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ABSTRACT INTRODUCTION: Software development is organized around developers working collabora-
tively promoting two types of interactions for knowledge sharing. Developer-Artifact interactions indicate
developers define or access pieces of information within artifacts. Developer-Developer interactions indicate
the exchange of information among developers using a collaboration platform to clarify an issue, promote an
idea, or expose any thoughtful comment. PROBLEM: The number of such interactions grows over time and
makes it difficult to capture and assess the evolution of the developers’ knowledge about specific software
project artifacts and tasks. Further, this knowledge decreases over time due to the natural limitations of human
cognition that restrict our capabilities to cope with information overload. Besides, who has more knowledge
about specific project elements are important to promote collaboration. AIMS: TheKa,Ks,Kc, andKpmodels
capture the evolution of the developers’ knowledge about software project elements such as artifacts, tasks,
similar tasks, and the whole software project. These models represent not only the knowledge developers
have about these elements but also capture how this knowledge decreases over time based on forgetting
and relearning functions. EVALUATION: An experimental study analyzed some developers’ interactions
on artifacts for the purpose of predicting the evolution of developers’ knowledge in six software projects.
The results show that the developers’ rankings by performed tasks and by our models have 72% or more of
similarity. CONCLUSION: Our models can capture and assess the evolution of the developers’ knowledge
and help to identify which developers have more knowledge about specific elements of software projects.

INDEX TERMS Knowledge model, interactions in software development, expert recommendation, recom-
mendation system.

I. INTRODUCTION
The modern software development workflow is people-
centered and most of the time conducted collaboratively [1].
Typically, this workflow suggests developers follow daily
routines involving executing a set of tasks, interacting with
other developers and manipulating artifacts such as source
code, documentation, and configuration files. As a result,
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developers continuously and routinely interact with each
other (Developer-Developer interactions) and with artifacts
(Developers-Artifact interactions). Developer-Developer
interactions occur face-to-face or through communication
tools, when developers need to clarify some questions about
performing a task. Developer-Artifact interactions happen
when a developer reads or writes an artifact. Reading is used
to gain knowledge about the artifact, typically to identify the
parts of the artifact that may be changed to complete a task’s
goal.Writing occurs by adding or removing information from
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artifacts that need to evolve, sometimes to accommodate a
new feature, fix a bug or improve code.

The development workflow is typically orchestrated by a
project plan (or sprint plan) describing the tasks developers
agree on executing [2]. When a developer is assigned to
a task, he or she usually tries to leverage on his/her past
experience to remember similar performed tasks and manip-
ulated artifacts. He/she may also try to figure out who is
the most knowledgeable developer in the task’s subject for
a future call for help [3]. Remembering being in a similar
development context, with similar developers and artifacts, is
useful as it may help developers to avoid recurring problems
and adopt best practices. In order to leverage on experience,
developers intuitively browse their memory and the project’s
history in a cycle of discovery and remembrance of a task
context. When a project history has a small number of tasks
and artifacts, remembering task contexts is feasible. However,
a typical software projects may last several months or years,
accumulating a vast amount of tasks, artifacts and developers.
As a result, intuitively browsing such vast amount of tasks,
artifacts, developers and their relationships might be difficult,
if not impossible.Moreover, the developers’ knowledge about
the history of tasks is limited as they tend to forget the past
because of the natural limitations of human cognition that
restricts our capabilities to cope with information overload
[4], [5]. In this scenario, a model and the associated tool
support, to measure the developers’ knowledge of a given
project element (task or artifact) can help other developers
when dealing with a similar context along the project.

Our literature review has showed that Fritz et al. [6] pro-
posed a model to infer the degree of developers’ knowledge
about software artifacts. The proposed measure assigns a
degree of knowledge to a developer about an artifact over
time, a combination of interest and disinterest of the devel-
oper over the artifact considering the authoring information.
Rigby et al. [7] defined ‘‘knowledge loss of a project’’ as
the number of files that are abandoned in turnover at quar-
terly intervals. Line-of-Code ownership means that the last
developer changing a line of code has the ownership of a file
and a file is abandoned when 90% or more of the lines are
abandoned, possibly by a developer who has left the project.
Other proposals use different words related to Knowledge
such as Expertise, Expert, Affinity, Experience, Compatibil-
ity, and Skill to measure the relationship between developers
and artifacts [8]–[13]. The result of this review shows that no
work has so far been done concerning the fact that humans
tend to forget bits of information [14]–[19], although there
is evidence that developers tend to forget information about
artifacts they have not manipulated for a while [20]–[22].

In this article, we present four knowledge-oriented mod-
els to represent the developer’s knowledge about the ele-
ments of a software project. The Ka, Ks, Kc, and Kp
models capture the evolution of the developers’ knowledge
about artifacts, tasks, similar tasks, and the whole software
project, respectively. The proposed models combine infor-
mation from Developer-Developer and Developer-Artifact

interactions with a state-of-the-art way to capture the devel-
opers’ forgetting and relearning. Given that the term mea-
surement is defined as a quantitatively expressed reduction of
uncertainty based on one ormore observations [23], we claim
that the proposed models measure developer’s knowledge
based on Developer-Artifact and Developer-Developer inter-
actions taking into account knowledge depreciation over
time, i.e., interactions from a distant past contribute less
to the knowledge measure than the most recent interac-
tions. According to our literature review, there is no research
addressing explicitly the human limitations related to forget-
ting and relearning, and inferring knowledge about artifacts,
tasks, similar tasks, and the whole software project.

An evaluation of the proposedmodels was performed using
data from six open-source projects. The official ranking of the
project based on the number of performed tasks was com-
pared with the ranking produced with our Kp model for mea-
suring developers’ knowledge about the whole project. The
results presented an average correlation greater than or equal
to 72% between the two rankings. The model for the whole
project depends on the models of similar tasks, tasks, and
artifacts. There is also evidence that these models can cap-
ture developers’ knowledge about artifacts, tasks, and similar
tasks and use this knowledge to identify experts, i.e., the
persons who have the most knowledge about specific project
elements. These models, which measure knowledge about
similar tasks and the whole software project, use a new meta-
heuristic for clustering based on software modules [24].

The article is organized as follows. Section II presents
an overview of our approach. Section III describes the
knowledge-oriented models. Section IV presents an evalua-
tion of the proposed model. A discussion about the results
of the evaluation is presented in Section V and Section VI
describes related work. Finally, Section VII wraps up this
article with our conclusion and future work.

II. APPROACH OVERVIEW
An essential procedure in software development is the manip-
ulation of software artifacts, such as models, source code
and configuration files, to implement new software func-
tionalities or amend existing ones [25]. Such manipulation
is typically supported by an Integrated Development Envi-
ronment (IDE) such as Eclipse or VSCode, through which
developers can easily browse or create project-related arti-
facts. As illustrated in Figure 1, a developer d1 can use the
IDE to read, write or update artifacts, establishing a series of
Developer-Artifact interactions that can be used as a proxy
to the developers’ knowledge on a single artifact, i.e., if the
developer d1 manipulates the artifact a1 several times during
the artifact lifetime, d1 must be knowledgeable of a1.

Software development is also collaborative in the sense that
developers exchange information regarding topics of interest,
sometimes to clarify a reasoning path or to simply ask for a
specific information. Note that in Figure 1 the developer d1
interacts with the developer d2 (and with other developers)
establishing a series of Developer-Developer interactions.
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FIGURE 1. Software project context.

These interactions can also be used as a proxy to the develop-
ers’ knowledge about a specific topic, if developer-developer
communications are properly harnessed. Developer-Artifact
and Developer-Developer interactions typically occur in the
context of a task, where a task describes the piece of work
to be performed in the context of a software project. Exam-
ples of a task are ‘‘fixing an issue’’ or ‘‘adding a new feature’’.
When a task is handled by a developer, he or she often manip-
ulates artifacts and communicates with other developers.

