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ABSTRACT Battery manufacturing and recycling are expensive; combined heat and power (CHP) units
are optimal for residential premises. CHP units can enhance energy efficiency and reduce energy costs, but
appropriately sized units must be chosen. Here, we optimize CHP unit sizing to minimize the energy costs
of residential areas. Sizing is based on both the electricity and heat loads; it is possible to optimally rate the
various types of CHP units. We compare an artificial bee colony (ABC) optimization method to a genetic
algorithm (GA) when various strategies are adopted. Electricity and heat loads are considered together when
sizing CHP units and optimizing costs using the ABC algorithm and the GA. The optimization outcomes are
compared to a base case; theABCmethod performs better than theGA. The average daily energy cost savings
possible using the ABC method were higher for all three seasons (by 25.9, 4.4, and 10.8% respectively)
compared to those possible when residential premises lacked CHP units.

INDEX TERMS Artificial bee colony, cost-benefit analysis, CHP unit size optimization, energy conversion,
genetic algorithm, residential building automation.

NOMENCLATURE
ABBREVIATIONS
GA Genetic Algorithm
PSO Particle Swarm Optimization
LP Linear Programming
MILP Mixed Integer Linear Programming
DP Dynamic Programming
ABC Artificial Bee Colony
RB Rule-Based

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaodong Liang .

PDPg Probabilistic Dynamic Planning
TAC Total Annual Cost
CE Carbon Emission
LCA Life Cycle Assessment
DRP Demand Response Program

I. INTRODUCTION
A. MOTIVATION
Combined heat and power (CHP) units are valuable in that
their carbon emissions are very low, in addition to other
features that render them superior to other energy-generation
units [1]. The output efficiencies of CHP units are

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 218289

https://orcid.org/0000-0003-2640-3185
https://orcid.org/0000-0001-6239-2845
https://orcid.org/0000-0001-6500-0990
https://orcid.org/0000-0002-5746-8638
https://orcid.org/0000-0002-9601-6167
https://orcid.org/0000-0002-6803-929X
https://orcid.org/0000-0002-8089-5419


H. U. R. Habib et al.: CHP Units Sizing and Energy Cost Optimization of a Residential Building

FIGURE 1. A CHP unit -based DER.

significantly higher and the emissions are much lower than
those of other devices [2]. Climate variation/unpredictability
affects CHP units’ performance only minimally [3]. In [4],
it was shown that the cost of CHP units is decreasing [5].
Hence, CHP units with kW ratings are being installed in
residential areas.

Profitable but environmentally responsible energy gener-
ation poses significant challenges for metropolitan systems.
Optimal sizing of distributed energy resources (DERs), res-
idential energy hubs, and energy plants is crucial. Figure 1
shows the basic concept of a DER used to evaluate var-
ious optimization techniques that seek to increase energy
plant efficiency via optimal sizing and good technological
management.

B. PREVIOUS STUDIES
Various previous approaches will now be briefly described.
Use of a dynamic programming (DP) method to optimize
both the sizing of CHP units and plant operation was pre-
sented in [6]. DP is commonly applied to optimize the control
and energy management of hybrid energy plants. The objec-
tive is to reduce primary energy consumption by optimizing
both CHP unit size and hybrid plant operation. The authors
of [7] used a model predictive control (MPC) algorithm for
a photovoltaic (PV) system that was combined with stor-
age and CHP units to reduce operation costs. Tests were
performed using various storage systems such as batteries
and heat pumps. The operational costs were reduced by
7.3% when an optimized algorithm (compared to rule-based
control) was used. A dynamic method for structural sizing
of domestic energy hubs was proposed in [8]; the system
featured a CHP unit, a boiler, a PV system, and electri-
cal and heat storage systems. The objective of the work
(which employed aMonte-Carlo simulation method and a DP
approach) was to minimize both the capital costs and operat-
ing costs (OCs) during planning. The authors of [9] presented
two multi-objective models aiding DER design; it sought to
satisfy regional needs in terms of cooling, heating, and elec-
tricity. Two primary methods of DER design that considered

both total annual costs (TACs) and carbon emissions (CEs) as
objective functions were tested and implemented.

