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ABSTRACT Soil materials can exhibit strongly dispersive properties in the operating frequency range of
a physical system, and the uncertain parameters of the dispersive materials introduce uncertainties in the
simulation result of propagating waves. It is essential to quantify the uncertainty in the simulation result
when the acceptability of these calculation results is considered. To avoid performing thousands of full-
wave simulations, an efficient surrogate model based on artificial neural networks (ANNs) is proposed
in this paper, to imitate the concerned ground penetrating radar (GPR) calculation. With the autoencoder
neural network to reduce the dimensionality of data, the surrogate model successfully predicts the outputs
of the GPR calculation using a small number of training samples. The finite-difference time-domain method
with the uniaxial perfectly matched layer is used to collect sampling data for the surrogate model. The
process of constructing the surrogate model is presented in detail in this paper. The proposed surrogate
model is demonstrated to be an attractive alternative to the full-wave GPR calculation due to its considerable
advantage in terms of computational expense and speed.

INDEX TERMS Artificial neural network (ANN), ground penetrating radar (GPR), surrogate model.

I. INTRODUCTION
The numerical simulation is an alternative interpretation of
wave propagation in ground penetrating radars (GPRs), and
it relies on a set of input parameters which can affect the
electromagnetic pulses and then the survey of a target conse-
quently [1]. GPRs are important remote sensing tools in many
fields such as civil engineering [2], landmine detection [3],
and environmental applications [4]. It is of great importance
for the study of numerical modeling of GPR systems. A lot
of numerical methods have been employed for GPR system
modeling [1]. Among these numerical methods, the finite-
difference time-domain (FDTD) method [5] is one of the
commonly used methods because it is easy to implement and
it can also model dispersive and lossy media [6]. In practice,
the exact values of the inputs are always unknown, leading to
the uncertainties in the output of the simulation [7]. Quantify-
ing the uncertainty in the simulation result is an indispensable
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part in GPR calculation when the acceptability of the output
is considered [8].

The methods used to quantify uncertainty in simulation
results can be divided into two categories: non-intrusive
methods and intrusive methods [7]. The traditional non-
intrusive method is Monte Carlo simulation (MCS) which
requires running the deterministic simulation code several
thousand times to converge, resulting in a high computational
cost [7]. In [8], the authors propose an intrusivemethodwhich
implements generalized polynomial chaos expansion (gPCE)
into the auxiliary differential equation (ADE) FDTD [6] to
quantify uncertainty induced by uncertain parameters. A con-
siderable computational advantage over MCS is achieved.
However, one of its limitations is that the computational
complexity increases rapidly with the increasing number of
uncertain input parameters [8]. To solve this problem, it is
essential to identify important uncertain parameters from all
inputs for some applications, which is not easy to achieve
in practice. Moreover, the intrusive gPCE is efficient for a
relatively small degree of random perturbation in the inputs of
the simulation, however, for most of the practical engineering

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 218323

https://orcid.org/0000-0001-9515-7091
https://orcid.org/0000-0001-6607-1440


X. Cheng et al.: Surrogate Model Based on ANNs for Wave Propagation in Uncertain Media

problems, the variation in uncertain inputs is greater or equal
to 10% which is difficult for intrusive gPCE to handle [9].

To overcome the above problems, a surrogate model based
on artificial neural networks (ANNs) [10], which can be
computed very efficiently, is constructed to mimic the behav-
ior of the GPR simulation model. ANN is a brain-inspired
system which aims to imitate how humans learn. Various
advanced neuralnetwork structures have been investigated for
an input–output relationship [11]. The sampling of propa-
gating waves in FDTD usually results in high-dimensional
data. However, a simple input-output ANN has difficulty in
handling a relatively small number of high-dimensional train-
ing samples because the insufficient training samples lead
to inaccurate results. Therefore, effective feature learning
methods are critically needed to automatically capture the
useful features of the high-dimensional data. For the reasons
mentioned above, an autoencoder neural network [12]–[14]
is pre-trained and introduced into the proposed surrogate
model to map the high-dimensional outputs to a suitable low-
dimensional space, and also for reconstructing the original
high-dimensional data. It can be divided into two separate
networks: an encoder and a decoder [12]. The input dataset
for the training of the surrogate model consists of two parts:
the uncertain parameters of soil and the encoder output that
converts high-dimensional electric field data from FDTD to
a low-dimensional code. In the testing process, the trained
surrogate model maps the relationship between the uncertain
parameters and the low-dimensional code, and the decoder
network then recovers the electric field data from the code.
The statistical quantities of a GPR system from the surrogate
model, such as the mean and the standard deviation, are
provided for comparison with the results from MCS. The
calculation results verify the accuracy and efficiency of the
proposed model.