Over the lifetime of a software project, the combination of
Developer-Artifact interactions, Developer-Developer inter-
actions and Developer-Task executions, enables creating a
project history that can be analyzed to help discovering the
most knowledgeable developers, similar tasks and specific
task contexts. This article introduces Developer-Artifact (Ida)
and Developer-Developer (Idd ) interaction degrees to define
knowledge-oriented models that can be used to measure the
amount of knowledge developers have about artifacts and
tasks. We claim that using our models to find the most
knowledgeable developers for a given task or artifact may
help developers when new similar tasks need to be performed.
The rationale supporting our claim is that when a new task s1
is under responsibility of developer d1, he or she may need to
define s1′s context including: a) the tasks that are similar to
s1 that contain information he or she may leverage on; b) the
developers that may help him on clarifying issues regarding
s1, i.e. developers that are knowledgeable on tasks similar
to s1; c) the artifacts that were manipulated by developers
when executing tasks similar to s1, i.e. developers that are
knowledgeable on artifacts that might be required to handle
s1. Building this context for a new task is infeasible for real-
world projects as d1 would need to skim through very large

artifacts and developers. In addition, developers tend to forget
previous work and their knowledge about specific artifacts
fade over time.

Figure 2 illustrates our approach to discovering knowl-
edgeable developers. First we need to record the Developer-
Artifact and Developer-Developer interactions that happen
when developers are handling their tasks into a Project Inter-
action History (Step 1 in Figure 2). After recording these
interactions, we apply our Ka and Ks models to measure the
developer’s knowledge on artifacts and tasks (Step 2 in Figure
2), and then apply a clustering technique to gather tasks that
are similar based on the artifacts such tasks interact with (Step
3 in Figure 2). Finally, wemeasure the developer’s knowledge
about similar tasks and the whole project history using ourKc
and Kp models (Step 4 in Figure 2).

More specifically, the Ka model measures a developer’s
knowledge about an artifact over time based on all edit inter-
actions that the developer had with an artifact (see Section III-
A). The Ks model measures the developer’s knowledge about
a task over time considering the result of the developer’s
knowledge about every artifact associated with a task, i.e.
Ka applied to every artifact associated with the task based
on edit interactions (see Section III-B). The Kc model mea-
sures the developer’s knowledge about a cluster of similar
tasks considering the developer’s knowledge about every task
belonging to a cluster (see Section III-C). Finally, the Kp
model measures the developer’s knowledge about the entire
history of project tasks based on the developer’s knowledge
about similar task clusters (see Section III-D).

III. KNOWLEDGE-ORIENTED MODELS TO MEASURE
DEVELOPER’s KNOWLEDGE IN SOFTWARE PROJECTS
Our models use degrees of interaction between develop-
ers and artifacts (Ida), and among developers (Idd ) to mea-
sure developers’ knowledge about a software development
project. Figure 3 shows the representation of Ida and Idd inter-
actions based on the W3C provenance model [26]. We define
Artifact, Task, and Developer types. Artifact is an Entity
specialization for representing digital files such as source
code and documentation. The Developer type represents an
Agent type, a person who has knowledge and authorization to
perform specific tasks. The Task is an Activity specialization
and may represent an error or the addition of new functional-
ity to the software. Depending on the tool used, the task may
be called by different names. In Bugzilla, a task is called Bug
and in GitHub it is named an Issue.

The Ida interaction is depicted by theWasChangedBy rela-
tionship between Artifact and Task in Figure 3. This relation-
ship ensures that an artifact can be changed by one or more
tasks. For each change in an artifact, the degree and final time
of the change are recorded. The degree in this case is a mea-
sure of the size of a change (e.g., in WasChangedBy). This
information depends on the specific development environ-
ment. For example, the degree may be expressed by the num-
ber of rows changed, the number of characters changed or the
result of an interaction model (e.g., the one supported by
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FIGURE 2. Knowledge-oriented models overview.

Mylyn [27]). Figure 4 shows an example of Ida interaction.
The record of this interaction shows that developer Maria
changed themain.java artifact while performing the task with
id equal to 345. The change took place on 10/10/2017 at
1:31:10 pm with degree 5.

The Idd interaction represents developers’ conversations
about performing each task. The class model in Figure 3
expresses that a developer can talk to one or more developers.
A conversation is composed of communications between the
participants, and includes a record of the degree, the time and
the reply attribute. The degree in this case is a measure of
how much information was exchanged in an interaction (e.g.,
in TalksWith). This information depends on the development
environment in which the project is developed. In GitHub, for
example, conversations are recorded in a text format based on
message exchanges where the degree can be the number of
words or the number of lines of eachmessage. Figure 5 shows
an example of Idd interaction, the record of the conversation
between Mary and John about performing task 345. Mary
sends a textual message to John on 10/10/2017 at 1:33:17 PM
and John answers her on 10/11/2017 at 10:13:10 AM.

The class model in Figure 3 also asserts that one task may
have similarities to other tasks. In this article, project history
tasks are organized into similar task groups based on the Ida
interactions. Figure 6 illustrates the similarity between two
tasks considering these interactions. In this figure a task is
depicted by a triangle and an artifact by a square. An Ida
interaction is depicted by an arrow from the task to the

FIGURE 3. Class diagram of Developer-Artifact and Developer-Developer
interactions.

FIGURE 4. A Developer-Artifact interaction example.

artifact. Thus, tasks S239875 and S245189 are defined to
be similar with a weight equal to 3 because the developers
performed Ida interactions on three artifacts (A419, A425, and
A1243) while working on these tasks.

In what follows we will present our models in detail and
describe how they are used to measure developers’ knowl-
edge about software project elements such as artifacts, tasks,
similar tasks, and the whole software project.

A. DEVELOPER-ARTIFACT KNOWLEDGE MEASURE
The Ka model measures the developer’s knowledge about
an artifact using Ida interactions. We define Ida(d, a, fendtime)
as the degree of interaction between a developer (d) and an
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FIGURE 5. A Developer-Developer interaction example.

FIGURE 6. Similar tasks by interactions in artifacts.

artifact (a) during a specific time interval, recorded at the
interaction end time (fendtime). Because each artifact has a
degree of production and maintenance difficulty, each inter-
action needs to be normalized by the current maximum inter-
action recorded for the artifact.

Equation (1) defines IIda as the normalized interaction of
an Ida interaction. LetD be the set of all developers who have
interacted by Ida with artifact (a) until time t . So IIda(d, a, t)
is the result of dividing Ida(d, a, t) by the maximum Ida
interaction among all developers for the artifact (a) until t .
For example, according to Figure 7, the developer d1 had
three interactions with the a1 artifact recorded in the times
‘‘2007-07-31 13:00:00’’, ‘‘2007-07-31 15:30:00’’, ‘‘2007-
07-31 16:00’’, with degree values equal to 23, 15 and 18,
respectively. The developer d2 had two interactions with a1
artifact, the first registered in ‘‘2007-07-31 15:45’’ with value
33 and the other in ‘‘2007-08-11 13:00:00’’ with value 50.
The maximum interaction recorded was 50 and this interac-
tion was performed by the developer d2. The measures of
the interaction degree of d1 were { 2350 ,

15
50 ,

18
50 } and for d2

were { 3350 ,
50
50 }. Therefore, the interaction degree represents

FIGURE 7. Example of Developer-Artifact interactions.

how intense the developer’s interaction is with respect to the
other interactions with the same artifact.

IIda(d, a, t) =
Ida(d, a, t)

maxd∈D,∀ti≤t Ida(d, a, ti)
(1)

The Ka model also considers the developers’ forgetting
and relearning. These aspects are modeled using a hyperbolic
function. This function was chosen because it is a simple
functional form that can model forgetting consistently [28],
[29]. Equation (2) represents howmuch developers remember
their interactions considering relearning, Rd . The forgetting
constant b was set to 0.025 to calibrate knowledge deprecia-
tion based on an existing study [30]. This study indicates that
developers, on average, forget about 50% of a file in 40 days
if they don’t revisit the file within that period. In addition,
we used the information that developers tend to forget arti-
facts that were not manipulated by them for a while [20]–
[22]. Let 1t be the number of days that have passed since the
recording of an Ida interaction.
The function that models a developer’s interaction with an

artifact and its neighbors is defined as Gd (n) = 7
en+6 · b,

where n is the number of days. We have chosen to set n
from 0 to 7 because previous studies (e.g., experiments by
Fritz et al. [20], [21]) have shown that seven working days
have produced the highest correlation between developers’
knowledge and their interactions. In these days, the developer
d produces Ida interaction: 1- with the artifact a; or 2- with
artifacts related to tasks that are related through the Ida inter-
action to the artifact a (neighbors). The smallerGd , the lower
the depreciation of the developer’s knowledge about artifact
(a), and we consider that there was a relearning of the artifact-
related tasks in that period. Equation (3) definesGd and Fig. 8
shows its graph.

