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ABSTRACT In this paper we present a robust trajectory tracking control for a fully actuated marine surface
vehicle. The tracking controller is obtained using a port-Hamiltonian model of the marine craft and includes
an integral action to compensate for constant disturbances. The proposed approach adds damping into
both the position and integrator coordinates, leading to input-to-state stability with respect to time-varying
disturbances. We exemplify this controller with a simulation for an unmanned surface vehicle subjected
to constant and time-varying wind disturbances. The tracking controller rejects the disturbances achieving
global exponential stability for constant disturbances and input state stability for time-varying disturbances.

INDEX TERMS Input-to-state stability, integral control, marine craft, port-Hamiltonian systems, trajectory
tracking.

I. INTRODUCTION
In recent years, unmanned surface vehicles (USV) have been
increasingly adopted for scientific, commercial and govern-
ment applications [1]. As USVs are nonlinear, design of con-
trol systems for regulation and tracking tasks is non-trivial.
Further complicating the task, marine system are unavoidably
affected by wind and ocean disturbances, which can affect the
stability properties of the system. Several methods for con-
trolling USVs have been reported in the literature, including
backstepping, sliding mode and passivity-based control.

Backstepping has been utilised by several authors for a
combination of sea keeping (set-point regulation), tracking
control and disturbance rejection—see [2]–[4] and enclosed
references for an overview of this approach. Using this
approach, exponential stability is ensured by first designing
the controller about the tracking error dynamics and then
backstepping to the velocity dynamics, recovering the control
law. The drawback of this approach, however, is that it can
lead to complex control laws that neglect the underlying
physics of the system.

Sliding mode controllers have also successfully been
applied to USVs for tracking control [5]–[7].
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approving it for publication was Liang Hu .

Such controllers produce finite-time convergence and are
well known to be robust against bounded matched distur-
bances. The drawback, however, is the existence of a control
discontinuity at the origin of the closed-loop dynamics which
can lead to chattering. This limitation has been relaxed in
recent years with the introduction of higher-order sliding
modes, which comes at the expense of increased controller
complexity.

Intelligent tracking controllers commonly use fuzzy logic
algorithms to reject unknown disturbances acting over surface
vessels [8], [9]. The results with the implementation of fuzzy
aproximators show exponential stability, however, the rules
must be constantly updated, this implies online connection
and also computational complexity. In [10] is shown that
for complex unknown disturbances tracking errors can con-
verge to a neighborhood of zero, then the stability for the
error dynamics is uniformly bounded. Downsides of this
approach include the computational requirements of fuzzy
control and the need to update the fuzzy rules online. These
disadvantages make these controllers hard to implement on
autonomous USVs.

Passivity-based control is an alternate approach to control
design that emphasises the role of power and energy within
the system [11]. The approach has been applied to track-
ing control problems in [12], [13] and disturbance rejection
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FIGURE 1. USV system configuration in the horizontal plane for three
degrees of freedom.

problems in [14], [15]. The approach was applied to the
problem of tracking control and disturbance rejection for
USV system in [16].

In this work, we combine the methods of trajectory track-
ing control and disturbance rejection using the pH framework.
Following this approach, damping is added to all coordinates
of the system, allowing verification of strong stability prop-
erties such as exponential stability and input-to-state stability
(ISS). Extending on the work [16], we avoid the need for a
coordinate transformations.
Notation: 0n×m denotes a matrix n×m of zeros, In denotes

a n × n identity matrix. For x ∈ Rn, ‖x‖2 = x>x. All
functions are assumed to be sufficiently differentiable. For
a mapping H : Rn

→ R, the gradient transpose is denoted
as ∇H := ( ∂H

∂x )
>. For a symmetric matrix A = A> ∈ Rn,

λmin(A) denotes the minimum (real) eigenvalue of A.

II. BACKGROUND AND PROBLEM FORMULATION
A. SYSTEM MODEL
In this work, we consider USVs restricted to operate in the
horizontal plane with three degrees of freedom. The USV,
shown in Figure 1, is a catamaran with two thrusters installed
along the gravity centre line `. Each thruster is fixed to a
gearbox which controls the rotation of the thruster from 0 up
to 360◦. Using this configuration, this vehicle can produce
control forces in surge, sway and yaw independently.