This paper is organized as follows. The FDTD simulation
method and the proposed surrogate ANN model for UA are
provided in Section II. Section III gives the description of a
numerical example of the proposed model. Section IV draws
the conclusion.

II. PROPOSED SURROGATE MODEL FOR GPRs
CALCULATION
A. ADE-FDTD SIMULATION OF GPR SYSTEM
In this paper, a two-dimensional (2-D) GPR system is pre-
sented, and the uniaxial perfectly matched layer (UPML)
[6] is used as the absorbing boundary condition (ABC).
Maxwell’s equations for a wave propagating in 2-D are
defined as:

∂Hx
∂t
= −

1
µ

∂Ez
∂y

(1)

∂Hy
∂t
=

1
µ

∂Ez
∂x

(2)

∂Ez
∂t
=

1
ε
(
∂Hy
∂x
−
∂Hx
∂y

) (3)

TABLE 1. Model parameters for the dispersive and lossy soil.

where Hx represents the magnetic field oriented in
the x-direction, Hy represents the magnetic field oriented
in the y-direction, and Ez represents the electric field oriented
in the z-direction. µ is the permeability, and ε is the permit-
tivity. The solutions to Maxwell’s equations can be found by
using the FDTD method.

In this paper, the GPR system model has soil and solid
metallic target. The soil is considered as a nonmagnetic
medium with frequency-dependent dielectric permittivity,
and it is modeled by a two-term Debye model with a static
conductivity σs [1]. The parameters of Debye model are
presented in Table 1, which are obtained by measurement
[1]. They have uncertainties due to measuring tools, manual
operation or other reasons. In practice, the exact values of
the input parameters are unknown. Assuming there are seven
uncertain input parameters of ε∞(θ ), εs(θ ), Ap(θ ), τp(θ ) (p =
1, 2) and σs(θ ) in the complex relative permittivity εr (ω, θ),
the form of εr (ω, θ) is

εr (ω, θ) = ε∞(θ )+
2∑

p=1

(εs(θ )− ε∞(θ ))Ap(θ )
1+ jωτp(θ )

+
σs(θ )
jωε0

(4)

where ω is the angular frequency, θ is a random variable, and
j2 = −1. For the analysis of 2-D propagating waves using
ADE-FDTD, the first auxiliary variable for the electric field
Ez is

Lz(ω, θ) = ε0εr (ω, θ)
Wy

Wz
Ez (5)

where Wh are associated with the x, y and z normal planes,
respectively, and the form of Wh is [6]

Wh = sh +
σh

jωε0
(6)

The details of sh and σh are presented in [6]. The second
auxiliary variable is

Dz(ω, θ) = εr (ω, θ)Ez (7)

The third auxiliary variable is

Rpz(ω, θ) = jω
(εs(θ )− ε∞(θ ))Ap(θ )

1+ jωτp(θ )
Ez (8)

Submitting (5), (7) and (8) into the update equations of ADE-
FDTD, we obtain the electric field Ez and the magnetic fields
Hx and Hy. In the iteration provided in (9), (10), (11), and
(12), the three auxiliary variables are written as Lkz (nx, ny, θ),
Dkz (nx, ny, θ) and R

k
pz(nx, ny, θ), where nx and ny are space

steps along the x- and y-directions, respectively, and k is the
time step. 4x and 4y are sampling widths along the x and
y directions, respectively, and 4t is the time interval. The
uncertain parameters of the soil model produce uncertainties
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in simulation results. The electric field Ez and the magnetic
fields Hx and Hy are written as Ekz (nx, ny, θ), H

k
x (nx, ny, θ),

and H k
y (nx, ny, θ) in the iteration process. The uncertainties

in the calculation results require to be quantified.

B. PROPOSED SURROGATE MODEL BASED ON ANNs
The training and testing processes of the new surrogate model
for GPRs calculation are shown in Fig. 1. The goal of the
proposed surrogate model is to predict the outputs in GPRs
when a set of uncertain parameters of ε∞, εs, Ap, τp, and
σs is input. To handle high-dimensional data from ADE-
FDTD outputs, such as Ez observed at a certain location in all
time steps, the autoencoder neural network is introduced into
the proposed surrogate model to map the high-dimensional
outputs to a suitable low-dimensional space.