Rd (n) =
1

(Gd (n) ·1t)+ 1
(2)
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FIGURE 8. The values of Gd for n in [0-7].

FIGURE 9. Rd graph with a highlight for the 10th, 40th, 65th, and 365th
days.

Gd (n) =
7

en + 6
· b

n is an integer such that 0 ≤ n ≤ 7 (3)

Figure 9 shows the values of Rd with a highlight for the
10th, 40th, 65th, and 365th days. Relearning has the same
behavior for artifacts that have had early and late interactions
over time. For n equal to zero, there was no relearning, and
the curve has the smaller values for Rd . On the other hand,
when the developer produces, in all the last seven days, Ida
interaction with an artifact a or with task-related artifacts
through Ida with artifact a, for n equal to 7, the values of the
curve Rd will have larger values. The graph in Figure 9 also
shows that the higher the value of n, the higher the values of
Rd .
Table 1 shows the influences of the values of n and 1t

on Rd . For n equal to zero, without relearning in the last
7 days, the developer remembers 97.6% of the Ida interaction
performed in the previous day (1t = 1). On the fortieth day
(1t = 40), the developer remembers 50% of the interaction
and only 10% after one year. For n equal to 7, with relearning,
the developer fully remembers the Ida interactions performed
in the last 3 days. On the fortieth day, developer remembers
99.4% of the interaction and in one year he or she remembers

94.5%. Table 1 presents the Rd values for all values of n and
some values of 1t (1t = 0, 3, 5, 7, 39, 40, 41, 63, 65, 67,
and 365).

After briefly analyzing Rd , we define Ka(d, a, t) to repre-
sent the knowledge measure of the developer d about artifact
a at date-time t . The Ka model is composed of two factors.
The first one calculates the normalized interaction (IIda) for
each Ida interaction produced up to t . The second factor
represents the forgetting of the interactions registered in the
first factor, Rd . In this way, the developer’s knowledge about
an artifact is distributed over time, so that newer interactions
contribute more than older ones. This is reasonable because
developers tend to forget artifacts that have not been manip-
ulated by them for a while [20]–[22].

Equation (4) formalizes Ka(d, a, t) as the sum of the prod-
uct of IIda by Rd for all Ida interactions produced by a devel-
oper d with the artifact a up to date-time t . The 1ti calculates
the number of days that have passed from the time the Ida
interaction took place and the time t , where t is the date-time
on which the developer’s knowledge need to be estimated.
According to Ka, the more Ida interactions a developer has
with an artifact, the more knowledge he or she can have about
it. This is true because IIda is always a positive number.

Ka(d, a, t) =
∑
fi≤t

IIda(d, a, fi) · Rd (n) (4)

B. DEVELOPER-TASK KNOWLEDGE MEASURE
During a software development project, developers create and
change artifacts through Ida interactions. Besides, developers
interact with other developers to perform tasks, and this is
captured by Idd interactions. The Ks model measures the
developer’s knowledge of a task by making use of these
interactions.

Figure 10 illustrates how developers interact with artifacts
through Ida interactions to perform a task. The developer
d5 interacted with artifact a1188 twice: the first interaction
occurred at time 45 with degree 15, and the second inter-
action was in time 54 with degree 11. The developer d5
also interacted with artifact a1475 at times 60 and 80 with
degrees equal to 26 and 18, respectively. According to data
from the Bugzilla attachment field of the Mylyn project,
more than one developer has contributed with Ida interactions
to perform tasks, such as in the case of tasks IDs 166406,
210686, 234065 and 248490. Therefore, there is evidence
that the knowledge measure about tasks should consider Ida
interactions.

Figure 11 illustrates Idd interactions among developers.
The task was assigned to d14 and d10 has written about
how the task needed to be done before the task was assigned
to d14. This case shows that developer d10 has knowledge
about this task, but he has not produced an interaction about
artifacts related to this task through Ida interactions. This is
an evidence that the knowledge measure about tasks should
also consider Idd interactions.
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TABLE 1. The values of Rd for 1t in {0,3,5,7,39,40,41,63,65,67,365}.

TABLE 2. The values of Kc , in groups of up to 10 tasks, with Ks set to 1 for all tasks.

FIGURE 10. Example of Developer-Artifact interactions (Ida) to perform a
task.

In this scenario, the measure of the developer’s knowl-
edge about a task s is defined based on the measure of his
knowledge of the artifacts related to s through Ida interactions
combined with his contribution through Idd interactions pro-
duced while performing s. Because each task has a degree of
production and maintenance difficulty, each IIdd interaction
needs to be normalized by the current maximum interaction
recorded while developers perform the task. The maximum
value of Idd interaction is defined as the maximum degree

FIGURE 11. Interactions among developers.

value among all Idd interactions concerning task s until time
t . Equation (5) defines IIdd as the normalized interaction of
an Idd interaction. LetD be the set of all developers who have
interacted through Idd while performing task (s) until time t .
Additionally, IIdd (d, s, t) is the result of dividing Idd (d, s, t)
by the maximum value of Idd interaction. Equation (6) for-
malizes Ks(d, s, t) as the sum of the developer’s knowledge
d about all task-related artifacts (

∑
a∈s Ka) and all normalized

interaction (IIdd ) for each Idd interaction produced by the
developer d in the execution of the task s up to the time
t . The developer’s knowledge about a task also undergoes
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TABLE 3. Influence of h
m factor on Kc measure.

depreciation over time - the first depreciation is inherited
from (4), and the second one is caused by the fact that
the second added of Ks uses the forgetting function Rd . In
Rd , n is the number of days in the last seven days in which the
developer d expressed knowledge about the task s through Idd
interactions. An example of this type of interactions is send-
ing a message about the task s to every developer involved in
performing it.

IIdd (d, s, t) =
Idd (d, s, t)

maxd∈D,∀ti≤t Idd (d, s, ti)
(5)

Ks(d, s, t) =
∑
a∈s

Ka(d, a, t)

+

∑
fi≤t

IIdd (d, s, fi) · Rd (n) (6)

C. SIMILAR-TASK GROUP KNOWLEDGE MEASURE
The Kc(d, c, t) model is defined as the measure of the devel-
oper’s knowledge about a similar-task group (c) at date-time
t . Kc has two factors: the first is h

m , where h is the number of
tasks related to the group that the developer belongs to, and
m is the number of tasks belonging to the group. The h

m factor
quantifies the developer’s involvement in group tasks (i.e.,
this factor penalizes the developer who only has knowledge
about a few tasks). In the best case, when h equals to m,
the developer has knowledge about all tasks in the group,
h
m = 1. The second factor is the sum of the Ks(d, s, t),
the developer knowledge measure about each group task.
Equation (7) shows Kc(d, c, t) and Table 2 shows the values
of Kc for groups that have up to 10 tasks, with Ks set to 1 for
all tasks.

Kc(d, c, t) =
h
m
·

∑
s∈c

Ks(d, s, t) (7)

Table 3 shows an example of how the h
m adjustment factor

can influence the Kc measure. For example, in a group with
five similar tasks, the developer d1 has knowledge of two
tasks with Ks = {80, 35} and developer d2 has knowledge
about all five tasks with Ks = {7, 9, 6, 13, 8}. According
to Kc, considering the adjustment factor, developers have
knowledge with close values: Kc(d1) = 46 and Kc(d2) = 43.
However, when the h

m factor is not considered, the developer
d1 has a Kc value that is much higher than d2, even though
he or she has no knowledge about 3 tasks in a group of 5 tasks.