The study described in [9] was similar to that in [6] but
the storage systems differed. A genetic algorithm (GA) opti-
mization technique was employed to reduce primary energy
consumption (by about 12%) over the entire cycle of a hybrid
plant. Mathematical programming was employed in [11] to
optimize the design and planning of a fourth-generation heat-
ing model that met energy exchange and on-site generation
requirements. The principal objective was to explore the
impact of energy exchange among buildings and to ensure
that the system had adequate capacity. The optimization
framework of [12] sought to ensure satisfactory operation of
a CHP system located in an ambiguous environment (thus
subject to demand response events). The system featured a
gas turbine, storage systems, a heat pump, and boilers. A
price-based demand program was applied to improve system
economy by changing the energy expenditure as required.
Sizing of a CHP system and optimization of the day-to-day
energy costs for a building fitted with only a CHP system
was discussed in [13], using the GA optimization technique.
Both electricity and heat loads served as sizing criteria when
optimizing the ratings of different types of CHP units.

Although CHP systems are more efficient and less pol-
luting than battery energy storage systems (BESSs), their
capital and maintenance costs are significantly higher. It is
unclear whether BESSs are economical for residential build-
ings; CHP units and grids provide electricity on demand and
CHP units and gas boilers heat on demand. BESSs were not
evaluated in [14], but other factors that impact cost, effi-
ciency, CHP unit rating, and CHP unit type were considered.
The electrical efficiency of a CHP unit is one-fourth of its
rating when it operates at 10% of the rated value. Further-
more, the heating efficiency also decreases under low-input
operation [1]. Small CHP unit ratings are indicators of high
efficiency and low emissions when delivering residential
loads. However, small units cannot respond to increased load
demands even when operating at full rated power, which is
expensive. Therefore, large units are essential when power
demand is high. Thus, appropriate CHP unit sizing is critical
to ensure high efficiency and low costs.

To achieve a good CHP rating, sizing is the most critical
step in optimization; however, the desired outcomes may
differ. Specific design criteria must be applied. CHP unit
sizing involves evaluation of both CHP unit type and the
load demand. Here, we analyze two types of CHP units,
a fuel cell (FC) and a gas engine (GE). The efficiency of
the FC is higher [15]. The rated electric:heat efficiency ratio
is 33% for a FC but 74% for a GE [16]. Residential loads
usually feature both heat and electricity demands. These are
considered individually during sizing because their patterns
differ. The authors of [4] and [17] suggested that the use
of heat demand as a sizing criterion was optimal, given the
high thermal efficiency of a CHP system. In [4], the sale
of electricity back to the grid was considered. Such sales
are rather challenging, given the high standards that apply
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when selling electricity to utility grids, which are owned
by government organizations [17]. Because of this, and the
non-availability of energy-recording meters in most residen-
tial premises, we do not consider energy export to a grid
below.

In [18], multi-microgrid agent-based energy management
of DERs in smart islanded energy-hub (EH) system is
proposed by using the primal-dual method of multipliers
(PDMM) approach. This EH modeling combines CHP units
and electric vehicles (EVs) with renewable energy resources
(RERs). But this work is only concentrated on the appli-
cation of the residential load of a single house. In [19],
modified social spider optimization (MSSO) approach is
applied for the training process of generative adversarial
networks (GAN) by employing deep learning for RER based
control of the matrix converter. But this approach is not
applied for CHP unit’s optimization. Although in [20], PSO
and ABC algorithms are used together to optimize artificial
neural network (ANN) based energy efficient buildings. But
no details and specific applications of CHP units are demon-
strated. In [21], multiple heuristic optimization algorithms
(including GA and ABC) are used with machine learning-
based controllers for energy-efficient buildings. But CHP
units are not chosen for the analysis. In [22], CHP units
are considered with the application of GA and ABC algo-
rithms by applying different optimal cycle modes, including
CHP mode. But the objectives are entirely different from
micro gas turbine units, and superior performance with GA is
achieved.

C. CONTRIBUTIONS
Various methods have been used for CHP system sizing,
including a maximum rectangle (MR) method; GA; linear
programming (LP); dynamic programming (DP); MPC; and
nonlinear programming (NLP). LP requires linearization of
all constraints, at the cost of loss of accuracy during opti-
mization; NLP methods may become trapped in local min-
ima. The MR method considers the average load demand
rather than the maximum demand when seeking to fully
exploit CHP ratings [4]. GA is a powerful optimization tool
when multivariable non-linear objectives are set, and can
be used to minimize daily costs. Here, we use both GA
and an artificial bee colony (ABC) algorithm. Our principal
contributions are:
• ABC algorithm is not implemented in the literature stud-
ies for different sizing criteria of two types of CHP units.