Lk+1z (nx, ny, θ)

=
2ε0sx − σx4t
2ε0sx + σx4t

Lkz (nx, ny, θ)+
2ε04t

2ε0sx + σx4t

×

[
1
4x

(
H
k+ 1

2
y (nx +

1
2
, ny, θ)− H

k+ 1
2

y (nx −
1
2
, ny, θ)

)
−

1
4y

(
H
k+ 1

2
x (nx, ny+

1
2
, θ)− H

k+ 1
2

x (nx, ny−
1
2
, θ)
)]
(9)

Dk+1z (nx, ny, θ)

=
2ε0sy − σy4t
2ε0sy + σy4t

Dkz (nx, ny, θ)+
2

2ε0sy + σy4t

×

(
Lk+1z (nx, ny, θ)− Lkz (nx, ny, θ)

)
(10)

Ek+1z (nx, ny, θ)

= Ekz (nx, ny, θ)− C1Rk1z(nx, ny, θ)− C2Rk2z(nx, ny, θ)

+C3

(
Dk+1z (nx, ny, θ)− Dkz (nx, ny, θ)

)
(11)

Rk+1pz (nx, ny, θ)

=
2τp(θ )−4t
2τp(θ )+4t

Rkpz(nx, ny, θ)+
2(εs(θ )− ε∞(θ ))Ap(θ )

2τp(θ )+4t

×

(
Ek+1z (nx, ny, θ)− Ekz (nx, ny, θ)

)
(12)

where

C = (2ε0ε∞(θ )+ σs(θ )4t)(2τ1(θ )+4t)(2τ2(θ )+4t)

+2ε04t(εs(θ )− ε∞(θ ))(A1(θ )(2τ2(θ )+4t)

+A2(θ )(2τ1(θ )+4t))

C1 =
4ε04tτ1(θ )(2τ2(θ )+4t)

C

C2 =
4ε04tτ2(θ )(2τ1(θ )+4t)

C

In the training process of the proposed surrogate model,
the uncertain parameters of soil I = {I1, I2, I3, . . . , IM }
(Im ∈ RS (1 ≤ m ≤ M ) represents an S-dimensional
vector) and the encoder outputs C = {C1,C2,C3, . . . ,CM }
( Cm ∈ Rd represents a d-dimensional vector) construct

FIGURE 1. Whole process of the proposed surrogate model to mimic the
behavior of the GPR simulation model: (a) Traning process, and
(b) Testing process.

the datasets of training samples, where M is the number
of traning samples. In the testing process, for a new set of
uncertain inputs I = {I1, I2, I3, . . . , IN }, the compressed
outputs C ′ = {C ′1,C

′

2,C
′

3, . . . ,C
′
N } ( C

′
n ∈ R

d (1 ≤ n ≤ N )
represents a d-dimensional vector, and N is the number of
testing samples) can be obtained from the trained ANN, and
then with the trained decoder, the predicted outputs U ′ =
{U ′1,U

′

2,U
′

3, . . . ,U
′
N } (U

′
n ∈ RD is a D-dimensional vec-

tor) corresponding to the new set of inputs I are obtained.
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FIGURE 2. Training process of an autoencoder neural network.

The trained surrogate model predicts the outputs in GPR
systems efficiently. The statistical quantities of the outputs
can be evaluated by running the surrogate model instead of
running thousands of ADE-FDTD simulations.

The encoder and decoder used in the proposed surrogate
model are from an autoencoder neural network which needs
to be trained before constructing the proposed surrogate
model. The traning process of an autoencoder neural net-
work is presented in Fig. 2. The encoder maps the input
data from a high-dimensional space into codes in a low-
dimensional space, and the decoder reconstructs the input
data from the corresponding codes. Given the training data
U = {U1,U2,U3, . . . ,UL} (Ul ∈ RD (1 ≤ l ≤ L)
represents a D-dimensional vector), the encoder transforms
the input matrix of U into a hidden representation of C =
{C1,C2,C3, . . . ,CL}(Cl ∈ Rd ) through activation functions,
where d � D, and L is the number of training samples
of the autoencoder neural network. Then, the matrix of C
is transformed back to a reconstruction matrix of U ′ =
{U ′1,U

′

2,U
′

3, . . . ,U
′
L} by the decoder. The input data U are

the electric fields or the magnetic fields calculated from
ADE-FDTD, and D is the number of time steps.
In the process of dataset generation, the sampling method

to obtain input parameters of ADE-FDTD is latin hypercube
sampling (LHS) [15]. It is a sampling method enabling to
better cover the domain of variations of the input variables,
thanks to a stratified sampling strategy. The sampling is
undertaken as follows [15]: 1) the range of each input variable
is stratified into isoprobabilistic cells; 2) a cell is uniformly
chosen among all the available cells; 3) the random number is
obtained by inverting the cumulative density function locally
in the chosen cell; 4) all the cells having a common strate with
the previous cell are put apart from the list of available cells.