D. DEVELOPER-PROJECT KNOWLEDGE MEASURE
The contribution of developers in software projects can be
measured in different ways: by producing lines of code,

by counting function points [31], and for open source project,
by using measures based on the performed tasks and the
number of commits.1 OurKp model measures the developers’
knowledge about a software project considering the mea-
sure of developer’s knowledge about similar-task groups, i.e.,
clusters of similar tasks (Kc). More specifically, Kp(d, p, t)
represents the developer’s knowledge measure of a developer
d about a software project p at a date-time t as shown in
equation (8).

Kp(d, p, t) =
r
q
·

q∑
i=1

Kc(d, ci, t) (8)

The first part of equation (8), the r
q adjustment factor, deter-

mines the developer’s participation in similar-task groups,
where r is the number of groups that the developer knows
about the software project and q is the total number of groups
into which the software project was organized. If the devel-
oper participates in all groups, the factor is 1. This adjustment
factor penalizes the developers who only know about a few
similar-task groups. The influence of h

m factor on the Kc
measure, which is analyzed in Tables 2 and 3, is similar to
the influence of r

q factor on the Kp measure. The difference
is that in Kc measure, the factor acts on Ks, whereas in the
Kp, the factor acts on Kc. The second factor in equation
(8) represents the sum of the developer’s knowledge about
similar-task groups (Kc).

IV. EVALUATION
The proposed evaluation method follows the guidelines of
GQM (Goals Questions Metrics) approach [32]: Analyze
some developers’ edit interactions on software artifacts for
the purpose of predicting developer’s knowledge with respect
to software projects from point of view of the project man-
ager.

The general question: Q1 (Who knows about the soft-
ware project?) can be answered using four measures. The
first measure - the number of performed tasks - is a well-
accepted measure to infer the production or participation of
the developers in software projects, and is widely used in
open source projects such as those that use Eclipse as an
administration tool.2 The second measure takes into account
the number of edit interactions performed by developers to
perform tasks. We note that in the study with Mylyn Docs
project, both edit and commit interactions are considered and
commit is assumed to be an inference of edit because of the
lack of edit data. The third measure is the number of groups
of similar tasks in which the developer has knowledge based
on Kc model, i.e., the number of clusters that the developer
has knowledge considering the whole software project. For
example, a project with 100 tasks can be clustered in 5 groups
of similar tasks. In this scenario, a developer that has done
30 tasks belonging to 3 similar groups can have knowledge
about these 3 groups. The fourth measure, which is based on

1https://projects.eclipse.org/projects/eclipse/who
2https://www.eclipse.org
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Kp model and illustrated in Section III-D, infers the devel-
oper’s knowledge about software projects considering similar
tasks captured by Ida and the developer’s interaction degree
with artifacts that takes into account forgetting. Analysis of
these four measures led us to define three research questions
to compare the similarities between the rankings, which are
ordered lists from highest to lowest values, produced by these
four measures:

RQ1: Is the ranking of developers by performed tasks (Rpt )
similar to the ranking by their interactions with artifacts?

RQ2: Is the ranking Rpt similar to the ranking based on the
Kc model?

RQ3: Is the ranking Rpt similar to the ranking based on the
Kp model?

Our expectation is that these research questions show that
the Kp model presents more similarity than the Kc model
when compared to the Rpt . On the other hand, the Kp model
also presents a result close to the comparison of the number
of interactions with the Rpt . Thus, the Kp model can rank the
developers of a software project in the same direction as by
the number of interactions or the number of performed tasks.

In addition to these research questions, a sensitivity anal-
ysis of Kp is also performed to assess the influence of the
parameters Rd , Gd , hm and r

q .
The following subsections are structured as follows. Next,

Subsection IV-A describes how the data was collected. Sub-
section IV-B describes the steps for carrying out this evalua-
tion study. Subsection IV-C presents the results that support
the answers to questions RQ1, RQ2, RQ3 and describe the
influence of parameters on Kp using data from the Mylyn
Docs project. Finally, in Subsection IV-D, threats to the valid-
ity of this study are reported.

A. DATA COLLECTION
Lethbridge et al. [33] presented a taxonomy for the
data collection techniques based on the degree of human
contact. In Lethbridge and colleagues’ taxonomy, our
study is classified in the third degree because it requires
access only to work artifacts using analysis techniques
based on tool logs. The data was collected from the
Mylyn Docs project , hosted at https://www.eclipse.org/.
Initially, randomly, eight projects were selected from
GitHub (https://github.com). The Homebrew/homebrew-
formula-analytics project was discarded for having only
six developers, and the brewsci/homebrew-science and
kerl/kerl projects were discarded because the measures
did not vary between trials. The selected projects from
GitHub were: apache/commons-lang, brewsci/homebrew-
bio, google/EarlGrey, Homebrew/homebrew-cask-drivers
and iodide-project/iodide.

The Mylyn Docs project is a subproject of the Mylyn
project involving an Eclipse IDE plugin that reduces the
number of available artifacts to facilitate browsing artifacts
relevant to a given task. The collected data was generated by
the Git, Bugzilla and Mylyn tools organized in three obser-

vation perspectives: the first collects data from the Mylyn
Docs project to generate the baseline of this evaluation study;
the second collects the data recorded by the Mylyn plugin of
the developer’s interactions with artifacts; and the third per-
spective was produced by the Git tool that records the artifact
submissions in the project repository. Commit actions were
collected to infer edit actions given that, usually, a commit
action submits edited files to a code repository. In addition,
we have identified some performed tasks in the Mylyn Docs
project that do not have Mylyn logging. Next, we will detail
the data collection performed according to each perspective.

The first perspective, Performed Tasks, was generated
from querying the Mylyn Docs data recorded by Eclipse
Bugzilla.3 The parameters for the query were: Classification
= Mylyn and Product = ‘‘Mylyn Docs’’ and Component
= EPUB or Framework or HtmlText or Wikitext and Sta-
tus = RESOLVED and Resolution = FIXED. This query
ensures that tasks marked as solved and tested by developers
in the EPUB, Framework, HtmlText, and Wikitext compo-
nents of the Mylyn Docs project that belong to Mylyn are
returned after execution. The query was run on September 18,
2017, and generated an XML file from which the bug_id,
assigned_to, and endtask information of 609 performed tasks
(i.e., bug fixes and new features) were extracted.

The second observation perspective, Edit Data, was pro-
duced from the log generated by the tool Mylyn based
on the execution of the tasks available in the attached
files in Eclipse Bugzilla. The parameters for the query
were the ones described in the query from the first per-
spective and additionally: and (Match ALL of the fol-
lowing separately→Attachment Description→contains the
string→mylyn/context/zip). This search criterion returns
only the tasks that have the interaction log registered by
the Mylyn plugin. The query was run on April 05, 2017,
and returned 345 tasks. After the query execution, all edi-
tion interactions (Kind=‘‘edit’’) were extracted from the
attached files (mylyn/context/zip) in the tasks. The returned
data are Ida interactions that use Mylyn’s DOI as the degree
of Ida. The DOI is defined as the degree of interest of a
developer about an artifact in a specific time range. We use
DOI inspired by the work of Fritz et al. that proposed
the concept of a degree of knowledge [21]. For example,
an event registered by Mylyn for bug 219939 shows that
the developer associated with this bug performed an edit
interaction that started on ‘‘2008-07-16 19:01:36.15 -04’’ and
finished on ‘‘2008-07-16 19:34:54.312 -04’’ with the artifact
/path/TaskEditorRichTextPart.java, with a degree of interest
equal to 82. The extraction resulted in data for 334 tasks with
49906 editing interactions performed by 6 developers with
1538 artifacts. The PDT time zone is equal to UTC-7.

