constraint:∣∣∣∣∣
〈
pi − pj,−npj

〉∥∥pi − pj∥∥ −

〈
qi − qj, nqj

〉∥∥qi − qj∥∥
∣∣∣∣∣ ≤ εr

Computing rigid transformation requires at least three pairs
of point sets. Therefore, a pair of feature matching point pairs
(pk , qk) need to be randomly selected from the remaining
initial matching point pairs set S. To prevent the randomly
selected third point pairs from being collinear with the previ-
ous two pairs of points, the selection of the third point pairs
must satisfy formula (11). The initial rigid transformation
matrix T0 = (R0, t0) can be calculated, and the alignment
error ε0 can be calculated based on root mean square error of
matching point pairs.∣∣(pi − pj)× (pi − pk)− (qi − qj)× (qi − qk)∣∣ < εp (11)

where εp > 0 is a constant.

B. HYPOTHESIS EVALUATION
The three pairs of point pairs identified in the Section 4.1 are
used as the candidate set. The remaining initial feature match-
ing point pairs are used as the test set. An alternative method
of evaluating the initial estimation for the transformation is to
add each point pair in the test set to the candidate set one by
one and re-compute the transformation which is outlined in
Algorithm 1. This evaluation method is indeed slower since
each point pair in the test set needs to be computed separately.
But it is more accurate.

This article proposes three improvements over the tradi-
tional RANSAC algorithm. First, we set the optimal matching
ratio. Namely, the correct matching ratio of the point pair
is calculated in each iteration of the algorithm. Assume that
the optimal matching ratio is 80%. If the incorrect matching
ratio reaches 20%, it is impossible to achieve the optimal
result. So the iteration can be ended early. The search space
continues to decrease as the number of iterations increases.
Therefore, the algorithm will converge faster.
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Algorithm 1 New Hypothesis Evaluation
Input: initial transformation estimation (R0, t0), error ε0,
initial point pairs in sample sets (Us,Vs), s = 1,2,. . .m, test
sets (Ut ,Vt), t = 1,2,. . . ,n
Output: inlier point pairs

Begin
for each corresponding points (ut , vt) in (Ut ,Vt) do
Calculate (Ri, ti) that aligns the points in Vs ∪ vt to the

points in Us ∪ ut
Calculate the corresponding alignment residual error εi
if εi − ε0 < threshold

(ut , vt) is considered as an inlier
end if

end for
End

Second, when estimating the rotation parameters in each
RANSAC iteration, our method only adds a pair of feature
matching point pairs for verification based on the minimal
subset, rather than increase the number of pairs as the match-
ing consistent set increases (i.e., the number of correct match-
ing point pairs increases as the number of iterations increases,
and consequently it becomes more and more complicated
to estimate the rotation parameters). To reduce the compu-
tational cost of the RANSAC algorithm, our method places
the correct matching point pairs in the queue according to
the first-in-first-out (FIFO) principle, ensuring that only four
pairs of feature matching point need to be calculated each
time (the size of minimum subset is 3).

Third, the correct point pairs that have been calculated
will not be calculated in subsequent iterations. The feature
point pairs that are deemed correct in each iteration are taken
as a class. Each type of point pair corresponds to a set of
transformation. Therefore, our method does not need to select
the point pair from scratch in each RANSAC iteration, but
reuses the previous calculation results, which accelerates the
hypothetical evaluation process.

The mismatching elimination algorithm based on the
improved RANSAC proposed in this article is shown in
Algorithm 2. This method first sets the maximum number
of iterations iter_max and the mismatching ratio of feature
matching point pairs η. It starts with extracting the minimum
sampling subsets (Us,Vs) from (U ,V ) according to the sam-
pling method proposed in this article, in which each element
in Us has a corresponding element in Vs. Then the remaining
element pairs constitute the test sets (Ut ,Vt), where Ut =
U\Us and vd ∈ Vt = V\Vs. This method verifies the point
pairs in the set of remaining initial point pairs one by one to
increase the accuracy of the algorithm. For each additional
point pair, a new transformation matrix Ti = (Ri, ti) and
alignment error ei are calculated. If ei − e0 less than a
user-defined threshold, the point pair is added to the potential
consistent setC . When verifying whether the added point pair

FIGURE 5. Initial matching of the brick model; (a) and (b) are original
brick fragments, and (c) is initial matching between the two models.

meets the conditions of the consistent set, the error matching
ratio of the point pair is calculated. If the error matching ratio
exceeds η, this algorithm re-selects the minimum sampling
subset for evaluation until the correct point pair matching
ratio is met or the algorithm reaches the maximum number
of iterations.