The dynamic behaviour of USV systems can be described
by the dynamic equations

η̇ = R(ψ)ν

M ν̇ + C(ν)ν + D(ν)ν + g(η) = τc − τd (t), (1)

where η = [x, y, ψ]>, are the translational positions
and heading angle of the vessel, ν = [u, v, r]> are the
body-fixed velocities containing surge, sway and yaw-rate,
M = M> > 0 is the body-fixed mass matrix which includes

added mass due to fluid-body interactions, C(ν) = −C>(ν)
is centripetal and the Coriolis acceleration matrix, D(ν) =
D>(ν) > 0 is the hydrodynamic damping matrix, g(η) is the
generalized forces vector due to gravity and buoyancy [17], τc
is a vector of control inputs and τd (t) is a vector of unknown,
and possibly time-varying, disturbance forces. The matrix
R(ψ) is a rotation that maps from the body-fixed velocities
ν to the inertial velocities η̇. For the problem considered in
this work, the matrix R(ψ) has the particular form

R(ψ) =

 cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (2)

and satisfies the property R−1(ψ) = R>(ψ).
As shown in [18], by defining the systems momentum as

p = Mν, (3)

the system (1) can be written as an input-state-output port-
Hamiltonian system of the form[
η̇

ṗ

]
=

[
03×3 R(ψ)
−R>(ψ) −8(p)

] [
∇ηH
∇pH

]
+

[
0
In

]
[τc − τd (t)],

(4)

where

H (η, p) =
1
2
p>M−1p+ V (η) (5)

is the Hamiltonian containing the kinetic and potential ener-
gies of the system and8(p) = [C(ν)+ D(ν)] |ν=M−1p which
satisfies 8(p)+8>(p) > 0.

B. PROBLEM FORMULATION
In this note, we consider the trajectory tracking problem for
the system (4). That is, given a pre-defined twice differen-
tiable reference trajectory

ηd (t) = [xd (t), yd (t), ψd (t)]>, (6)

the objective is to design a dynamic control law

ẋc = fx (7)

u = fu(η, p, xc) (8)

such that the signal

η̃ := η − ηd (9)

converges to the origin at an exponential rate.

C. CONTRIBUTIONS
In this paper, we combine tracking control with integral
action within the port-Hamiltonian framework to achieve
exponential tracking of reference trajectories in the presence
of unknown constant disturbances. Such disturbances are rep-
resentative of wave and wind disturbance which are unavoid-
able in practice. The scheme is also shown to be ISS with
respect to arbitrary time-varying disturbances. In contrast
with the work [16], we avoid the need for a momentum coor-
dinate transformation, simplifying the control design process
and implementation for autonomous vehicles.
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III. TRAJECTORY TRACKING CONTROL
In this section, we propose a trajectory tracking control law to
solve the problem formulation of Section II-B. The approach
combines the work [16] with aspects of the integral action
scheme [19], avoiding the need for a momentum coordi-
nate transformation. By combining these methods, damping
is injected into all coordinates, allowing the verification of
strong stability properties such as global exponential stability
and ISS.

For this construction, we consider the disturbance term
τd (t) to be comprised of a constant component dc and a time-
varying component dt (t). That is,

τd (t) := dc + dt (t). (10)

An integral action controller will be introduced to asymp-
totically reject the effects of the constant disturbance dc
whereas the system will be shown to be ISS with respect to
the time-varying disturbance dt (t). In addition, we define an
augmented model for η and p including the new vector ξ ,
which represents the dynamics for the integral states in the
energy shaped Hamiltonian function Hd defined below.
Proposition 1: Consider the system (4) in closed-loop with

the dynamic control law

ξ̇ = −R>(ψ)Kpη̃ − Kd3M
−1 [p− pd (η, t)] (11)

τc = R>(ψ)∇ηV +8(p)M−1p+ ṗd − R>(ψ)Kpη̃

−Kd2M
−1p̃+ (Kd2 + K

>
d3 )Ki(ξ − p̃), (12)

where Kd1 ,Kd2 ,Kd3 ,Ki,Kp ∈ R3×3 are positive definite
tuning parameters and

p̃ = p− pd
pd = MR>(ψ)

[
η̇d − Kd1Kpη̃

]
ṗd = M

d
dt

[
R>(ψ)

] [
η̇d − Kd1Kpη̃

]
+MR>(ψ)

{
η̈d − Kd1Kp

[
R(ψ)M−1p− η̇d

]}
. (13)

The closed-loop dynamics can be written as a port-
Hamiltonian system of the form ˙̃η˙̃p

ξ̇

 =
 −Kd1 R(ψ) R(ψ)
−R>(ψ) −Kd2 K>d3
−R>(ψ) −Kd3 −Kd3

∇Hd −
 0
dt (t)
0


(14)

with α = K−1i (Kd2 + K
>
d3
)−1dc, and

Hd=
1
2
p̃>M−1p̃+

1
2
η̃>Kpη̃+

1
2
(ξ−p̃−α)>Ki(ξ−p̃−α).