• New algorithms are emerging over a period of time.
Still, the authors only considered the impact of the
ABC algorithm over GA for the specific problem of
a rural residential house in Pakistan. The base paper
was selected in our study for all the input data, and we
checked the performance of the ABC algorithm.

• We use the GA and the ABC algorithm to optimize CHP
system sizing.

• Use of the ABC algorithm reduces the computational
burden.

• The reductions in optimal and minimum costs afforded
by the ABC method are investigated.

• We use different CHP units and load types when estab-
lishing the most feasible sizing criteria identifying opti-
mal CHP units.

• Our DER model features various technological modules
that can operate in any residential building to fulfil the
load demands of prosumers (end-users). Such demands
may include hot water, cooling, and electricity.

II. CHP SIZING AND SYSTEM OPTIMIZATION
Subsection 2.1 shows how to use GA methodology to opti-
mize costs; subsection 2.2 indicates how to employ the ABC
method to optimize the daily energy costs of different types
of CHP units. Table 1 compares the various optimization
methods, and shows that the GA and the ABC algorithm
are superior. Table 2 compares previous studies to our study.
Figure 2 shows a flow chart of our optimization methodology.
The ABC algorithm flow chart checks CHP units and solves
the problem based on heat or electricity optimization criteria.
Two types of CHP units that are available in the market are
investigated in this work. ABC search mechanism in this
work criteria is based on the feedback mechanism. The first
iteration is done with random generation of 100 population
size. The next step involves the selection of the best solution
out of 100 possible solutions. The subsequent step re-iterates
the process so that the values of the next 99 randomly gen-
erated populations will surround the neighbor value of the
previous best solution. This feedback-based population cri-
teria and solution mechanism guarantee the converging to the
global optima.

The residential demand in terms of an objective function
assuring everyday cost minimization can be expressed as:

F(t) =
∑t=1440

t=1
PEimp(t)× Ce(t)+ PGimp(t)× Cgas(t)

+PCHPimp(t)× Cgas(t) (1)

where F(t) is the everyday energy cost in Pakistani Rupees
(PKR), Ce(t) is the electricity price, Cgas(t) is the gas price,
PEimp(t) is electricity imported from the grid, PGimp(t) is the
gas imported for the boiler, andPCHPimp(t) is the gas imported
for the CHP system. The equality constraints that fulfil the
requirements for both electricity and heat are:

PE (t) = PEimp(t)+ ηCHPE × PCHPimp(t) (2)

PH (t) = PGimp(t)× ηB + ηCHPH × PCHPimp(t) (3)

where PE (t) is the electricity energy requirement and PH (t)
the heat energy requirement of the residential area. ηCHPE is
the electricity output efficiency and ηCHPH the heat output
efficiency of the CHP unit. ηB is the conversion efficiency
of gas heat to boiler heat. The inequality constraints of the
system are:

ηCHPEmin ≤ ηCHPE ≤ ηCHPEmax (4)

ηCHPHmin ≤ ηCHPH ≤ ηCHPHmax (5)
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TABLE 1. A comparison of optimization algorithms.

TABLE 2. A comparison of optimization methods.

PCHPimp(t) = 0

ζ × PR ≤ PCHPimp(t) ≤ PR (6)

PEimp(t) ≥ 0 (7)

PGimp(t) ≥ 0 (8)

Equations (4) and (5) impose restrictions on the output
efficiencies of electricity and heat, and Equation (6) describes
the switching and feasible operational modes of the CHP
system. PR is the rated capacity of the CHP system and the
scaling factor is expressed as ζ (set to 10%). All scenarios
were simulated using both the GA and the ABC algorithm to
minimize daily costs; this ultimately yielded optimal ratings
for the CHP units. Here, electricity and heat are only imported
from the grid; the power flow directions are thus greater than
zero in Equations (7) and (8). The output efficiencies of the

CHP unit in terms of both electricity and heat are:

ηCHPE = ζCHPE × (11.67× log
(
PCHPimp(t)

PR

)
× 100)

− 0.06459×
(
PCHPimp(t)

PR

)
×100)−18.76) (9)

ηCHPH = ζCHPH × (0.1256×
(
PCHPimp(t)

PR

)
× 100)

− 82.32×
(

PR
PCHPimp(t)

)
× 100)−28.73) (10)

where ζCHPE is the coefficient of the CHP unit’s electricity
output efficiency and ζCHPH is the equivalent for heat. The
ζCHPE and ζCHPH values are 0.783 and 1.610, respectively,
for a GE and 1.298 and 1.187, respectively, for an FC.

