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ABSTRACT As an important part of the spatial information network, airborne network (AN), which connects
air platforms with upper satellites and ground devices, has been increasingly important right now. Due to the
heavy-tailed distribution of network traffic, elephant flow detection is usually used to catch and control the
key part of network traffic with low costs, which is a practical strategy to strengthen network management
and improve network performance. In this paper, we consider the problem of dynamic threshold elephant
flow detection in AN, and an intelligent method based on regression with pre-classification is proposed to
adapt to the limited and dynamically changing bandwidth. The filtering mechanism with waiting-window
is used firstly to filter out parts of small flows to decrease the detection cost. Then, the pre-classification is
used to divide the range to be predicted and the flow size regression can be carried out in a compressed
range, which makes the results more accurate. Finally, the predicted size is compared with the specific
detection threshold related to the specificmoment, and the elephant flow is identified. Numerical experiments
demonstrate that the proposed method has a better adaptability to dynamic threshold and the performance is
much better.

INDEX TERMS Elephant flow detection, dynamic threshold, machine learning, regression learning,
airborne network.

I. INTRODUCTION
With the rapid development of information technology,
the modes and forms of communication have been further
evolved. An intelligent and interconnected spatial informa-
tion network is coming. As an important part of the spatial
information network, airborne network (AN), which connects
air platforms with upper satellites and ground devices, has
been increasingly important right now. Increasing and various
services are being or will be transmitted over AN. In the civil
field, AN can provide a convenient air access to the Internet,
which can effectively cover the blind areas of ground wired
network and further expand the range of communications [1],
[2]. In the military field, AN can be used to link the air and
ground combat platforms, which can realize a fast informa-
tion sharing among all the combat platforms and establish
an efficient cooperation between different combat platforms
across different regions [3], [4]. Due to the heavy-tailed
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distribution of network traffic [5]–[8], a small number of
elephant flows, such as video streaming in the civil field and
surveillance and sensing message in the military field, con-
tribute a significant amount of the traffic volume, which will
occupy a large amount of the limited available bandwidth.
If those elephant flows fail to be detected and all flows are
treated equally without any difference, some elephant flows
may converge on the same link, resulting in link congestion
and message loss, while some links may be idle or with little
flows, resulting in a waste of available bandwidth. Either
link congestion or idle will greatly reduce the efficiency of
information exchanging, resulting in poor network perfor-
mance and user experience. Timely and accurate elephant
flows detection has become an efficient and practical strategy
to optimize network performance [9], [10]. Different from the
traditional wired network, the electromagnetic environment
in AN is more complex. Noise, interference and attenuation
caused by meteorological or artificial factors are ubiquitous
all the time. Coupled with the movement of the platforms
and the directivity of antennas, communication connections
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will be more vulnerable, the network topology and available
bandwidth will also be dynamically changing. Moreover,
owing to the burstiness and dynamics of network traffic,
the numbers, types and transmission data volumes of carrying
services and their QoS are also dynamically changing in AN.
In this context, it is much meaningful to detect the elephant
flows quickly, flexibly and dynamically, thus differentiated
services can be provided under limited resources.

In traditional wired networks, elephant flow detection
is mainly realized by counting [11], [12], sampling [13],
[14] or LRU (Least Recently Used) [15], [16] queue man-
agement. The main idea is to compare the volume of passed
data with the corresponding detection threshold or try to filter
small flows and keep up elephant flows by entries update-exit
mechanism in the queue. In literature [11], the strategies of
counting and LRU are adopted, and an asymptotically optimal
algorithm is proposed. In the algorithm, the storage is divided
into active and inactive areas. Entries of flows are updated in
the active area and small flows are removed from the inactive
area. Before the capacity of active area reaches to the specific
level, the areas of active and inactive are exchanged. By doing
so, an accurate detection is achieved with lower storage. This
method dose well in some traditional wired networks, but it
may be not suitable for the real-time and dynamic scene, like
AN. There are so many data need to be processed and the
detection delay is relatively large.