The third and last observation perspective, Commit Data,
collected the data recorded by Git in the Mylyn Docs project
code repository. The Git commands were used to extract the
commits until April 05, 2017. First, the git clone command

3https://bugs.eclipse.org/bugs/query.cgi
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downloaded the data of the Mylyn Docs project. After the
download, the git log command was used to extract name,
email, commit_date, commit_hash, and commit_msg. Com-
mits that identified the task at the beginning of commit_msg
were selected to record the commit interaction. The git diff-
tree command was used to extract the artifacts sent out by
the commit. The degree of interest of a commit interaction
was set to 1, and the start and end dates of the interaction
were recorded with the commit date. The names of the devel-
opers registered in Git, in some cases, were different from
those registered by Bugzilla, as we have adopted the names
registered in Bugzilla. The extraction resulted in 918 com-
mits performed by 33 developers on 5407 artifacts. Over-
all, the evaluation study for Mylyn Docs project used data
produced according to the three aforementioned perspectives
until April 05, 2017.

The data were collected until December 2019 according
to the first and third observation perspectives using a library
for accessing GitHub projects. PullRequest represents the
set of updates that were necessary for the realization of an
Issue (task), returning information about performing each
task (issue = closed). Due to lack of data in the assigned_to
field, we consider that if a developer has altered some arti-
fact to assist in performing a task, then we attribute to him
the accomplishment of the task. The interactions of non-
human developers, known as bots, such as testing software
and updating libraries were not considered. The degree of
Developer-Artifact interaction was defined as the number of
lines inserted and deleted in the artifact at each commit.

B. PLANNING AND EXECUTION
The experiment is organized in steps to generate rankings of
developers who have knowledge about the projects selected
for this evaluation. The rankings are generated in four dif-
ferent ways. The baseline is the ranking of the number of
tasks performed by the developer using the data from the
Performed Tasks observation perspective. The ranking by
interactions is constructed from observation data from Edit
Data and Commit Data based on the number of interactions
the developer has made. TheKc ranking orders the developers
by the number of groups (i.e., clusters) in which they have
knowledge according to the Kc model. The Kp ranking uses
the Kc model. Both models, Kc and Kp, use data from the
Edit Data and Commit Data perspectives. This study uses a
clustering technique to build Kc and Kp rankings.

Clustering is a computational technique for organizing data
objects (elements) into clusters (groups). By providing data
clusters, this technique facilitates information understanding.
Similar elements tend to be in the same group, whereas less
similar or non-similar elements tend to be in different groups
[34], [35]. There are many algorithms for data clustering [36].
One of the most best-known and used clustering algorithms
is K-means [37]. However, no algorithm gives optimal results
for all data sets. In this article, the LNS-SMC algorithm
[24] is used because it has presented a good efficiency when
the modularization quality (MQ) measure was applied to the

software module clustering problem. The MQ measure is
used to measure the clustering quality of software modules
(e.g., classes and source code) according to the cohesion and
coupling between modules. Cohesion is the number of inter-
nal dependencies a source file has in relation to its package,
whereas coupling is the number of external dependencies. For
example, a dependency is described when importing a class
in Java. The goal of clustering is to reorganize the software
into packages that are highly cohesive and loosely coupled.

Equation (9) explains the MQ measure from the perspec-
tive of the clustering problem of similar tasks by edit interac-
tion. Let C represent the result of a clustering algorithm with
n clusters, that is, C = C1,C2,C3, ..,Cn. The MQ quality
measure of a cluster C is defined as the sum of the quality of
each cluster Ck , i.e.,MFCk . For this experiment, we define an
association between two tasks when exists at least one artifact
that was edited by developers who performed these two tasks.
The value of MF is a function of the number of internal (i)
and external (j) associations of Ck tasks. For example, when
all tasks in a Ck cluster do not have common artifacts with
tasks in the same Ck , i is equal zero and MF is also zero, and
this is the worst case. In the best case, all tasks in a Ck cluster
are related to the same artifacts and do not have artifacts in
common with tasks of other clusters. Thus, i> 0, j is zero, and
MF has a maximum value equal to 1.

MQ =
n∑

k=1

MF(Ck ) MF(Ck ) =


0 if i = 0
i

i+ j
2

if i > 0 (9)

The LNS-SMC algorithm is classified as a heuristic to
find an optimal solution by exploring a large neighborhood
seach (LNS) method that has been applied to the software
module clustering (SMC) problem. The MQ measure is used
by LNS-SMC to compare solutions and choose the one with
the highest MQ. This algorithm initially evaluates the MQ
of a solution, choosing it as optimal, and then makes use of
two operators to choose the neighbor of the optimal solution.
The destroy operator is applied to the optimal solution to
generate an incomplete solution, for example to cause the
removal of some elements. The repair operator is then applied
to the incomplete solution, generating a valid solution by, for
example, inserting the removed nodes into other incomplete
solution clusters. Then, it is checked if the MQ of the gener-
ated valid solution is higher than the current optimal solution.
If so, the valid solution becomes the current optimal solution.
These steps are performed until a stop condition is satisfied.
In this study, the maximum number of trials to find a new
optimal solution was set to 1000. For each trial, 10 trials of the
LNS were performed for Mylyn Docs project, and the largest
cluster MQ was chosen to be used in the Kc and Kp rankings
calculations. We observed that MQ values are so close for
each trial with Mylyn Docs, so only one trial of LNS was
performed for each trial of the projects selected from GitHub.

The experiment was performed with a reference date for
each first day of the month, and involved Mylyn Docs project
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from 2015-05-01 to 2016-05-01, with a total of 13 trials ,
and GitHub projects from 2019-02-01 to 2020-01-01, with
a total of 12 trials. Each trial produced four ranking lists
in descending order of developer scores based on: 1 - the
performed tasks; 2 - the number of edit interactions with
artifacts; 3 - theKc model, and 4 - theKp model. The rankings
by interactions, Kc and Kp, were evaluated according to the
degree of correlation with the performed task ranking using
the Spearman correlation model [38] with a confidence level
defined in 95%. The Spearman correlation is used to evaluate
the similarity between rankings. The Spearman correlation
coefficient is close to one when the rankings are very similar
and close to zero when they are very different [39].

C. RESULTS AND ANALYSIS
Table 4 presents the results of the first trial of the experi-
ment Mylyn Docs project for 2015-05-01. The ranking by
‘‘performed tasks’’ orders the 10 developers who performed
the greater number of tasks until 2015-05-01. The developer
in the first place performed 378 tasks and the one in the
tenth performed 3. The developer in the first place in this
ranking was also the first in the other rankings. The developer
dev1039 was ranked tenth in the ranking of performed tasks,
22nd in the interaction ranking, 13th in the ranking based on
Kc and 13th in ranking based on Kp. It is expected that to
accomplish a task, a developer should perform one or more
interactions, but that’s not what happened to the develop-
ers dev1512 and dev1039. Dev1512 performed 6 tasks and
1 interaction. Dev1039 performed 3 tasks and 1 interaction.
We conclude that these developers did not record all their
interactions while performing their tasks. We opted to keep
this information in the assessment of similarities among the
rankings.

The only interaction of the developer dev1512 happened on
2009-05-26 with artifact 6135 and had degree 1, and it is only
part of task 260483. This interaction applied to the Ka model
results in a value very close to zero (0.02). Consequently,
the models Kc and Kp deprecated this interaction by infer-
ring that the developer completely forgot the task he or she
performed. On the other hand, the only interaction of the
developer dev1039 with artifact 382 was registered on 2015-
03-10 with degree 1, and it is also part of 29 tasks. According
to Ka, the knowledge of dev1039 about this artifact on 2015-
05-01 results in 0.44. In this case, the model Kc inferred the
knowledge of the developer based on 13 out of 124 clusters,
with Kp equal to 0.13. For the developer dev1039 the Kp
measure indicates a value closer to reality than the Kc value.
Table 5 shows the results of the similarity analysis between

the performed tasks ranking (i.e., baseline) with ranking
based on the number of interactions, and using the Kc and Kp
models. The study with Mylyn Docs project was organized
in 13 trials, starting on May, 2015, and ending on May, 2016,
and was always performed on the first day of each month.
The 13th trial was ruled out because it had a p.value greater
than 5% for Kp. All other trials had a p.value smaller than
5%, indicating a 95% confidence in the rho values of the

Spearman tests. In general, the ranking based on theKpmodel
presents on average a ‘‘strong similarity’’ with the ranking of
performed tasks (72%).