As can be seen in (2), (3), (9), and (10), the problem is both
non-convex and highly non-linear, and thus cannot be solved
by optimization techniques (e.g., LP, quadratic programming)
that guarantee global optima. It is possible to render the
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FIGURE 2. A flow chart of GA and ABC optimization.

problem convex, but the high-level non-linearity would create
large modeling errors. We thus use and compare the heuristic
ABC and GA optimization techniques.

A. OPTIMIZATION OF COSTS USING A GA
The GA was developed in 1970; this is a probabilistic, intel-
ligent searching algorithm that exploits biological develop-
ment during optimization. It is simple to implement, and
mathematical modeling is not required. If a multi-objective
problem must be solved, a GA can show the trade-offs
between all conflicting objective functions [19]. GAs effec-
tively handle both non-linear and non-continuous objective
functions [20]. GAs differ significantly from other optimiza-
tion techniques in that GAs seek a parallel population of
points and use a probabilistic rather than a deterministic
approach. GAs can solve both constrained and unconstrained
optimization problems [21].

GAs feature four steps, thus chromosome evaluation,
selection, crossover, and mutation. The chromosomes are
termed solution candidates (variables). A schematic of GA
optimization is shown in the flow chart of Figure 3. A com-
bination of single entities is treated as a population; the pop-
ulation size is the number of such entities. During selection,
high-quality entities are preferred and low-quality entities are
dropped. The scale (fitness) values represent the outcomes of
analyses that determine the optimal results. Finally, the two
most essential components are crossed; mutation is now
employed to produce new solution sets within a predefined
search space. The net production (offspring) survive because

FIGURE 3. Flow chart showing implementation of the GA optimization
algorithm [9].

they perform best in the defined environment. The algorithm
terminates the search for optimization if a solution is accept-
able. Here, the population size was set to 7, the crossover
fraction to 0.8, and iteration ceased at 100 generations (the
termination criterion). GAs typically require considerable
computation time to develop accurate and feasible solutions;
the population size and generation number are the principal
factors affecting the time required, and thus the calculation
efficiency.

The steps used when employing a GA algorithm for CHP
unit sizing and cost optimization are:
1) Initialize a population of N chromosomes in a solution

space (the search space).
2) Determine an objective function for each chromosome

by reference to relevant genes (the decision variables).
3) Select chromosomes by reference to the ‘‘survival of the

fittest’’ and enter them into a mating pool. The most
popular selection approach is the roulette wheel.

4) Apply crossover values (with probabilities) to all off-
spring genes. Thus, randomly select two chromo-
somes (parents) when creating two offspring.

5) Trigger mutations by reference to probability consider-
ations. A random number within an acceptable range is
selected when mutation proceeds.
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FIGURE 4. Flow chart for implementation of the ABC optimization
algorithm.

6) Evaluate the offspring by calculating objective functions
for each of their chromosomes.

7) Replace the poorest chromosomes of the parents and off-
spring with newly identified better chromosomes before
selecting the next-generation population.

8) Repeat steps 4 to 7 until the maximum number of gener-
ations (iterations) is attained. The best chromosomes at
that time constitute the optimal solution.

B. OPTIMIZATION OF COSTS USING THE
ABC ALGORITHM
ABC algorithms were developed in 2005 in [22] to solve
numerical optimization problems [23]. The drivers were the
intelligence and behaviors of honey bees [24]. The ABC
algorithm is a powerful and intelligent optimization technique
that handles constrained and non-constrained optimization
problems [25]. A flow chart of the ABC algorithm is shown
in Figure 4. There are three sets of bees: employed, onlooker,
and scout bees [25]. Half of all bees are employed and the
other half are onlookers. Each employed bee exploring a food
source also scouts for unused food. The solution is a food
source position and the nectar quantity reflects the solution
quality. The number of possible solutions is the number of
employed or onlooker bees.