Algorithm 2 Eliminating Mismatching Based on the
Improved RANSAC
Input: corresponding 3D point sets pairs (U ,V )
Output: T = (R, t) rotation R and translation t

Begin:
set Mismatching rate η
iter ← 0
C ← 0
Countmismatch← 0
while iter < iter_max do
(Us,Vs)← getMinimalSampleSet(U ,V )
es← rmse (Us,Vs)
add (Us,Vs) to the potential Queen C

if Countmismatch
/
n < η

randomly select ud ∈ Ut and vd ∈ Vt
ed ← rmse ((ud , vd ) ,C)
if es − ed < threshold then

add ud , vd to the potential Queen C
DelQueen (C)

else Countmismatch← Countmismatch+ 1
end if

end if
end while
End

V. EXPERIMENTS
The experimental data in this article are obtained from the
fragment data published by Vienna University of Technol-
ogy [38]. All the experiments have been conducted on a
computer with 3.4 GHz CPU and 16 GB of memory. The
algorithm proposed in this article is applied to different frag-
ments in the public data set to evaluate its effectiveness.
A set of fragment models in the public data set are shown
in Figure 6, in which (a) is the brick models, (b) is the venus
models, (c) is the cake models, (d) is the sculpture models,
and (e) is the gargoyle models.
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FIGURE 6. Original models.

TABLE 1. Fragment introduction.

In this article, the experiments are carried out on multiple
point cloud models in the dataset. TABLE 1 show all the
fragments used in the experiments, where the row #name is
the name of the fragment and the row #number is the number
of fragments contained in each model.

A. RESULTS OF COVARIANCE DESCRIPTOR
The 3D covariance descriptor has only one parameter: the
combined feature vector. The selection of the features used
for the construction of the covariance descriptor is a critical
step to improve the performance of 3D feature matching.
This is because the improper features will have the negative
in?uence on the matching rate. Thus, this article evaluates the
performance of covariance descriptors with the combination
of different features.

Given a source model, target model and a ground-truth
transformation, the keypoints of the source and the target
model are extracted by our method and are described as
the source model and target model features by the covari-
ance matrix descriptor. The similarity between each feature
descriptor of the source model and those of all target models
is calculated based on formula (8). If the distance is less than a
threshold, the source model feature is considered to match the
target model feature. Further, the target model is transformed
according to the ground-truth, and the Euclidean distance of
the corresponding point pair between the target model and the
corresponding source model is calculated. If the distance is
small enough, the point pair is considered a correct positive,
which is defined as NCP. In addition, the number of source
model features is defined as the total number of positives,
which is defined as NTP.Using this information, the correct
matching rate can be computed as:

correct matching ratio =
NCP
NTP

We tested the quality of the descriptor proposed in this article
by adding different levels of Gaussian noise to the target

model, where the noise deviation was set in the range of
[0.1,0.5]. The curve can be generated for our experiments by
varying the noise deviation. The result of the combination of
different features is presented in Formula 12. Among these
feature vectors, F3 is our proposed feature vector. The fea-
tures inF1,F2 andF3 are all relatively calculated based on the
relative relationship between the keypoint p and its neighbor-
ing pi, while some features in F4,F5 are absolutely calculated
based on the absolute position of the neighboring points
around the keypoint. For example, xpi , ypi , zpi are the absolute
position of a neighboring point of keypoint p, nxpi , nypi , nzpi
are the normal of a neighboring point of keypoint p.

F1 = (cosα, cosβ, cos γ )

F2 = (δ1 (p) , δ2 (p) , δ3 (p) ,H (p))

F3 = (cosα, cosβ, cos γ, δ1 (p) , δ2 (p) , δ3 (p) ,H (p))

F4 =
(
xpi , ypi , zpi , cosα, cosβ, cos γ, δ1 (p) , δ2 (p) ,

δ3 (p) ,H (p))

F5 =
(
xpi , ypi , zpi , nxpi , nypi , nzpi , cosα, cosβ, cos γ,

δ1 (p) , δ2 (p) , δ3 (p) ,H (p)) (12)

We use different models including brick, cake, venus, gar-
goyle and sculpture models to compute the average correct
matching rate of the covariance descriptor, and the results are
shown in Figure 7. It can be seen that the performance of the
covariance descriptor formed by F1,F2 and F3 is better than
that of the covariance descriptor formed by F4,F5.Moreover,
the correct matching rate of the covariance descriptor formed
by decreases rapidly with the increase of noise. The reason
is because some of the features in F4,F5 are not invariant
to rigid transformation and are sensitive to noise, resulting
in a decrease in the description ability of the covariance
descriptor. At the same time, the comparison results of F1
and F2 in Figure 7 show that the change of the eigenvalue
and surface variance are more stable than the change of
angle. In addition, it can be observed from Figure 7 that
as the number of features with noise resistance and rigid
transformation in the feature vector Fi (i = 1, 2, 3) increases,
the performance of the covariance descriptor formed by the
feature vector will also be improved. These results show our
proposed feature vector has good robustness to noise.