With the introduction of artificial intelligence technology
[16]–[19], the traditional strategy, which uses posterior statis-
tics to detect the elephant flow, has changed. The histori-
cal traffic data are used for training with machine learning
algorithms, and a classifier can be built to mine the mapping
relationship between traffic class and early features of traffic
flow [20], [21]. With the help of the classifier, elephant
flow detection can be achieved in a short time with fewer
data. Since elephant flow undetected is more serious than
small flowmis-detected, literature [17] sets different costs for
different kinds ofmisclassification, and builds a classification
model based on the cost-sensitive decision tree to obtain a
more accurate detection result. In literature [18], data mining
technologies are applied to elephant flow detection under the
framework of SDN, and a detection model with two-phase is
suggested. In the first phase, a classifier is built on the switch
with some features that could be easily obtained, and only
suspected elephant flows are submitted to the controller for
further confirmation. In the second phase, another classifier
is constructed on the controller with more features extracted
from the first few packets of traffic flow, and the suspected
elephant flows are identified once again. After these two
phases, a more accurate detection can be achieved with lower
detection cost. Both the methods in [17], [18] are based on
supervised learning with binary classification. Specifically,
the training data are labeled with two classes according to the
specific fixed threshold in advance. Then, the labeled dataset
is used to train a binary classifier, which is applied to test new
arrival data or detect new arrival elephant flow. During the
process above, the threshold for elephant flow is fixed and

unchangeable, which is only available for the scenes where
the properties of traffic flows basically remain unchanged
and the communication bandwidth keeps stable. Unlike the
stable scenes, carrying traffic and available bandwidth in AN
are dynamically changing with the missions, phases and com-
munication environments. The fixed threshold is unavailable,
and it is urgent to use the dynamic threshold to adapt the
changing of bandwidth or other QoS constraints.

To solve the problem of dynamic threshold elephant flow
detection in AN, we propose a regression method to adapt
to the dynamically changing threshold. Firstly, a regression
model is built to describe the relationship between the early
features and the total sizes of traffic flows. Then, the size
of the new arrival flow can be predicted by the regression
model with the early features. By comparing the predicted
flow size with the specific threshold, the elephant flow can be
identified. In the proposed method, the filtering mechanism
with waiting-window is used to eliminate parts of small flows
and alleviate the problem of data imbalance in regression.
And the strategy of pre-classification is adopted to compress
the range of flow sizes to be predicted, and the accurate results
can be got more easily.

The rest of this paper is structured as follows. Section II
presents the models and assumptions related to our work.
Section III describes the details of the proposed method.
Extensive numerical experiments are presented in Section IV,
and Section V concludes this article.

II. ELEPHANT FLOW DETECTION MODEL WITH DYNAMIC
THRESHOLD
In most existing literatures [15], [22]–[25], elephant flow
is often defined as the flow in which the number of pack-
ets or bytes carrying is greater than a certain value or a certain
ratio of total traffic passed through the link. That is:

f ∈ Fele|Fstotal(f ) ≥ Trc (1)

where, f is the flow to be detected, Fele is the set of elephant
flows, Fstotal(f ) is the total size of flow f , and Trc is the fixed
threshold to determine elephant flows.

The definition with fixed threshold [15], [22]–[24] is used
and appropriate for stable wired networks, where the band-
width and the distribution of carrying traffic are almost
unchanged. However, for AN, the stable scene has changed
and the fixed threshold is no longer suitable. The threshold
should be a dynamically adjustable value, which can be used
to adapt to the changing of the available bandwidth and
carrying traffic. Besides, the definition above is defined from
the perspective of the total size of the flow, including the data
that has passed and the data that is coming. But in most cases,
the volume of data that is coming is unknown at the detection
moment, so is the total size of the flow. And only when
the flow ends, the total size can be obtained. Therefore, this
definition is much suitable for a post-event network traffic
analysis. Sometimes, the volume of data passed before the
detection is also used to approximately evaluate the total size
of the flow, and the result can be used for a real-time traffic
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scheduling. But this approximation will not probably work
well due to the unknown of coming data, which are exactly the
data that needs to be scheduled. Actually, by introducing the
artificial intelligence, it is possible to learn from the historical
data and make a prediction of flow size before the flow
ends. In this case, the passed data are used to extract specific
features, which are sent to the intelligent model, learned from
the historical data, to discriminate traffic flows or predict
the flow size. Then, the volume of the coming data can be
obtained from the predicted flow size and the volume of
passed data. Obviously, the coming data has great influence
on the coming status of network, and should receive much
more focus in real-time traffic scheduling of AN. Based on
the above analysis, we modify the definition as follow:

f ∈ Fele|Fstotal(f )− Fsv(f ) ≥ Trv (2)

where, Fsv(f ) is the volume of data used for prediction,
and Trv is the detection threshold that can be dynamically
changed.