The initial factor considered by the ABC algorithm are the
number of food points (NFP), which equals the total number
of bees. Random numbers create initial populations yielding
solutions when the following relationship among random
positions is in play [23]:

Xab = Xb,min + rand ×
(
Xb,max − Xb,min

)
,

a = 1, 2, ...NFP, b = 1, 2, . . . , J (11)

where Xab is the ath population of the bth vector and the
NFP is 5. Xb,min and Xb,max are the minimum and maximum
boundaries of the bth vector, and rand is a random number

from 0 to 1. The fitness function is:

Fitnessa = Obj (Xab)+
M∑
m=1

λeq,m |h (Xab)|2

+

N∑
n=1

λineq,n |g (Xab)− glim|2 (12)

where Obj is the objective function and the equality and
inequality constraints are represented by h(Xab) and g(Xab)
respectively. The penalty factors abbreviated as λeq,m, and
λineq,n can be adjusted during optimization. glim is defined
as follows:

glim =


Xb if Xb,min ≤ Xb ≤ Xb,max

Xb,min if Xb < Xb,min

Xb,max if Xb > Xb,max

(13)

The steps used when employing the ABC algorithm for
CHP unit sizing and cost optimization are:
1) Initialize the solution population X (the food source

positions).
2) Calculate the nectar values of this population employing

a fitness function.
3) Develop neighboring solutions for employed bees using

random numbers and validate these as in step 2.
4) Apply a selection procedure.
5) Go to step 9 when dealing with distributed onlooker

bees; otherwise go to step 6.
6) Calculate the probability values of the solutions.
7) Develop neighboring solutions for nominated onlooker

bees based on the above values. Use random numbers
and re-apply step 2.

8) Apply step 4.
9) Determine abandoned solutions for scout bees if pos-

sible, and replace these with an entirely new solution
calculated via (11). Evaluate these as in step 2.

10) Save the best solution obtained to this point.
11) Stop and print the results if the maximum number of

iterations is attained. Otherwise, repeat step 3.
The value of the penalty factor can be increased if one or

more variables might create a violation. This ensures that the
solution is feasible.

III. CASE STUDY
The data is taken from [12] in which only maximum rectangle
(MR) and GA were implemented while the ABC algorithm
was tested on this data with the application of this case study
in Pakistan. We used a CHP system to service a terraced
domestic building in Pakistan occupied by four people. The
building is located in a rural area (Murree Punjab). Both heat
and electricity are required; the weather can be cold. Murree
(which is hilly) is one of the most popular tourist areas in
Pakistan. In the time of British India, many prominent Britons
were born there. As the summer is pleasant, the Govern-
ment of Pakistan maintains a retreat in this region, which is
frequently visited by foreign dignitaries including heads of
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FIGURE 5. Schematic of the energy flow in a smart building.

FIGURE 6. The electrical energy demands over a typical day.

FIGURE 7. Heat (thermal) energy demands over a typical day.

states [26]. The co-ordinates are 33◦54′ 3′′ N and 73◦ 23′

4′′ E. The residence features one double room, four single
rooms, a drawing room, two bathrooms, and one kitchen.
The total area is 160 m2. Figure 5 shows a schematic of the
energy flow in a typical smart building. The model of [27] is
used to generate random numbers indicating daily electricity
utilization; the model of [28] defines daily heat utilization.
In Pakistan, gas costs about 10 PKR/kWh; the electricity
tariff is that of [32]. The tariff is dynamic, varying on a
half-hourly basis. Figures 6, 7, and 8 show the daily energy
demands for electricity and heat, and the prices in the three
seasons, respectively. Figure 8 shows the time-of-use (TOU)
electricity prices. Figures 6–8 present our simulation of the
optimization problem.

IV. OPTIMIZATION RESULTS
The coefficients of energy needs are variables that depend
on the weather, as shown in Table 3 [13]. The electrical

FIGURE 8. Daily time-of-use (TOU) electricity prices for the three seasons.

TABLE 3. The energy requirement coefficients of the three seasons.

TABLE 4. The installed components.

requirement in summer is 1.3-fold that in spring. The com-
ponents installed at commencement of analysis, and the basic
energy costs, are shown in Table 4 [13].