B. RESULTS OF PAIRWISE MATCHING
Figure 8 shows the results of pairwise matching experiments
for multiple fragment models. As shown in Figure 8, multiple
fragment models match each other completely. It can be seen
fromFigure 8(5) that even if somemodels aremissing, correct
matching results are still obtained.

Figure 9 shows the pairwise matching results of the brick
fragments. We tried to match any two pieces of the brick
models. Our algorithm found 8 pairs of matching results,
in which the fragment pairs 1-2, 1-3, 4-5, 4-6 and 5-6 are
full match, 1-4, 2-4 and 2-5 are partial match. All these
reassembly results are correct. These results suggest that our
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FIGURE 7. Performance of covariance matrix descriptor formed by different feature vector.

TABLE 2. Execution times (in seconds) of the algorithms and the breakdown of the excution times spent in finding the matches for the brick fragments.

algorithm can accurately handle not only full matching but
also partial matching.

The detailed experimental records of brick pairwise match-
ing are listed in TABLE 2, where #P is the total number of
points in the models after uniform sampling, #F is the number
of detected keypoints, Tinit is the time spent in finding initial
matching, Tmis is the time in eliminating mismatches, Ttotal
is the total time spent in finding the matches. TABLE 2 also
compares the time spent by our algorithm and the time by
the search algorithms presented in [14] and [20]. It can be
seen that our algorithm almost halves the time spent by the
algorithm in [14]. This is because the method in [14] uses the
whole point cloud to compute the final reconstruction, while
our method uses a reduced set of keypoints. It can also be

observed from the TABLE 2 that the time spent by ourmethod
is much less than that by the method in [20]. The reason
is because the method in [20] converts the 3D point cloud
model into the 2D spin image for description. In addition,
different points in the space have the same coordinates after
transformation, resulting in more errors when comparing the
similarity of spin image. Also the original RANSAC method
is used to eliminate mismatches in [20], which is another
factor why the algorithm in [20] is slower than our algorithm.

C. RESULTS OF COMPARISON WITH EXISTING METHODS
In order to better evaluate the performance of the proposed
algorithm, we compares our pairwise matching with the
existing methods, including those in [18] and [19]. We used
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FIGURE 8. Pairwise matching results of different fragments; (1), (2) and (3) are the pairwise matching results of the gargoyle models; (4),
(5) and (6) are the results of the cake models; (7), (8) and (9) are the results of the venus models.

different fragment models including cake, gargoyle and
sculpture in the comparison experiments. The results are
shown in Figure 10, where different rows correspond to the
pairwise matching results of different models. Columns (a)
and (b) represent the original model, columns (c) and (d)
show the reassembly results obtained by the methods in [18]
and [19], respectively. Our pairwise matching results are
shown in the column (e).

It can be observed from Figure 10 (c) that the pairwise
matching method in [18] produces obvious errors. For exam-
ple, there are obvious gaps in the matching results of the
cake model and the first two gargoyle model. The results
for the sculpture model also have obvious deviations. The
reason is because the method in [18] uses the contour lines
as the features for matching. If the contour is not obvious
or missing, the matching accuracy will be affected. For the
same fragment model in Figure 10 (d), the method in [19]
has a penetration phenomenon, which makes it difficult to
achieve better matching results. The method in [19] only
uses the thickness feature of fragments for matching, and
requires the spatial density of the two aligned sequences in
the LCS algorithmmust be the same, which is the reason why

the fragments cannot be matched correctly. It can be clearly
seen from Figure 10 that the cake model is partially missing,
the gargoyle model is partially matched, and the sculpture
model has rich surface features. In general, no matter whether
the feature of fragment is obvious or not, our method can
achieve bettermatching results comparedwith othermethods.

D. RESULTS OF ELIMINATING MISMATCHES
This article uses the improved RANSAC to eliminate mis-
matches. In order to evaluate the performance of the proposed
method in mismatch elimination, we conducted the experi-
ments to compare the improved RANSAC with the conven-
tional geometric consistency algorithm [35]. The results are
shown in Figure 11, where (a), (b), (c) are the results obtained
by geometric consistency while (d), (e) and (f) are the results
obtained by the improved RANSAC.

As can be seen from Figure 11, our improved RANSAC
eliminates the pairs of mismatched points while there are still
mismatching pairs (yellow lines) after running the geometric
consistency algorithm, which misses mismatching pairs due
to its limitations of only using the Euclidean distance and
the angle constraint between two groups of matching pairs as
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FIGURE 9. Fragments of brick and their pairwise matching.

FIGURE 10. Comparing our pairwise matching method with the existing methods. (a), (b) Original models; (c) Matching results from the method
in [18]; (d) Matching results from the method in [19]; (e) Matching result of our method.

the eliminating conditions. The results from Figure 11 show
that the method proposed in this article can eliminate the
mismatching pair effectively, which further improves the cor-
rectness of 3D fragment reassembly.