It is worth noting that, in this paper, small flows serve as
a complement to elephant flows, and then small flows can be
identified with the same threshold.

f ∈ Fmice|Fstotal(f )− Fsv(f ) < Trv (3)

Different from (1), the volume of data used for prediction
Fsv(f ) and the dynamic threshold Trv are taken into con-
sideration in (2). If both Fsv(f ) and Trv are constants, that
is, the volume of data used for prediction and the detection
threshold of elephant flow are fixed. Then equation (2) can
be simplified to (1), where Trc is substituted by the sum of
Fsv(f ) and Trv. In this case, elephant flows and small flows
can be identified only according to the relationship between
the flow size Fstotal(f ) and the constant threshold of the sum
of Fsv(f ) and Trv. Thus, the historical data flows, with known
flow sizes, can be labeled according to the fixed threshold,
and a binary labeled training dataset can be obtained. And
after establishing the connections between the features and
the classes of data flows, a binary classifier can be trained
from the labeled training dataset to detect the elephant flow
easily.

According to (2), the classes of data flows are still related
to the flow size, the volume of data used for prediction and the
dynamic threshold. However, for AN, the detection threshold
Trv is a variable, and the volume of data used for prediction
Fsv(f ) may also change. Thus, the relationships between the
features and the classes of historical flows are inconsistent
and changing, and the binary labeled training dataset with
the uniform threshold may no longer be applicable. In this
case, a static binary classifier is incompetent, and a regression
model with dynamic threshold is needed. Different from the
binary classification, the regression model does not need the
labeling of historical flows. It is constructed only based on
the features and the sizes of the historical data flows, which
is no difference with the dynamic detection threshold. For a
new arrival data flow, the predicted flow size can be obtained
from the regressionmodel inputtedwith the features extracted

from the data passed. The dynamic threshold elephant flow
detection is achieved by comparing the predicted flow size
and the dynamic threshold.

Suppose Dn is the training dataset, which contains n sam-
ples (xi, yi), i = 1, · · · , n, where xi=(xi1, xi2, · · · , xim) is
the features of the ith sample in the dataset, xim is the mth
dimension feature of xi, and yi is the corresponding flow size.
For the fixed detection threshold, as the detection threshold
is fixed and knowable, the sample (xi, yi) can be labeled with
the formula:

li =

{
lele, yi ≥ Trc
lmice, yi < Trc

(4)

where, yi is the size of the flow and Trc is the detection
threshold.

After the labeling, the binary labeled training dataset
(xi, li), i = 1, · · · , n can be obtained, where li is either
lele or lmice. Based on the binary labeled training dataset, a
mapping or a binary classifier MC : x → {lele, lmice} can
be obtained with a machine learning strategy. When a new
flow f∗ arrivals, the corresponding features x∗ are sent to the
modelMC , and the class of the flow can be directly obtained
by l∗ = MC (x∗)
While, for the dynamic threshold detection, as the detec-

tion threshold is dynamic changing, then the samples cannot
be labeled with a threshold. In this case, the sizes of flows are
regarded as labels. Regression learning is directly taken on
this consistent label dataset, and a regression model or pre-
dictor MR : x → y is used to predict the flow size. When a
new flow f∗ arrivals, the corresponding features x∗ are sent
to the model MR, the predicted flow size can be obtained by
y∗ = MR(x∗). By substituting the detection threshold Trv and
the predicted flow size y∗ into (2), the class of the flow can be
determined. The processes of detection with fixed threshold
and dynamic threshold are shown in Fig. 1.

As can be seen in Fig. 1, the difference between the fixed
threshold detection and the dynamic threshold detection lies
in the labeling. In the fixed threshold detection, the classifi-
cation is adopted, and the labeling is placed before training.
While, in the dynamic threshold detection, the regression
is adopted, and the labeling is placed after the prediction
of flow size. It is obvious that the results of elephant flow
detection with dynamic threshold are seriously influenced by
the results of regression prediction. Therefore, the key of the
dynamic elephant flow detection proposed in this paper is the
regression for the flow size.