A. COST OPTIMIZATION FOR OPTIMAL CHP RATING
By applying the strategies outlined in subsections 2.1 and
2.2 of section 2, optimizations (CHP output efficiencies and
costs) are obtained for all three seasons. Figure 9a–d show
the GA- based CHP efficiencies for every minute of the day.
Figure 10a–d show the ABC-based CHP efficiencies for
every minute. Using Equations (9) and (10), it can be shown
that the electricity efficiency contains logarithmic terms; the
heat efficiency is more linear than the electricity efficiency.
The electricity load efficiency increases logarithmically as
the load increases; the heat efficiency does not. As shown
in Figure 6, as the electricity load increases from hours 10 to
15, the efficiency at that time also increases markedly, as
shown in Figures 10 and 12. However, the efficiency of
the heat load is relatively even because efficiency does not
increase logarithmically. The performance of the ABC algo-
rithm is better than that of GA, as shown in Figures 10 and 12;
the ABC efficiency of Figure 12 is much higher.

Figure 11 compares the costs imposed by the two algo-
rithms over the three seasons. From Fig. 11, we can see
that heat dependent ABC criteria has less cost for both the
gas engine and fuel cell. In comparison, the opposite sce-
nario is observed for GA based electricity-dependent fuel
cell. However, the cost of gas engine electricity-dependent
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FIGURE 9. GA minutes-based efficiencies for a typical day (a) FC (heat
dependent); (b) FC (electricity-dependent); (c) GE (heat dependent);
(d) GE (electricity-dependent).

criteria is almost the same for both GA and ABC algorithms.
Table 5 gives detailed information on CHP ratings and costs
for all seasons based on both sizing criteria. Table 6 and
Figure 12 detail the computational burdens imposed when
solving the objectives of each scenario. The optimal sizing

FIGURE 10. ABC minutes-based efficiencies for a typical day (a) FC (heat
dependent); (b) FC (electricity-dependent); (c) GE (heat dependent);
(d) GE (electricity-dependent).

results yielded by both GA and the ABC method using heat
as the sizing criterion are shown in Table 7. The primary
energy consumptions are listed in Table 8. A comparison of
optimal installed components with heat as a sizing criterion is
shown in Table 9. The comparison between the optimization
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FIGURE 11. Electricity prices in different seasons.

FIGURE 12. The simulation time (a) for one CHP and (b) for two CHP.

TABLE 5. Comparison of operational costs.

methods and the present work is presented in Table 10.
However, eight subplots for two figures (namely Fig. 9 and
Fig. 10) are necessary to show four different cases for both
algorithms. These four cases are (a) FC (heat dependent);
(b) FC (electricity-dependent); (c) GE (heat dependent);
(d) GE (electricity-dependent).

B. COST OPTIMIZATION FOR OPTIMAL CHP RATING
We used a GA to size both types of CHP units.

1) FUEL CELL CHP UNIT
Figure 13 shows the CHP unit’s installation ratings and every-
day costs using heat as the sizing criterion. The cost falls

as the CHP unit’s rating increases to 2,000 W, which is
thus the optimal CHP unit rating. Figure 14 shows the CHP
unit’s installation rating and everyday costs using electricity
as the sizing criterion. The cost falls as the CHP unit’s rating
increases to 2,000 W, which is thus the optimal CHP unit’s
rating.

2) GAS ENGINE CHP UNIT
Figure 13 shows the CHP unit’s installation ratings and every-
day costs using heat as the sizing criterion. The cost falls as
the CHP unit’s rating increases to 2,000 W, which is thus the
optimal CHP unit’s rating. Figure 13 compares the average
daily energy costs of FC and GE CHP units with different

VOLUME 8, 2020 218297



H. U. R. Habib et al.: CHP Units Sizing and Energy Cost Optimization of a Residential Building

TABLE 6. Comparison of simulation time.

TABLE 7. Comparison of sizing optimization (sizing criteria: heat).

TABLE 8. Comparison of consumption (sizing criteria: heat).

FIGURE 13. GA based comparison of the daily cost of a residential house
(heat criteria).

capacities, using the heat criterion. Figure 14 shows the CHP
unit’s installation ratings and everyday costs using electricity
as the sizing criterion. Figure 14 shows that the costs fall
as the CHP unit’s rating increases to 1,000 W, which is
thus the optimal CHP unit’s rating. Figure 14 compares the
average daily energy costs of FC andGECHP units of various
capacities using the electricity criterion.

FIGURE 14. GA based comparison of the daily cost of a residential house
(electricity criteria).