(15)
Proof: The proof follows from direct matching of the

dynamics (14) with those of (4). First consider the dynamics
of η̃ in (14) which can be expressed as

˙̃η = −Kd1Kpη̃ + R(ψ)
[
M−1p̃− Ki(ξ − p̃− α)

]
+R(ψ)Ki(ξ − p̃− α)

= −Kd1Kpη̃ + R(ψ)M
−1(p− pd )

= R(ψ)M−1p− η̇d , (16)

which is the time derivative of η̃, defined in (9). Now,
the dynamics of ξ in (14) can be rewritten as

ξ̇ = −R>(ψ)Kpη̃ − Kd3
[
M−1p̃− Ki(ξ − p̃− α)

]
−Kd3Ki(ξ − p̃− α)

= −R>(ψ)Kpη̃ − Kd3M
−1p̃, (17)

which agrees with (11). Finally, we consider the dynamics of
p̃. From the definition of p̃ in (13) we have that

˙̃p = ṗ− ṗd
= −R>(ψ)∇ηV −8(p)M−1p+ τc − [dc + dt (t)]︸ ︷︷ ︸

τd (t)

−ṗd

= −dc − dt (t)− R>(ψ)Kpη̃ − Kd2M
−1p̃

+ (Kd2 + K
>
d3 )Ki(ξ − p̃)

= −dt (t)− R>(ψ)Kpη̃ − Kd2M
−1p̃

+ (Kd2 + K
>
d3 )Ki(ξ − p̃− α), (18)

where we have expressed dc in terms of α from (15). This
final expression agrees with (14) as desired.
Remark 1: Notice that the last term in (15) introduce a

cross term in the Hamiltonian function that results in a con-
troller (11),(12), which is simpler than that of [16]. Also,
notice that ṗd and thus the control signal depend on the term
d
dtR
>(ψ), which can be easily computed as function ofψ and

ψ̇ .
The closed-loop dynamics (14) have a pH structure, which

ensures stability, but are subject to an external disturbance
term dt (t) that can impact on the stability properties of the
closed-loop. In the following proposition, it is shown that if
the disturbance is constant (τd = dc), the trajectory error
exponentially converge to zero. In the case of a time-varying
disturbance (τd (t) = dc + dt (t)), it is shown that the closed-
loop system (14) is input-to-state stable with respect to the
time-varying disturbance. In lay terms, this means that if
the time-varying disturbance is bounded, the deviation of
the system from the desired trajectory will also be bounded.
The size of these bounds can be changed using the tuning
parameters provided in Proposition 1.
Proposition 2: The closed-loop dynamics (14) have the

following properties:
1) If the disturbance is constant (τd = dc), then the

equilibrium point

(η̃, p̃, ξ ) = (0n×1, 0n×1, α) (19)

is globally exponentially stable, which implies that the
tracking error η̃ converges to the zero at an exponential
rate.

2) If the disturbance is time-varying (τd = dc + dt (t)),
then the closed-loop system is ISS with respect to the
disturbance dt (t).
Proof: The proof follows by taking Hd , defined in

(15), to be a (ISS) Lyapunov candidate for the closed-loop
dynamics (14). Before proving the claims, first notice thatHd
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can be written as

Hd =
1
2
χ>Qχ (20)

where

Q :=

 Kp 0 0
0 M−1 + Ki −Ki
0 −Ki Ki

 , χ :=

 η̃

p̃
(ξ − α)