Based on these results, we provide the answers for three
research questions raised in this experiment in the following
paragraphs. Schober et al. [40] discuss the interpretations of
Spearman test results. In this study, the correlation between
rankings can also be understood as similarity between rank-
ings, and to simplify the interpretation of rho values, the fol-
lowing scale will be used: 0.00-0.10 as a ‘‘negligible sim-
ilarity’’; 0.10-0.39 as a ‘‘weak similarity’’; 0.40-0.69 as a
‘‘moderate similarity’’; 0.70-0.89 as a ‘‘strong similarity’’
and 0.90-1.0 as a ‘‘very strong similarity’’.

Table 6 shows the results of the similarity analysis between
the performed tasks ranking (i.e., baseline) with ranking
based on the number of interactions, and using the Kc and Kp
models for five projects selected from GitHub. These studies
were organized in 12 trials, starting on February, 2019, and
ending on January, 2020, and was always performed on the
first day of each month. Trials with p.value greater than
0.05 were removed. In general, the rankings based on the
number of interactions, the Kc and Kp models present on
average a ‘‘strong similarity’’ with the ranking of performed
tasks.

1) RQ1 ANALYSIS
The research question RQ1 was defined to evaluate the sim-
ilarity between the number of performed task rankings and
the number of interaction rankings performed per developer.
Table 5 shows that the degree of similarity tends to increase
with time: on 2015-05-01 it was 66% (rho) and on 2015-
08-01 it became 69% in the 4th trial. These rankings are
similar in 68% on average. According to the Likert scale for
similarity evaluation adopted in this study plan, the performed
task ranking and the interaction ranking have a ‘‘moderate
similarity’’. The study withMylyn Docs project indicates that
the number of performed task rankings (Rpt ) and the number
of interactions ranking have a moderate similarity of 68% on
average.

Table 6 shows the results of five studies with projects
selected from GitHub. According to the Likert scale for simi-
larity evaluation, the performed task ranking and the interac-
tion ranking have a ‘‘strong similarity’’ for three projects and
a ‘‘very strong similarity’’ for two projects.

2) RQ2 ANALYSIS
The research question RQ2 evaluates the similarity between
the performed task rankings and the ranking based on the Kc
model. Table 5 shows that the degree of similarity tends to
increase over time: on 2015-05-01 it was 70% (rho) and on
2016-03-01 it was to 71% in the 11th trial. These rankings
are similar in 70% on average, a better result compared to
RQ1 (68%). The p.value was smaller than those obtained for
RQ1. According to the Likert scale for similarity evaluation,
the performed task ranking and the ranking based on Kc
model reveal a strong similarity, but very close to the range
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TABLE 4. Results of the first trial conducted on 2015-05-01.

TABLE 5. Similarity analysis between the performed tasks ranking (baseline) and the interaction rankings based on Kc and Kp with Mylyn Docs project.

TABLE 6. Similarity analysis between the performed tasks ranking (baseline) and the interaction rankings based on Kc and Kp with GitHub projects.

considered as moderate (i.e., rho value from 0.40 to 0.69).
The study with Mylyn Docs project indicates that the Rpt
ranking and the ranking generated by Kc model have a strong
similarity of 70% on average.

Table 6 shows that the performed task ranking and the
ranking based on the Kc model have a ‘‘strong similarity’’
for the five projects.

3) RQ3 ANALYSIS
The research question RQ3 was defined to evaluate the sim-
ilarity between the performed task ranking and the ranking
based on the Kp model. Table 5 shows that these rankings are
similar in 72% of the cases on average, a better result in com-
parison with the results of RQ1 and RQ2, which were 68%
and 70% of the cases on average, respectively. The p.value
values also decreased significantly with respect to RQ1 and
RQ2 for the 6th-10th trials, indicating a higher degree of
confidence for similarity values (rho). According to the Likert
scale for similarity evaluation, the performed task ranking
and the ranking based on the Kp model revealed a strong

similarity, which is higher than the upper limit of 0.69 of a
moderate similarity (i.e., with value from 0.40 to 0.69). The
study indicates that the Rpt ranking and the ranking generated
by Kp model have a strong similarity of 72% on average.
Table 6 shows that the performed task ranking and the

ranking based on the Kp model have a ‘‘strong similarity’’ for
four projects and a ‘‘very strong similarity’’ for one project.

4) SENSITIVITY ANALYSIS
Table 7 shows the influence of Rd , Gd , h

m and r
q parameters

on Kp, calculated on 11/11/2008 with data from the Mylyn
Docs project. The better project organization with respect
to similar-task groups resulted in 22 groups (q = 22).
The second column presents the Kp measurements according
to equation (8). TheKpmeasurements for the three developers
in the third column, when calculated without considering
forgetting (Rd = 1), have values greater than twice those
in the second column, showing that modeling forgetting has
a significant influence on the Kp measurements. The fourth
column, with Kp values for Gd = 1, has lower values for the
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TABLE 7. Sensitivity analysis of Kp related to the Mylyn Docs project on 11/11/2008.

first two developers and equal values for the third developer.
This indicates that the first two developers revisited artifacts
in the last seven days and the third did not. The fourth column,
with Kp measurements for h, m, r and q values equal to
1, shows values that are very close to the values in second
column for the first developer, indicating that the first devel-
oper has knowledge about most tasks and most similar task
groups (i.e., r = 22 for this developer). Finally, the third
developer has a Kp value equal to 36 in the second column
and 121 in the fourth column, which indicates an influence
of these parameters on the Kp measurements. This developer
has knowledge of only 7 (r = 7) project task groups within a
total of 22 (r = 22).

Table 8 shows the influence of Rd ,Gd , hm and r
q parameters

on Kp, calculated on 11/11/2011 with data from the Mylyn
Docs project. We note that in this table the Kp measurements
with Rd = 1 change the developers’ ranking list when
compared with Kp: the 3rd developer, according to the Kp
model, appears in the 5th place (for Kp with Rd = 1); the 4th
developer appears in 3th place; and the 5th developer appears
in 4rd place. The third column, in which we have Kp without
relearning, shows that only the first developer has a smaller
measure in comparison with the first column, because this
developer has interacted with artifacts in the last seven days to
accomplish his or her tasks. Finally, the last column, in which
Kp has the parameters h, m, r and q equal to 1, shows that all
developers are negatively affected with respect to Kp when
they do not have knowledge about all tasks and task groups
in the project.

D. THREATS TO VALIDITY
According to [41], threats to validity can affect an experi-
mental study in conclusion, construct, internal, and external
threats. Conclusion refer to the relationship between treat-
ment and outcome. The baseline of this study is the number
of resolved tasks by developer and the other rankings have
as their main input the developers’ interactions with artifacts
while performing tasks. Some developers of the Mylyn Docs
project did not record the edit interactions, having recorded
only the commit interactions. Therefore, we assign a degree
equal to 1 to each commit interaction for all artifacts involved
in a commit. Even so, among the 10 most accomplished
developers, we have found out that two of them performed
more tasks than artifact interactions. As a result, the corre-
lations among rankings may be underestimated. Future work
plans include the implementation of models and evaluations
in additional software development projects in academia and
industry.

Internal threats evaluate whether the relationship between
treatment and outcome is causal or results from factors that
the researcher cannot control. First, in a typical software
development scenario where developers are working in the
same room and participating in face-to-face interactions,
knowledge exchanged about tasks and artifacts at first might
not be captured or transmitted using an IT tool. As a con-
sequence, interactions could occur without leaving a trace.
However, we claim that these interactions are usually fol-
lowed by interactions by those same developers using devel-
opment and project management tools, which will update
the information related to the artifacts and tasks, and reflect
the decisions made during the face-to-face interactions. Sec-
ond, interaction-based rankings cannot evaluate whether an
interaction was positive, i.e., whether it contributed to the
task or was dropped via undo-type commands. Third, there
may be a distinction between the number of interactions of
more experienced and less experienced developers in per-
forming tasks with the same degree of difficulty. In the same
way that personal questions (e.g., involving profiles or emo-
tions) can influence how a developer accomplishes the task,
it can also influence how he or she interacts with artifacts and
with collaborators. One must investigate how the presented
models can filter the noise associated with these questions.