FIGURE 15. ABC based comparison of everyday cost of a residential
house for erecting of fuel cell CHP vs. gas engine CHP using heat criteria.

C. OPTIMAL CHP UNIT’S RATING AND COST
MINIMIZATION USING THE ABC ALGORITHM
Here, we use the ABC algorithm to determine the optimal
sizes of both types of CHP units.

1) FUEL CELL CHP UNIT
Figure 15 shows the CHP unit’s installation ratings and every-
day costs using heat as the sizing criterion. The cost falls as
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TABLE 9. Comparison of Results of optimal installed components (sizing criteria: heat).

TABLE 10. Comparison between the optimization methods.

FIGURE 16. ABC based comparison of everyday cost of a residential
house for erecting of fuel cell CHP vs. gas engine CHP electricity criteria.

the CHP unit’s rating increases to 2,500 W, which is thus the
optimal rating. Figure 16 shows the CHP unit’s installation
ratings and everyday costs using electricity as the sizing
criterion. The cost falls as the CHP unit’s rating increases to
1,000 W, which is thus the optimal rating.

2) GAS ENGINE CHP UNIT
Figure 15 shows the CHP unit’s installation ratings and every-
day costs using heat as the sizing criterion. The cost falls as
the CHP unit’s rating increases to 2,000 W, which is thus the
optimal rating. Figure 15 compares the average daily energy
costs of FC and GE CHP units of different capacities, using
the heat criterion. Figure 16 shows the CHP unit’s installation
ratings and everyday costs using electricity as the sizing
criterion. The cost falls as the CHP unit’s rating increases to

FIGURE 17. Hourly Total Costs of GA and ABC (Rated gas engine CHP
capacity = 2000).

1,000W,which is thus the optimal rating. Figure 16 compares
the average daily energy costs of FC and GE CHP units of
different capacities, using the electricity criterion.

D. COMPARISON OF THE GA AND ABC
METHODOLOGIES
Figure 17 shows the total hourly costs of a GE CHP unit
with a capacity of 2,000 W; the convergence curve is shown
in Figure 18. Figure 19 shows the total hourly costs of an
FC CHP unit with a capacity of 2,500 W; the convergence
curve is shown in Figure 20. The optimal sizes of FC- and
GE-based CHP units are 2,500 W and 2,000 W respec-
tively. Figures 17 and 18 show the results for a 2,000-W
GE CHP unit when the GA and the ABC algorithm are
employed. Figures 19 and 20 compare the results when the
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FIGURE 18. Convergence Curve of GA and ABC (Rated gas engine CHP
capacity = 2000).

FIGURE 19. Hourly Total Costs of GA and ABC (Rated fuel cell CHP
capacity = 2500).

FIGURE 20. Convergence Curve of GA and ABC (Rated fuel cell, CHP =

2500 Watt).

GA and the ABC algorithm are used to analyze the 2,500-W
FC CHP unit.

V. CRITICAL ANALYSIS AND DISCUSSION
We list the nine highlights of our study:

(1) Better results are obtained when the heat rather than
the electricity demand serves as the sizing criterion
for CHP units because the average heat requirement

is significantly greater than the electricity require-
ment throughout the year. Therefore, use of the heat
requirement for sizing identifies optimal FC and GE
CHP units. It is not helpful to employ the electricity
requirement as the sole sizing criterion because a GE
CHP unit exhibits a high heat to power ratio; such a
CHP unit will produce more unnecessary heat.

(2) When the the ABC algorithm was used for CHP
unit sizing with the heat demand as the sizing crite-
rion, the cost:benefit ratios were always better than
those afforded by the GA because the ABC algo-
rithm selects a CHP unit rating that fulfils most load
demands imposed over the entire year. The CHP unit
with the maximum rating is chosen. Although the
primary energy saving is not as good as that afforded
by the GA; the capital (investment) cost savings are
marked.

(3) The simulations showed that simultaneous evaluation
of all objectives (operating and capital costs, and effi-
ciency) was rather complicated. Higher-capacity CHP
units afforded better primary energy savings, but cost
more and were less efficient than lower-capacity CHP
units because the higher-capacity CHP units require
more electrical energy at peak hours. If this energy
is delivered by smaller CHP units, costs are reduced.
Also, higher-capacity CHP units contribute only low
inputs to the rated power ratios; the CHP units func-
tion at low input power (which is the prime cause
of poor efficiency). Most CHP power is not utilized
effectively; the capital cost is thus high.