 . (21)
As Q is positive definite, Hd satisfies

k1‖χ‖2 ≤ Hd ≤ k2‖χ‖2 (22)

for some k1, k2 ∈ R+.
Now, computing the time derivative ofHd along the trajec-

tories of (14) results in

Ḣd = −∇>Hd diag(Kd1 ,Kd2 ,Kd3 )∇Hd −∇
>Hd

 0n×1
dt (t)
0n×1


≤ −(Qχ )> diag

(
Kd1 ,Kd2 −

c1
2
,Kd3

)
Qχ

+
1
2c1
‖dt (t)‖2 , (23)

where c1 > 0 is an arbitrary constant from application of
Young’s inequality. Taking c1 = λmin(Kd2 ), (23) simplifies to

Ḣd ≤ −σ ‖χ‖2 +
1

2λmin(Kd2 )
‖dt (t)‖2 , (24)

where

σ = λmin

(
Q>diag

[
Kd1 ,Kd2 −

1
2
λmin(Kd2 )I3,Kd3

]
Q
)
.

(25)

To verify claim 1 notice that in the case of constant distur-
bances only (dt (t) = 0n×1), (24) simplifies to

Ḣd ≤ −σ ‖χ‖2 ≤ −εHd , (26)

for some ε > 0. Global exponential stability follows from
Theorem 4.10 of [20]. To verify claim 2, notice that Hd is
decreasing whenever

‖χ‖ >
1√

2λmin(Kd2 )σ
‖dt‖ , (27)

verifying the closed-loop dynamics are ISS with respect to
the time-varying disturbance dt (t).
Remark 2: From (26) it can be seen that the rate of con-

vergence can be increased by increasing the tuning gains
Kd1 ,Kd2 andKd3 . From (27) it can be seen that the final bound
of the state due to time-varying disturbances dt (t) is related
to the gain Kd2 , which is a parameter to be selected.

IV. FULLY ACTUATED UNMANNED SURFACE VEHICLE
The actuator configuration described in Section II.A allows
for forces and moment in all degrees of freedom of interest.
This characteristic of the vehicle is exploited for trajectory
tracking and rejection of slow-varying disturbances, such as
wind.

Moreover, the USV is an over-actuated system since there
actuators commands that will produce a demanded gener-
alised forces is non unique. Then, if the controller demands
a particular vector of generalised forces, the actuator com-
mands are obtained using a control allocation algorithm [21].

A. CONTROL ALLOCATION
As shown in Section II.A, the forces produced by the actua-
tors can be decomposed in rectangular components noted as
FLx and FLy for the left thruster, and FRx and FRy for the right
thruster. These forces can be map into generalised forces τc
using the geometry of the USV, which in this case results as
follows

τc =

 1 0 1 0
0 1 0 1
`Ly

2
−
`Lx

2
`Ry

2
`Ry

2


︸ ︷︷ ︸

:=T


FLx
FLy
FRx
FRy


︸ ︷︷ ︸
:=u

(28)

where `Lx , `Ly, `Rx , and `Ry are the distances from the thruster
to the vehicle’s centre of mass. Notice that the x and y
components of the actuator forces can be written as

Fxi = fi cos(θi), Fyi = fi sin(θi), (29)

for i = {L,R}, and where fi is the thrust force and θi azimuth
angle of the thruster i. Given the vector of generalised forces
τc computed by the controller, we need to determine the actu-
ator commands u. A classical solution to this problem is to
use the Moore-Penrose pseudoinverse of the transformation
matrix T , that is

u = T †τc, (30)

with T †
= T>(TT>)−1 is the pseudoinverse of T . Once the

actuator command vector u is known, we can compute the
thrust forces and azimuth angles as follows

θi = atan2(Fyi ,Fxi ) (31)

ui =
1
k

√
F2
xi + F

2
yi (32)

where k a force coefficient, which is constant for trolling
thrusters [22].

B. HYDRODYNAMIC CHARACTERISTICS AND
WIND DISTURBANCES
In this subsection, we describe the hydrodynamic parameters
of the dynamic model of the USV. Moreover, the characteris-
tic of the wind disturbances are obtained using data reported
in the literature for a USV performing surveys on a specific
geospatial area. The wind forces are described in the horizon-
tal plane, and the fluid dynamics behaviour as eddies or wake
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TABLE 1. Main dimensions of the USV.

effects circulating around the USV are neglected. We con-
sider the linear theory for surface gravity waves where there
are no lifting forces considering the long-wave approximation
assumption, thus, the hydrostatic forces can be neglected. For
slender vessels this approximation allows to consider the free
surface as rigid surface with infinite depth [23].