Construct threats are associated with the relation between
theory and observation, and are defined as to ensure that the
treatment reflects the construct of the cause well and the
outcome reflects the construct of the effect well. The Kc and
Kp-based rankings did not use Idd -type interactions, those
observed among developers and predicted by the Ks model,
because such interactions were not measured in the Mylyn
Docs project. These interactions need to be modeled and
considered in future studies.

Finally, external threats relate to the generalization of
the observed results for other software projects. Our
model is based on Developer-Artifact interactions (Ida), and
Developer-Developer interactions (Idd ). These interactions
are present in all software development projects. However,
it is necessary to provide the projects with tools to support
obtaining appropriate information about these interactions in
other domains.

V. DISCUSSION
The proposed models for measuring developer’s knowl-
edge were evaluated to identify developers who are most
knowledgeable about a software development project. The
Kp model measures developer’s knowledge about the entire
project based on the Kc model, which measures developers’
knowledge about a group of similar tasks using Developer-
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TABLE 8. Sensitivity analysis of Kp related to the Mylyn Docs project on 11/11/2011.

Artifact interactions, and this is done based on the Ks model.
The Ks model measures the developers’ knowledge about
a task, which in turn uses the Ka model, the model that
measures the developers’ knowledge about a artifact. Thus,
the results of the Kp evaluation also represent an evaluation
of the Kc, Ks and Ka models.
The study evaluates Kp based on the assumption that

a developer who performed a task, also acquired knowl-
edge about it. This premise is stated by Fritz et al.
[6], who argue that authorship is a relevant information
for measuring knowledge. The Kp evaluation used Ks
with Developer-Artifact interactions and did not consider
Developer-Developer interactions because of the lack of data.
According to the experiment performed by Moraes et al. [9],
Developer-Developer interactions can also contribute to the
identification of experts. Thus, the inclusion of data from
Developer-Developer interactions may improve the results of
the evaluation models.

We should stress that the structure of our proposed models
is based on fine-grained information. For example, in the
Ka model an interaction between a developer and an artifact
creates a link between these elements. Then, after performing
a task, a developer tends to have multiple associations with
the same artifact. These associations are also part of the other
models (Ks,Kc andKp) because they useKa. A previous study
conducted by the lead author of this present article suggested
that these associations may contribute to the improvement
of information quality [42]. In that study, the developer who
most knew about the Mylyn project was the same in three
observation perspectives: (i) the number of performed tasks
according to the Mylyn project’s official list; (ii) the num-
ber of performed tasks according to the data collected for
a preliminary evaluation of the Kp model; and (iii) the Kp
model applied to the collected data. In all three perspectives,
the developer who ranked first performed 2,053 tasks in
the official list, with 765 performed tasks in the collected
data, and with the Kp model producing a value of 479,285.
Specifically, according to this article, in the first trial of the
experiment, which is presented in Table 4, the developer in
first placewas also the same, with 378 performed tasks, a total
of 50,984 interactions (i.e., edition and commits) and a final
value of Kp of 1802.02.
In this study, the baseline - the number of performed tasks

- represents the knowledge of what was done because it
indicates who did which task, assigning 1 to the developer for
each performed task. TheKp model represents the knowledge

of how it was done. Each performed task is associatedwith the
artifacts by the Developer-Artifact interactions, and the value
of knowledge attributed to the developer varies according to
the interaction degree on artifacts over time. The baseline
was compared to the number of interactions performed in
the project. The average correlation degree with Mylyn Docs
project was 68% with p.value values greater than 3.5% and
less than 4.5% in 12 trials. However, the interaction rankings
also do not take into account the developers’ forgetting and
relearning. The comparison of the baseline with the ranking
generated by the Kc model presented, on average, a correla-
tion of 70% with p.value values less than 3.2% in 12 trials.
The Kc ranking presented a higher correlation than the inter-
action ranking besides inheriting from Ks and Ka the model
of forgetting and relearning of developers. The comparison
of the baseline with Kp showed a better result in 12 trials,
the average correlation was 72% with most values of p.value
below 2% for the 6th to the 10th trials. Furthermore, because
the Kp model makes use of the Kc model, it also inherits the
forgetting model from Ks and Ka.
The results of five studies with projects selected from

GitHub presented an average similarity degree next to 90%
with performed tasks. For these projects, the accomplishment
of a task was attributed to every developer who performed at
least one commit on the task’s artifacts. This decision may
have contributed to the fact that the rankings by interactions,
Kc, and Kp had similar average values. In addition, commits
capture the results of various interactions between developers
and artifacts. This indicates that considering data from soft-
ware such as Mylyn, which works by capturing Developer-
Artifact interactions, can contribute to measure developers’
knowledge.

The results show that the Kp model has presented more
similarity than the Kc model when compared to the Rpt .
On the other hand, Kp model has also presented results close
to the comparison of the number of interactions with the Rpt .
So, these results are evidence that the Kp model is suitable to
assess the evolution of the developers’ knowledge for find-
ing who knows more about specific elements of a software
project and how this knowledge decreases over time.

There is no evidence that only the number of performed
tasks can accurately express the developer’s knowledge
about a software project. As previously stated, Developer-
Developer interactions are also relevant in this aspect. How-
ever, the measured number of performed tasks can be taken
as a useful measure of knowledge because those who perform
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more tasks also tend to participate in the creation and evo-
lution of software artifacts, when the explicit knowledge
of developers is recorded. Thus, the correlation of Kp with
the number of performed tasks provides some evidence that
the presented knowledge-oriented models contribute to the
research direction that aims at measuring developers’ knowl-
edge appropriately.

DOK is the closest work related to our knowledge mea-
surement models [6]. Therefore, it could be a candidate to
be a basis for comparison in the evaluations of the presented
models. However, Fritz et al. showed that the DOK model is
not suitable for measuring knowledge about APIs [6], [21].
For this reason, in this study we adopted performed tasks as
the most appropriate measure to measure knowledge about a
software development project. Besides, assigning knowledge
about a task as a result of its execution is a well-accepted
practice adopted by the software community, and, as already
mentioned, it is also a form of authorship, an information that
contributes to the measurement of knowledge.

Our models do not use authoring information directly as
the DOK model does, but it does so in an indirect way. The
author of an artifact is anyone who contributed to its creation.
The models punctuate these contributions, thus also indicat-
ing a degree of developer authorship related to artifacts, tasks,
similar tasks, and the whole project. On the other hand, soft-
ware often grows in size over time and, as a result, the artifacts
also grow in size with changes caused by error correction
and the addition of new features. Therefore, the author of an
artifact is not only the developer who created it, but also all
the developers who contributed to its current version. In this
sense, our models consider the authorship information related
to the developers and use this information in an appropriate
way to measure developers’ knowledge.

Overall, knowledge-oriented models are a complement to
information about the number of performed tasks to identify
who knows more about the whole or parts of the software
development project.

VI. RELATED WORK
Several works extract knowledge from developers’ interac-
tions with software artifacts. Table 9 shows some related
works from three observation perspectives: the source,
the model and the target of the selected approaches. The first
column shows how the approach captures information about
the developers’ interactions with artifacts. The modeling per-
spective, depicted in the second column, identifies whether
the approach explicitly modeled the human forgetting and
relearning. Finally, the target observation perspective, in the
third column, shows whether the approach infers knowledge
about artifacts, tasks, similar tasks, and software projects.

Robbes and Röthlisberger [43] infer the developers’
knowledge from their editing, selection, and commit inter-
actions with artifacts over time. They define two models that
take into account the developers’ forgetting. One model deals
with knowledge about artifacts and the other with knowledge
about tasks. Robbes & Röthlisberger’s models neither con-

sider developers’ relearning nor infer developers’ knowledge
about similar tasks and software projects.

McDonald and Ackerman [44] defined the ‘‘Line 10 Rule’’
heuristic. According to the result of their study, the specialist
in a software module is assumed to be the developer who
made the last change in the module. The Expertise Recom-
mender (ER) is based on this heuristic and can recommend
an expert on an artifact or software module and also help to
identify a module associated with a reported error. ER does
not model the developer’s relearning or infer the developers’
knowledge about similar tasks and software projects.