III. FLOW SIZE REGRESSION WITH PRE-CLASSIFICATION
Researches [26]–[28] show that the flow size of network
traffic is distributed in a wide range, and the distribution
is usually imbalanced. It is difficult to do the regression
learning on the original training dataset. In order to reduce
the difficulty and improve the accuracy, here we introduce
a strategy of pre-classification for the flow size regres-
sion. Before the regression learning, a filtering mechanism
with waiting-window is firstly used to filter out parts of
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FIGURE 1. The processes of elephant flow detections with fixed and
dynamic threshold.

small flows, which can compress the prediction range and
alleviate the phenomenon of imbalance. Since fewer sam-
ples need to be further processed, the detection cost will
decrease. Then, the pre-classification method is adopted to
divide the range of flow size to be predicted. Classifiers
are trained on the dataset labeled with dividing borders
and regression predictors are trained on the divided dataset.
Thus, the regression of flow size can be carried out in a
compressed range and implemented much easier. After the
regression, the predicted flow size is compared with the
specific detection threshold related to the specific communi-
cation condition to detect the elephant flows. The entire pro-
cess of flow size regression with pre-classification is shown
in Fig. 2.

As can be seen in Fig. 2, the entire process of flow
size regression with pre-classification consists of the offline
training part and the online detecting part. In the train-
ing stage, waiting-window filtering mechanism is used to
screen out available training samples, and pre-classification
is used to pre-train the standby classifiers and regression
predictors. While, in the testing stage, waiting-window fil-
tering mechanism is used to filter out and detect parts of
small flows, and pre-classification is used to select spe-
cific classifiers or regression predictors for elephant flow
detection.

FIGURE 2. The process of flow size regression with pre-classification.

A. WAITING-WINDOW FILTERING
Due to the heavy-tailed distribution in network traffic, there
are many small flows either in the training dataset or the
testing data. Although the volume of carrying data is small,
the number of small flows is huge. In the training stage,
the huge number of small flows will lead to the sample
imbalance of the training dataset, which will seriously affect
the preferences of the prediction model to be generated. In the
stage of prediction, since the number of packets used for
feature extraction is very limited, it is almost impossible to
predict the flow size of such small flows. These unpredictable
small flows will lead to a lot of unnecessary prediction over-
head. Even if we can make an accurate prediction at great
cost, it is also not cost-effective to control the remaining data.

In order to reduce the negative impact of such small flows,
a filtering mechanism with waiting-window is adopted.
According to the property of fewer packets and relatively
lower packets frequencies, parts of small flows can be elimi-
nated with a time stack, together with the feature extraction.
By setting a waiting-window, small flows that do not meet
the packet number required for feature extraction within the
specific time are eliminated, and potential elephant flows rep-
resented by the features are retained. In the training stage, this
filtering mechanism can be used to alleviate the imbalance of
the training dataset used for classification or regression, and
then a relatively balanced modified training dataset can be
obtained. In the detecting stage, it can be used to reduce the
number of flows that need to be further processed by clas-
sification or regression, thus improving detection efficiency
and reducing detection cost. The process of waiting-window
filtering is shown in Fig. 3.

As can be seen in Fig. 3, in the waiting-window, packets of
flows are collected until a sufficient number is satisfied. If the
number of packets is sufficient within the waiting-window,
the flow is retained, and the collected packets are sent for
feature extraction. Otherwise, the flow is discarded.

In the module of feature extraction, the desired features to
represent the flow are extracted based on the collected pack-
ets. Usually, the header information and statistical parameters
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FIGURE 3. The process of waiting-window filtering.

of packets are adopted as features to deal with the encryption
technology. These features can be obtained with Network
data analysis tools and numerical calculation tools.

After the process of waiting-window filtering, features and
the size of the flow are saved as a sample in the training
dataset.

B. PRE-CLASSIFICATION
After the preprocessing of the waiting-window filtering, the
number of small flows in the modified training dataset is
greatly reduced, which alleviates the phenomenon of imbal-
ance. However, as the flow size is distributed in a relatively
large range, it is still difficult to make a regression prediction
in the entire range. In order to further reduce the regression
difficulty and improve the accuracy of prediction, we divide
the range of flow size into several small ranges by means of
pre-classification, and further compress the range that needs
to be predicted.