(4) The greatest energy-savings were evident in winter,
followed by summer and spring. Energy-savings in
spring were low because of the heat demand; the
CHP unit’s heat output relative to electricity consump-
tion was thus also low. To enhance energy saving,
the capacity of the CHP unit could be lowered, also
reducing costs during other seasons. However, energy
storage will be needed to deliver the peak hour loads

(5) The computational burden with the ABC algorithm is
significantly shorter than GA, which shows the pro-
posed ABC methodology’s superior performance with
a faster response.

(6) Theminute-based efficiencies (Figures 9 and 11) of the
GA and the ABC algorithm show that both afford high
resolution. It is clear that the ABC algorithm exhibits
less oscillation and greater stability, especially when
heat serves as the sizing criterion.

(7) As the ABC is a heuristic search algorithm, the results
contain an element of randomness. Convergence
curves are commonly used to select the best solu-
tions of such algorithms [30]; we drew such curves.
Figures 20 and 22 show that the ABC algorithm was
better than the GA. When selecting the final solution,
we considered the average of 10 optimizations; 5 or
even 3 optimizations may be adequate if the variations
in random numbers are negligible.
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(8) We selected CHP unit capacities with base loads in
mind. The maximum base load was 1 kW (Fig. 7);
a CHP capacity of 1 kW was thus the lower limit,
rendering it simple to derive an optimal value.

(9) Fig. 20 shows the convergence for FC based CHP.
The authors are agreed with the concern that ABC
convergence in the FC case is not reached yet. But
the comparison with GA shows that GA convergence
behavior is constant after the 6th iteration while the
ABC convergence trend clearly indicates the effective-
ness of the ABC algorithm over GA. This convergence
trend can also be proved from Fig. 18. Since the num-
ber of iterations is set to 7 in the simulation analysis,
comparative analysis in Fig. 20 still validates the ABC
algorithm’s superior performance over GA.

(10) The problem is not stochastic, and the only deter-
ministic problem with pure deterministic data with
non-uncertainties is considered in this work.

VI. CONCLUSION
We compared, and optimized the performances of GE- and
FC-based CHP units. We compared the use of the GA and the
ABC algorithm to these ends. We explored the computational
burdens imposed by the GA and the ABC methods. The
use of both heat and electricity criteria to optimize objec-
tive functions yielded impressive results. Employment of the
electricity criterion alone will not size a CHP unit optimally,
since the heat requirement is significantly greater than the
electrical demand; we thus employed both heat and electricity
standards. We first used the GA for CHP unit sizing. The
simulation suggested that, optimally, an FC-based CHP unit
should have a capacity of 2,500 W and a GE-based CHP
unit a rating of 2,000 W. The daily cost minimizations are
25.9% those of the base cases. ABC algorithm optimizations
yielded daily cost minimizations 27.6% those of the base
cases, thus about 1.7% more than afforded by the GA when
the heat demand served as the CHP unit sizing criterion. The
ABC algorithm was superior to the GA because the former
algorithm afforded a better cost:benefit ratio and increased
energy efficiency. Furthermore, the ABCmethodmakesmore
use of CHP units’ ratings; cheap energy can be delivered on
specific days. In summary:

• Weused theGA andABC algorithm for CHP unit sizing.
• The computational burden imposed by the ABC algo-
rithm was much less than that of the GA.

• The optimization cost of the ABC algorithm was lower
than that of the GA.

• Simulations of different GE and FC CHP units using
the heat and electricity criteria yield feedback allowing
engineers, scientists, and system planners to select opti-
mal CHP units.

In future, we will explore whether the FC lifetime impacts
performance. We will simulate savings over a 5,000-h period
(the life of an FC) and price the various 1,000-W FCs. This
analysis will give deep insight to see whether the FC’s price is

higher or lower compared to the savings. This work’s limita-
tions will be handled as future work that will also combine the
CHP study of this work with the already published V2G inte-
grated RER microgrid [33] for multi-microgrid RER-based
energy hub (EH) system. Future work also includes testing
of new and latest algorithms with single and multi-microgrid
energy-hub systems. The community load for multiple house-
holds (microgrid clusters) will also be a part of future work.
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