The physical characteristics of the USV considered in this
paper are shown in the Table 1. We also approximate the
values of the hydrodynamic parameters and provide the sys-
tem characterisation used for standard manoeuvres of surface
vessels [24].

We used a normalization factor reported in [25] with vehi-
cle parameters similar to those used for the DELFIM vehicle
described in [26].

The mass matrixM corresponding toMRB and added mass
matrix MA are

M =

 553.7 0 0
0 1232.09 30
0 30 841.3

 (33)

Components in MA are hydrodynamics parameters
Xu̇ = −23.7kg for surge added mass, Yv̇ = −702.09kg for
sway added mass, Nṙ = −409.3kgm2 for the inertial effects
due to added masses and sway added masses related with the
angular velocity Yṙ = Nv̇ = −30.01kgm.
The Coriolis and centripetal forces effects of acceleration

in the USV are captured by the matrix

C(ν)=


0 0 −1232.09v−30r
0 0 553.7u

1232.09v+30r −553.7u 0


(34)

The damping matrix describes the hydrodynamic resistance
forces, that is the energy dissipation in the interaction
between the USV and the water volume [17]. The dissipation
phenomena is represented by the matrix

D(ν)=

−3.9|u| 0 0
0 −601.02|v|+339|r| 0
0 0 51.6|v|+1903.1|r|


(35)

The generalised forces produced by the wind can be modeled
as the sum of a constant component, and a time-varying

FIGURE 2. USV under wind disturbances Vw at the rigid body framework.

component. The time-varying component is modelled as

τd =
1
2
ρaV 2

rw

 −cx cos(γrw)AFwcy sin(γrw)ALw
cz sin(2γrw)ALwLoa

 (36)

where cx , cy and cz are coefficients that can be estimated
based on experimental results from [27]; Vrw(urw, vrw) is the
relative wind velocity with its components in surge urw and
sway vrw from (39); ρa is the air density at standard state
conditions; AFw is the wind frontal contact area with the USV
and ALw is the wind lateral contact area with the USV; Loa is
the length overall along the USV; γrw is the relative angle of
attack. The non-static and fast time-varying wind speed in the
horizontal plane is calculated as follow

uw = Vwx sin(ωx t − ϕx) (37)

vw = Vwy sin(ωyt − ϕy) (38)

where Vwi is the amplitude, ωi is the frequency and ϕi is the
phase [28]. The relative wind velocity for surge and sway in
the body-frame has the form

urw = uw − u

vrw = vw − v (39)

The angle of attack in the body frame is obtained from
the relative velocities γrw = −arctan2(vrw, urw). Therefore,
Vrw = ‖urw+vrw‖ is the relative velocity used to compute the
generalized forces vector in the Eq. (36). The Fig. 2 presents
the body frame wind disturbance velocity acting on the USV.

C. INTEGRAL ACTION CONTROL FOR THE USV
In order to visualize the IAC response to reject constant and
time varying disturbances a well known parametric curve for

VOLUME 8, 2020 223901
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FIGURE 3. Wind disturbance velocity profiles in x and y directions. Wind
forces generated for the wind profiles.

zig-zag maneuvering is used for tracking control

x(t) = at

y(t) = bsin(ct) (40)

1) WIND DISTURBANCES PROFILE
This trajectory allows us to focus on the pH model response
to the wind forces with a preset amplitude and frequency,
disturbing the USV motion. For the purpose of simulation,
we use the wind speed model (37)-(38) with the parameters
ωx = 0.2, ϕx = 0, ωy = 0.2, ϕy = 1. The wind velocities
profiles uw and vw are based on surveys carried out by CIGoM
and IRPHE-CNRS for the Gulf of Mexico and the Caribbean
Sea [29].

The wind constant disturbances dc start at t1 = 30s with
a wind speed of 25ms−1. At t2 = 70s start the wind time-
varying disturbances as is shown in the Fig. 3 for surge
uw and sway vw shows the wind profile for the velocities
disturbances.

Recalling the Eq. (36), the wind vector for the generalized
forces τd corresponding to the constant and time varyingwind
force acting over USV are shown in Fig 3, notice that wind
force for heading are [Nm] units.