1) DIVISION OF PREDICTION RANGE
Before dividing the range of flow sizes to be predicted,
the concepts about the ranges of the flow sizes are necessary
to be clarified. One is the range of flow sizes of the training
dataset, covering the minimum and maximum flow sizes of
the samples in the training dataset; the other is the range of
the dynamic thresholds, used to detect the elephant flows,
covering the minimum and maximum flow size to be further
processed. Intuitively, the range of dynamic threshold is more
desirable than the flow size range of the training dataset. But
it is closely related to the changing of bandwidth and carrying
traffic, and cannot be known in advance. Therefore, we have
to settle for the second best, i.e., selecting the range of flow
sizes of the training dataset.

For the range division, two important parameters need to
be determined. One parameter is the number of the divided
sub-ranges, which corresponds to the number of classes that
need to be classifiedwith pre-classification. Since the number

of the classes to be classified increases with the number of
sub-ranges, the finer the classification granularity the smaller
the range. When the classification granularity is fine enough,
the results of multiple classifications can even be regarded
as the prediction value. But it is worth noting that the finer
granularity leads to the higher cost. The other one is the
specific division thresholds. These thresholds are determined
based on the specific distribution of the training dataset on
the premise of giving the sub-range number. The most simple
and convenient method to determine the division thresholds
is to divide the range of flow size or the sample number of the
training dataset by isometric division.

In this paper, the entire range of the flow sizes of training
dataset is not the target to be predicted, and we only select
a subset of the dataset for the prediction. Here we select the
90th percentile and 99th percentile of the flow sizes in the
training dataset as the lower and upper limits that need to be
further processed, that is, only 1% to 10% of the data flows
in the training dataset will be considered in the prediction
model. Usually, flows over the 99th percentile are treated
as elephant flows, and flows under the 90th percentile are
treated as small flows. From the property of heavy-tailed
distribution, it can be seen that even if only one-tenth or even
one-hundredth of the flows at the top of the distribution are
predicted and further processed, the actual volume of traffic
packets is still considerable. After determining the range of
flow size to be predicted, the method of equal quantity divi-
sion is adopted to determine the division thresholds, and thus
avoid the class imbalance between different ranges. In order
to avoid unnecessary division of ranges caused by too small
interval between percentiles, the minimum division interval is
set in advance to reduce classes of classification and simplify
the complexity of pre-classification.

2) MULTI-CLASS CLASSIFIER AND CLASSIFICATION
After dividing the training dataset into sub-ranges or classes,
a multi-class classifier can be obtained by means of training
or learning. Usually, the multi-class classifier can be achieved
directly from a multi-class training, or obtained by the com-
bination of multiple binary classifiers. Due to the mature
skills andmethods of feature selection and data preprocessing
in binary classifier, a good binary classification is relatively
easy to obtain. Therefore, we combine multiple binary clas-
sifiers to achieve the multi-class classifier, and compress the
prediction range. In order to reduce the complexity of pre-
classification, we choose the decision tree C4.5, which is
simple and fast, as the basic classifier. The performance of
this algorithm has been verified in many network traffic clas-
sification studies [29]–[31]. In accordance with the aforesaid
method of prediction range division, lots of classification
training datasets, labeled by the division thresholds, can be
obtained, and a number of decision trees can be trained
based on the training datasets. By combining decision trees
of adjacent division thresholds, a multi-class classifier and
prediction range compression can be achieved.
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For example, suppose that the dynamic detection threshold
of a new arrival flow is Trv. If the classifier of the detection
threshold Trv belongs to the standby classifiers trained in
advance, the new arrival flow can be classified and detected
directly with the corresponding binary classifier. Otherwise,
we can combine the classifiers of division thresholds Tri and
Tri+1, where Tri and Tri+1 are nearest to Trv and satisfy
Tri < Trv < Tri+1.
If the new arrival flow is classified as a small flow by the

classifier Tri, that means:

Fstotal(f )− Fsv(f ) < Tri (5)

then

Fstotal(f )− Fsv(f ) < Trv (6)

For the detection threshold Trv, the new arrival flow is still a
small flow.

If the new arrival data flow is classified as an elephant flow
by the classifier Tri+1, that means:

Fstotal(f )− Fsv(f ) ≥ Tri+1 (7)

then

Fstotal(f )− Fsv(f ) ≥ Trv (8)

For the detection threshold Trv, the new arrival flow is still an
elephant flow.