Mockus and Herbsleb [45] defined expertise atoms as
elementary units of expertise used to measure the degree of
expertise of a developer. They have defined expertise in an
object as the set of these elementary units associated with
this object. In software development, the elementary unit
of expertise is the available difference among versions of a
file, which in many code repositories are the updated rows.
The Expertise Browser (EA) is an implementation of this
expertise measurement model: it lists the experts on an object
(file) based on the number of changes (i.e., expertise atoms)
made by the developers. EA can list the experts by code, doc-
umentation, functionality or product. According to Table 9,
EA infers knowledge from the editions in the artifacts, does
not consider the developers’ forgetting and relearning, acts on
artifacts, tasks and software projects, and does not infer the
knowledge about similar tasks.

Girba et al. [46] defined a model to determine the owner
of an artifact in function of the current owners of the artifact
lines. They stated that the developer who last modified an
artifact line is the current owner of the line. In this way,
it is possible to infer that the current owner of an artifact is
the developer who owns the most artifact lines. Therefore,
Girba et al. can infer the owners of the software artifacts,
and also produce a preview of the software project from
the perspective of the artifact owners. This approach infers
knowledge based on artifact commits and does not take into
account the developers’ forgetting and relearning. The model
developed by Girba and colleagues can not be applied to
tasks or similar tasks.

Vivacqua and Lieberman [47] have explored the use of arti-
facts by developers working in the Java language domain to
infer knowledge according to a Likert scale (novice - beginner
- intermediate - advanced - expert). The use of an artifact
is measured using the parser on the Java files by analyzing
which libraries, classes andmethods were used and how often
they were used. It is thus possible to infer the developers’
knowledge about the artifacts from information about their
use. This approach neither takes into account developers’
forgetting or relearning nor it can be applied to similar tasks
and software projects.

Mylyn captures a developer’s interest in specific artifacts
based on the developer’s interaction with the environment
[27]. In Mylyn, when a new task is started, the initial context
is the same as that of the set of artifacts available in the
project, and as the developer interacts with the environment,
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TABLE 9. Works that extract knowledge from developers’ interactions with software artifacts.

Mylyn will reduce the number of artifacts that can be viewed
to minimize the developer’s effort in searching for artifacts.
Mylyn is based on the Degree Of Interest (DOI) model. DOI
infers the developer’s interest in an artifact over time based
on visualization, editing, selection, command, propagation,
and prediction events. The DOI model does not represent
explicitly developers’ forgetting and relearning about arti-
facts. It also does not predict interest levels directly based on
tasks, similar tasks, and software projects.

Fritz et al. [21] proposed the Degree Of Knowledge
(DOK), a model for inferring developers’ knowledge about
artifacts. This model is based on the authorship of an artifact
combined with the DOI model. DOK does not explicitly
model developers’ forgetting and relearning, but inherits from
the DOI model the ability to represent developer’s inter-
est or disinterest in specific artifacts. Therefore, DOKmodels
can implicitly be used to represent forgetting and relearning.
Besides, DOK does not act on a task, similar tasks, and
software projects.

Hattori et al. [48] defined a successful change of an artifact
as any error-free compilation event of the artifact executed
after at least one edit. They assume that whoever has made
the most changes to an artifact becomes the developer who
knows the most about the artifact. Hattori and colleagues
model the concept of forgetting by considering that more
recent changes in time contribute more to knowledge than
older changes, and similarity to Girba et al.’s work [46],
they propose a visualization map of the artifacts and their
respective owners. In this way, through the visualization map,
it is possible to visualize the whole software project. This
approach does not consider the concept of relearning of past
tasks and the knowledge model does not apply to tasks.

The approach proposed by da Silva et al. [49] infers
the developer’s knowledge about a project, package, file,
class or method based on the analysis of the editions made
by him or her over time. The analysis is done by extracting
commit information from code repositories, and associating
each commit to a developer, package, file, class, and method
in a project. Da Silva and colleagues do not consider forget-
ting and relearning, and also do not infer knowledge about
task and similar tasks.

Finally, our knowledge-oriented models infer knowledge
from the developer’s edit interactions about software artifacts.
In contrast to other models, our models consider the develop-
ers’ forgetting to infer knowledge about artifacts, tasks, sim-
ilar tasks, and software projects over time. So far, we could
not identify any related work that models both forgetting and
relearning, and acts based on the targets mentioned in Table 9.

VII. CONCLUSION AND FUTURE WORK
The main goal of this article was to present and evaluate a
set of knowledge-oriented models based on forgetting and
relearning to measure developer knowledge about artifacts,
tasks, similar tasks and the whole software projects by ana-
lyzing developers’ interactions while they perform tasks.
Our models take into account the complexity of the tasks,
the human trait of forgetting and relearning, the task similar-
ity based on interactions, and the distribution of developers’
knowledge in a software project. The knowledge-oriented
models can also be seen as a novel solution to describe knowl-
edge about how software is produced by linking developers,
artifacts and tasks over time.

The evaluation of the models was performed based on
information related to the interaction degree provided by the
Mylyn Eclipse Plugin. In the literature, there are other ways
of measuring interaction, such as the one described in the
work by Omoronyia [50]. The models proposed in this article
depend on measures of the interaction degree and, for this
reason, the choice of the specific form of measurement may
interfere with the results produced by the models. Besides,
models are restricted to a particular software project. For
example, knowledge that is recorded in an artifact of the same
name in another software project is not considered. Future
work will further investigate IIdd in the Ks model.

Personal issues (e.g., profile, emotions) can interfere with
how a developer performs the tasks and also how he or she
interacts with the artifacts and their collaborators. We need to
investigate the influence of these issues on the presentedmod-
els that aim at measuring developers’ knowledge. Moreover,
the evaluation needs to be extended by interviews or surveys
to compare results from the knowledge-oriented models with
the perception of developers about the experts.
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A general limitation of our models is that the computation
(especially the normalized computations) of the values in
the model need to be done with respect to a specific time.
We understand the proposed approach can work in general in
two ways: (i) a static way, in which, the information is gener-
ated in a batch mode, and computations are performed with
respect to a specific time based on this data; and (ii) a dynamic
way, which takes into account the streaming nature of the
information that is generated as a function of the interactions
of developers with artifacts and other developers, and pro-
vides recommendations in real time. The proposed approach
currently supports solution (i) and, because of this limita-
tion, we provide an overview in this paragraph on how this
approach can be extended to support solution (ii). A possible
way to address this limitation is by using regression and cor-
relation [51]. We suggest replacing t (time) by a time period
constant in our knowledge models to associate developers
with elements directly, i.e., Ka(d, a), Ks(d, s), Kc(d, c), and
Kp(d, p). These extended models must be executed according
to the time period chosen, adding or removing a degree
of knowledge to the developer. This strategy was used by
Fritz et al. [6].
We have performed a preliminary survey involving some

GitHub projects to evaluate how well developers know: 1-
the content of the source code (i.e., artifact) about which
they have made commits; and 2- closed issues (i.e., tasks)
associated with these artifacts. Currently, we are preparing
a new survey with project data related to a specific software
organization. In addition, our relearning modeling only con-
siders the last 7 days, but we can not ascertain that the eighth,
the ninth, or the subsequent days are not relevant. Future
studies also need to address this issue.

Further, the proposed knowledge-oriented models can also
be used in other domains with some adaptations. For exam-
ple, in the Web domain users interact with online sites to
achieve a goal. In this case, the equations of the presented
knowledge-oriented models could be adapted to estimate
the users’ interest in products, services or subjects. In the
scenario of distance education, where students interact with
online systems and tutors to fulfill tasks, in order to acquire
knowledge, there is also an opportunity to apply the proposed
models. One possible application could be to estimate the
degree of student involvement in terms of effort per course
and associate this degree with student grades.

Finally, these models contribute to the burgeoning liter-
ature on developers’ interactions as a source for new and
significant discoveries related to the software development
process.
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