D. TRACKING CONTROL WITH INTEGRAL ACTION
The methodology presented in Proposition 1 guarantees
exponentially stable tracking control when the system is
subjected to only constant disturbances in the actuated coor-
dinates. Furthermore, ISS with respect to time-varying distur-
bances is ensured.

The values for the control tuning matrices for closed-loop
dynamics (14):

• Kd1 = diag(0.8, 0.8, 0.8),
• Kd2 = diag(6, 2, 5),

FIGURE 4. Tracking the reference position for surge, sway and heading.

• Kd3 = diag(0.5, 0.5, 0.5),
• Ki = diag(10, 10, 10),
• Kp = diag(0.6, 0.6, 1).
The reference parametric trajectory (40) and the positions

tracked for the controller are shown in the Fig.4. The Kd2
matrix has a particular importance because of acts on the
momentum states, hence, is more sensitive to changes in its
values.

Tracking controller achieves the reference trajectory from
the initial point. Then at t1 = 30s the constant disturbances
are introduced to the dynamics and rejected for the tracking
controller achieving global exponential stability GES. The
last test at t2 = 70s the time-varying disturbances are applied
to the vehicle and rejected for the tracking controller achiev-
ing ISS. Fig. 4 shows that the tracking controller positions
(blue lines) rejects the disturbances, always fits the reference
positions(red lines), for x, y and ψ positions.
In the velocity plots, see Fig. 5, is pointed the constant

disturbances affecting the marinecraft velocities in surge,
sway and heading. At t1 when dc is acting over the vehi-
cle and creating a deviation that is exponentially rejected,
this behavior is marked in surge and sway velocities. After
t1 + 15s, the velocities recover the tracking reference. For the
time-varying disturbances dt (t), in t2 the velocities deviation
are bounded. The IAC rejects τd this can be seen in the
position plots Fig. 4.

The generalized velocities are presented in the rigid body
frame, this low cruise speed are useful for oceanographic
USV due to the fact that surveying with transects techniques
has a real-time positioning precision at low speeds that is
extremely useful for collecting data. The red lines represents
the reference velocities and the blue line the tracking control.

223902 VOLUME 8, 2020
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FIGURE 5. Tracking the reference velocities(red); tracking controller
trajectory (blue).

FIGURE 6. Integral control generalized forces acting to reject the
disturbances.

The control for the generalized forces input vector are
shown in the Fig.6. From the initial conditions with no distur-
bances the desired position is achieved exponentially when
the vector forces achieve the zero at 10s. For constant dis-
turbances dc at t1 the tracking controller generates the input

FIGURE 7. Convergence to zero of surge, sway and heading errors.

forces and torque for surge, sway and heading, respectively.
Then for t2 the time varying disturbance dt (t) generate the
disturbance rejection forces. Commonly the thruster for small
marinecrafts in this case the USV have a mechanical force up
to 300N, so for this example the energy needed to reject the
disturbances represents one third of the total energy available.

The error dynamics positions are presented in log10 in the
Fig. 7. From the initial position to the reference position
the tracking control shows exponential stability. For t2 to
t = 100 the error dynamics for surge and sway are bounded
for the known disturbances effect. The error states norm ‖χ‖,
Fig. 7, shows the global exponential stability for the constant
disturbances dc at t1 < t2 as was presented in the proposition
2 Eq. (24). For the time-varying disturbances when t > t2,
the error dynamics ‖χ‖ shows input state stability recalling
proposition 2 the Eq. (27). These stability properties imply
that the states of the vehicle exponentially converge to the
desired trajectory and that the states are bounded when the
disturbances are bounded.

V. CONCLUSION
In this paper we designed a passivity-based controller
motivated by the well-known robust properties of this class
of controller. In this sense, we proposed a trajectory tracking
controller designed for fully actuated unmanned surface vehi-
cle preserves the port-Hamiltonian structure for the closed-
loop dynamics with the integration state augmented model.
The control law was exemplified by simulating the USV
dynamic model subjected to both constant and time-varying
wind disturbances. The external disturbances are rejected,
ensuring the error dynamics convergence with GES for con-
stant disturbances and ISS for time-varying disturbances. The
tracking controller is performed in the body frame which
means no coordinate transformations and no computational
complexity. The proposed controller is simpler than previ-
ous passivity-based controllers in the literature. The robust
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properties of the proposed control system against distur-
bances together with the robust properties inherited by the
passivity-based design methods are fundamental for our
future implementation.
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