Besides, if the new arrival flow is classified as an elephant
flow by the classifier Tri and classified as a small flow by the
classifier Tri+1, that means:

Tri ≤ Fstotal(f )− Fsv(f ) < Tri+1 (9)

Although a further regression processing is still needed to
detect the elephant flow, the range of flow size to be predicted
has been compressed, in other words, the sub-range has been
obtained by the pre-classification. The entire process of pre-
classification is shown in Fig. 4.

As can be seen in Fig. 4, in the training stage, the range
of flow size is divided into several small ranges. Based
on the dividing borders, many binary classification training
datasets can be labeled, and binary classifiers are trained
on the datasets to discriminate different sub-ranges. At the
same time, a lot of regression predictors are trained on the
divided datasets within the sub-ranges. In the detecting stage,
the dynamic detection threshold of elephant flow is given,
and the two classifiers, whose dividing borders are closest to
the detection threshold, are selected. The results of classifiers
are combined to determine whether a regression predictor is
further needed to detect the elephant flow.

C. REGRESSION PREDICTION
With the processing of waiting-window filtering and pre-
classification, the classes of some flows have been iden-
tified. For the ones that are not identified yet, the flow
sizes to be predicted have also been compressed by the pre-
classification. Thus, regression prediction can be carried out

in the compressed range for further identification. Different
from regression on the entire range of flow size, the com-
plexity of regression on the compressed range has greatly
decreased, and a more accurate prediction can be achieved.
Currently, there are many algorithms available for regression
prediction. Any algorithm with excellent performance can be
adopted here.

In this paper, the Gaussian process regression [32], [33]
is selected for the flow size prediction. This algorithm can be
easily implemented and has strong generalization ability. The
prediction of flow size in the Gaussian process regression is
treated as a part of Gaussian process, in which any number
of outputs is assumed to be consistent with the joint Gaussian
distribution. Suppose Dn is the training dataset, which con-
tains n samples (xi, yi), i = 1, · · · , n, where xi is the features
of the ith sample in the dataset, and yi is the corresponding
flow size. Let X be the matrix composed of all xi, and y be
the vector composed of all yi, then the training datasetDn can
be expressed as (X, y). For a new arrival flow f∗, x∗ represents
the input features, and the output flow size y∗ satisfies:(

y
y∗

)
∼ N

(
0,
[
K (X,X)+ σ 2

n I K (X, x∗)
K (x∗,X) K (x∗, x∗)

])
(10)

where, N (·) represents the joint Gaussian distribution, K (·, ·)
represents the covariance matrix between the input vectors,
and σ 2

n is the noise variance.
From (10), the posterior probability density function of the

flow size of the new arrival flow can be obtained as follows:

y∗|x∗,X, y ∼ N (µ, σ 2) (11)

where

µ = K (x∗,X) · (K (X,X)+ σ 2
n I)
−1
· y (12)

σ 2
= K (x∗, x∗)−K (x∗,X) · (K (X,X)+σ 2

n I)
−1
· K (X, x∗)

(13)

Since the probability density function of the Gaussian dis-
tribution is symmetric about the mean µ and has the greatest
probability at the mean µ, the mean in (12) is generally
regarded as an estimate of the flow size y∗.

IV. NUMERICAL EXPERIMENTS
A. DATASET AND SETTINGS
In order to verify the performance of proposed method for
the dynamic threshold elephant flow detection in airborne
network, an evaluation dataset from an airborne network is
needed. However, currently, there is no public and available
airborne network traffic datasets, and traffic generation and
emulation for airborne network have not been fully studied.
Fortunately, the focus of this paper is on the problem of
elephant flow dynamic detection, and the phenomenon of
heavy-tailed distribution is universal for both airborne net-
work and ground wired computer network. In this paper, a
modified dataset, which is modified from the UNIBS-2009
dataset [34], is adopted for the numerical experiments. The
original traces of UNIBS-2009 are collected on the edge
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FIGURE 4. The process of pre-classification.