TABLE 3 lists the detailed experimental records of elim-
inating the mismatches. The assessment criteria include the
number of correct matching pairs, the number of mismatch-
ing pairs, and the correct matching ratio obtained by the
methods for the two groups of point clouds. As can been

seen from TABLE 3, compared with geometric consistency,
our improved RANSAC has improved mismatch detection
significantly.

correct matching rate

=
correct matching pairs

correct matching pairs+ mismatching pairs

TABLE 4 compares our improved RANSAC with more
existingmethods for eliminatingmismatches, including those
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TABLE 3. Experimental comparison of mismatching elimination.

FIGURE 11. Compare the improved RANSAC with the geometric consistency algorithm in terms of mismatch elimination; (a), (b), (c) show the
results of eliminating the mismatching using geometric consistency while (d), (e), (f) are the results using our improved RANSAC; the green
and yellow lines represent the correct wrong matching, respectively; (a) and (d) are for the cake models, (b) and (e) are for the sculpture
models, (c) and (f) are for the gargoyle models.

in [24], [26] and [27]. We use Root Mean Square Error
(RMSE, representing the accuracy) and Execution Time as
the assessment criteria. Different rows in the table are for
the corresponding fragment models in Figure 8. The nine
Test models in TABLE 4 correspond to the nine models in
Figure 8.

Our improved RANSAC invokes Algorithm 1 to perform
sampling and evaluate the initial estimation for the transfor-
mation and then calls Algorithm 2 to eliminate mismatches.
We design Algorithm 1 to help our method to achieve
excellent matching accuracy while designing Algorithm 2 to
eliminate the mismatches efficiently. In order to evaluate the
effectiveness of Algorithm 1 and Algorithm 2 separately,
we also ran our method with only Algorithm 1 switched on
while the mismatch elimination is performed by the opera-
tions in the conventional RANSAC. This method is labelled
as ‘‘Our-1’’ in TABLE 4. Our improved RANSAC, i.e.,
the method with both Algorithm 1 and Algorithm 2 switched
on, are labelled as ‘‘Our-2’’ in TABLE 4.

It can be seen from TABLE 4 that our improved RANSAC
(i.e., Our-2) is much faster than these existing methods under
the same convergence condition. As reflected by the values
of RMSE, the accuracy of our algorithm is also higher than
that of other three algorithms, thanks to Algorithm 1.

When comparing ‘‘Our-1’’ and ‘‘Our-2’’ in TABLE 4,
we can see that ‘‘Our-2’’ achieves the similar accuracy as
‘‘Our-1’’, and takes much less time than ‘‘Our-1’’. These
results verify that Algorithm 1 can improve the matching
accuracy while Algorithm 2 can eliminate the mismatches
efficiently, which significantly reduces the execution time of
the method.

E. RESULTS OF GLOBAL REASSEMBLY
Our method can perform not only the pairwise matching, but
also the global reassembly of multiple fragments. A global
reassembly is obtained by repeating the pairwise match-
ing process until all fragments are matched. When a match
is aligned, the pairwise fragments are regarded as a new
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TABLE 4. Comparing the pairwise matching results obrained by our algorithm and the existing algorithms in literature.

FIGURE 12. The global assembly of models; (a) The reassembling results for the models of venus, brick, cake, gargoyle and sculpture. (b) The global
reassembly of incomplete venus fragments.

fragment, which is added to the candidates. Then the pairwise
matching and aligning continue with the remaining candi-
dates. The results of global reassembly of multiple models are
presented in Figure 12(a). It can be seen from the figure that
the fragments of all models are reassembled effectively.

In practical applications, it is very common that the frag-
ments are incomplete or missing due to severely corrosion.
Figure 12(b) shows the results of the global reassembly of
the fragments of venus in the cases where some fragments
are missing. As can be observed from this figure, our method
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can still find all potential fragment pairs in the remaining
fragments.

VI. CONCLUSION
A fast fragment reassembling method based on covariance
descriptors is proposed in this article. In particular, the key-
points extraction algorithm based on themulti-scale symbolic
projection distance is proposed. The concavity and convexity
of the keypoints are described. Next, a multi-scale Covariance
Descriptor is proposed for better description of the features
of keypoint neighborhoods, and the initial matching is then
performed according to the similarity of the distance of the
covariance descriptor. Finally, the improved RANSAC algo-
rithm is proposed to eliminate themismatches and achieve the
perfect matching of the fragments. The effectiveness of the
proposed method is evaluated through extensive experiments.
The results show that comparing with the existing methods
in literature, our method can restore the original form of
the fragments and achieve precise spatial alignment of the
fragments more effectively and more efficiently.
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