FIGURE 5. Distribution of flow size and percentage of total packets over
flow size. Left axis: CDF; Right axis: percentage of total packets.

router of the campus network of the University of Brescia on
three consecutive working days, generated by a set of twenty
workstations. The traffic includes Web, Mail, Skype, traffic
generated by Peer-to-Peer applications and other protocols,
around 79000 conversations in total. For airborne network,
most services [35]–[38] are very similar to the UNIBS-2009,
such as, instant messaging, voice communication, transmis-
sion and sharing of pictures and radios, and so on. Therefore,
similar traffic flows are selected into the modified dataset
to evaluate the proposed method. 26114316 data packets
and 154714 flows are included. The cumulative distribution
function of flows and packets over the flow size are shown in
the Fig. 5.

It can be seen from Fig. 5 that flow sizes in the selected
dataset is widely distributed, ranging from a few packets to
millions of packets. The numbers of flows with different sizes
vary greatly. The numbers of small flows, containing fewer
packets, are very huge, while the numbers of elephant flows,
containing more packets, are very small. The phenomenon of

imbalance and the characteristics of heavy-tailed distribution
are very obvious.

In this paper, 75% of the samples in the dataset are ran-
domly selected as the training dataset, and the remaining
25% are the testing dataset. To achieve the early detection of
elephant flow, the first ten packets of the data flow are used for
feature extraction. Here we extract some parameters related
to the first ten packets as features, including the packet size,
inter-arrival time (IAT), and statistics of packet size and IAT.
Additionally, the source port, destination port, protocol type
and duration of first ten packets are also extracted. Among the
desired features, source port, destination port, and protocol
type are extracted from the header of the first packet. The
size and inter-arrival time (IAT) of the first ten packets are
extracted from the header and timestamp of each packet.
The statistics of size and IAT of the first ten packets are
obtained based on the size and inter-arrival time (IAT) of the
first ten packets. The duration of the first ten packets is also
extracted from the timestamp of the first ten packets. As the
basis for these features, both the header and the timestamp
of packets are extracted with the tool Wireshark, and statis-
tics and numerical calculations are conducted with MAT-
LAB. The numerical experiments are running on a DELL
XPS8930 with an Intel i7-8700 3.2 GHz CPU and 16GB
RAM. Weka 3.8.4 and MATLAB 2018b are used as software
frameworks, which are running on Windows 10 64-bit OS.
The Weka is used for feature selection for pre-classification,
and the MATLAB is used for regression prediction with
its own Regression Learner tool. The results of the feature
selection in adjacent binary classifiers are used for regression.
It is assumed that the dynamic threshold obeys the normal
distribution and changes every 20 samples. The simulation is
repeated 20 times and the average result can be obtained.

B. PERFORMANCE EVALUATION
In this paper, precision, recall and f-score are used to evaluate
the performance of dynamic elephant flow detection. They
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are defined as follows:

precision =
TP

TP+ FP
(14)

recall =
TP

TP+ FN
(15)

f − score =
2× precision× recall
precision+ recall

(16)

where, TP represents the positive examples correctly classi-
fied, FP represents the negative examples incorrectly clas-
sified as positive examples, and FN represents the positive
examples incorrectly classified as negative examples. There-
fore, the precision represents the ratio of the true elephant
flows within the elephant flows detected, while the recall
represents the ratio of the true elephant flows detected within
the entire true elephant flows. F-score is the harmonic mean
of precision and recall.

C. RESULTS AND ANALYSIS
1) PERFORMANCE EVALUATION OF REGRESSION WITH
PRE-CLASSIFICATION
To evaluate the performance of the proposed method,
we compare the performance of the existing binary classifier
(C1), multi-class classifier (CM), global regression predic-
tor (R1) and the proposed regression predictor with pre-
classification (RC). The precision, recall, f-score and detect-
ing time of the four methods are compared respectively.

Fig. 6 shows the results of the comparison. Influenced by
the dynamic threshold, all the precision, recall and f-score
of binary classifier, which is trained on the fixed threshold,
are not very good. In contrast, in the multi-class classifier
and regression predictor, the negative influence of dynamic
threshold can be mitigated to some extent and better results
are achieved. Compared with multi-class classifier, regres-
sion predictor with pre-classification has better performance.
This is because the proposed modified regression predictor
makes a further regression on the multi-classification results
instead of directly selecting the nearest classification results,
thus the misclassification caused by the difference between
actual threshold and training threshold in the multi-class
classifier is improved. However, the addition of regression
step also increases the testing time of the proposed method.
Comparing the results of global regression predictor and
regression predictor with pre-classification, it can be found
that the performance of global regression ismuch poorer. This
is because it is hard to construct a global model on the larger
range. If the model is not reasonable or the parameters are
not well adjusted, the performance of the global regression
will be greatly reduced. Different from the global regression,
the proposed regression with pre-classification compresses
the range of flow size to be predicted in advance, which
results in better performance. In addition, early detection of
elephant flows in the pre-classification stage also helps to
reduce detection time. It is worth noting that, in this paper,
the model and parameters of the global regression are almost
same with the pre-classification regression. And under the

FIGURE 6. The performance comparison of various elephant flow
detection methods: (a) Comparison of precision, recall and f-score; (b)
Comparison of detecting time.

same parameter settings, the pre-classification regression is
much better. Global regression prediction is a complicated
problem. If we have enough training data and could adjust the
model and parameters regardless of the cost, global regression
may get a better result.

2) EFFECTS OF THE NUMBER OF CLASSES IN
PRE-CLASSIFICATION
In order to investigate the effects of the number of classes in
pre-classification, we compare the multi-class classifier and
the proposed regression predictor under different numbers of
classes. The results are shown in Fig. 7.

As shown in Fig. 7, with the increase of the number of
classes, the performances of multi-class classifier and regres-
sion predictor with pre-classification continue to improve,
and finally tend to almost the same high level. The simulation
results indicate that the increase of the number of classes
is conducive to the improvement of the performance of the
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FIGURE 7. The performance comparison of multi-class classifier and
regression predictor with pre-classification under different numbers of
classes: (a) Comparison of precision; (b) Comparison of recall; (c)
Comparison of f-score.

elephant flow detection under dynamic thresholds. Besides,
in terms of the precision, recall and f-score, the regression
predictor with pre-classification is always better than the

FIGURE 8. The performance comparison of various elephant flow
detection methods under different standard deviations of dynamic
threshold: (a) Comparison of precision; (b) Comparison of recall;(c)
Comparison of f-score.

multi-class classifier. With the increase of the number of
classes, the gaps between them decrease. This is because that,
the classification granularity is continuously refined with the
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increase of the number of classes and the role of regression
has been weakened. Under the circumstances, the better per-
formance can be achieved only with multi-class classifier.

3) INFLUENCE OF DYNAMIC THRESHOLD
In order to verify the robustness of the proposed method,
we evaluate the performance of the method under different
changing intensities of the detection threshold. As mentioned
earlier, the changing of dynamic threshold is assumed to be
normally distributed. Therefore, we can change the intensity
of the detection threshold by changing the standard deviation
of normal distribution.

Fig. 8 shows the performance comparison of four different
elephant flow detection methods under different standard
deviations of dynamic threshold. It can be found that, with
the increase of standard deviation of the dynamic thresh-
old, the detection performance of binary classifier (C1)
degrades greatly. Different from continuous degradation of
binary classifier, the performances of both the regression
predictor (R1 and RM) and the multi-class classifier (CM)
decrease slightly with the increase of standard deviations of
the dynamic threshold. Comparing the regression predictor
with pre-classification and the multi-class classifier, the for-
mer is even lesser. In contrast, limited by the accuracy of
flow size prediction, the performance of the global regression
method keeps at a low level.

Through the comparisons above, it can be seen that the
proposed method of pre-classification regression can be well
applied to the problem of dynamic threshold flow detection,
and the performance is relatively good.

V. CONCLUSION
In this paper, we propose a regression method to deal with the
dynamic elephant flow detection in AN. Flow size regression
is regarded as an intermediate to adapt to the dynamic change
of detection thresholds. The elephant flows are identified by
comparing the regression result with the specific detection
threshold. In order to reduce the detection cost and improve
the accuracy of flow size regression, waiting-windowfiltering
mechanism and pre-classification strategy are used to filter
outmost small flows and compress the range of flow size to be
predicted. The simulation results verify the proposed method,
and the performance is relatively good.

For future work, it is necessary to make further studies of
traffic generation and emulation for AN, as the actual data of
AN is hard to collected. In addition, further studies of more
fine-grained traffic classification, such as, the combination of
regular traffic classification and elephant flow detection, and
more general frameworks or models of traffic classification
are also necessary to be studied to improve network perfor-
mance.
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