Normalization is applied to pre-process data. The dataset of
each ANN is split into three parts: a training set, a validation
set, and a test set. The training data represent 60% of the

whole data. The number of the training data of the autoen-
coder neural network and the proposed surrogate model
are 100 and 200, respectively. The parameters are optimized
through adaptive moment estimation (Adam) [16], [17]. The
learning rate is 0.001. The rectified linear unit (ReLU) func-
tion [18], [19] is used as activation functions both in the
hidden layers of the autoencoder neural network and the
proposed surrogate model. The ReLU function is

f (ai) =

{
0, for ai < 0
ai, for ai > 0

(13)

where ai is the input to the ith neuron. The linear activation
function [16] is chosen as the activation functions in the input
layer and the output layer of the ANNs. The mean squared
error (MSE) [19] is used for performance evaluation in the
ANNs

MSE =
1
R

R∑
r=1

(Yr − Ŷr )2 (14)

where Yr and Ŷr denote the observed and forecasted values,
respectively, of the r th datum, and R is the total number of
the data. The validation data represent 20% of the whole data,
which are used to provide an unbiased evaluation of a model
fitting on the training data while the model hyperparame-
ters such as number of hidden layers and units, activation
function, learning rate, etc. are tuned. The number of the
validation data of the autoencoder neural network and the
proposed surrogate model are 34 and 67, respectively. The
test data represent 20% of the whole data, which are used
to provide an unbiased evaluation of a final model fitting on
the training data. The number of the test data is same as the
validation data.

In the training process, overfitting is the most troublesome
issue. The overfitting model doesn’t generalize well from the
training data to new data. To reduce overfitting, the dropout
method [20], [21] is applied to the training process of the pro-
posed surrogate model and the autoencoder neural network.
The idea of dropout is to randomly drop neurons from the
neural network during training and it is similar to sampling a
sub-network from a larger network [20]. The idea of dropout
is presented as follows [20]

rgi ∼ Bernoulli(q) (15)

ỹg = rg ∗ yg (16)

ag+1i = wg+1i ỹg + bg+1i (17)

yg+1i = f (ag+1i ) (18)

where ag is the input vector of layer g, yg is the output vector
from layer g, ỹg is the thinned output vector of layer g, wg are
the weights, bg are biases, ∗ denotes an element-wise product,
and f is the activation function. For any layer g, rg is a vector
of independent Bernoulli random variables each of which has
probability q of being 1. In the testing process, the weights
are scaled as wgtest = qwg, which is similar to averaging the

218326 VOLUME 8, 2020



X. Cheng et al.: Surrogate Model Based on ANNs for Wave Propagation in Uncertain Media

FIGURE 3. Training loss and validation loss of the proposed surrogate
model: (a) training without dropout and (b) training with applying
dropout to each hidden layer (q = 0.4).

predictions produced by a large number of different networks
but in a reasonable time [17].

In Fig. 3, the training loss and the validation loss of the
proposed surrogate model with and without dropout are pre-
sented, respectively, while the other hyperparameters remain
the same. The dropout method is applied to each hidden layer
with the same dropout probability of q = 0.4. The traning
error, validation error and the testing error of the surrogate
model with and without dropout are presented in Table 2
(Epochs=1000). Different from the strategy used in the sur-
rogate model, the dropout method is only applied to the two
hidden layers adjacent to the code layer in the autoencoder
neural network with the same dropout probability of q = 0.2.
The dropout method applied to the two hidden layers has a
better performance than that applied to each hidden layer in
its architecture.

The training loss and the validation loss of the autoencoder
neural network with and without dropout are presented in
Fig. 4. The traning error, validation error and the testing error
of the autoencoder neural network with and without dropout
are presented in Table 3 (Epochs=5000). These results show
that the dropout method can significantly reduce overfit-
ting in the training process. It needs to be emphasized that
for the proposed surrogate models trained with and with-

TABLE 2. Training error, validation error, and testing error of the
surrogate model.

FIGURE 4. Training loss and validation loss of the autoencoder neural
network: (a) training without dropout and (b) training with applying
dropout to the hidden layers adjacent to the code layer (q = 0.2).

TABLE 3. Training error, validation error, and testing error of the
autoencoder neural network.

out the dropout method, the autoencoder neural network
used in both cases is same and trained with the dropout
method.

III. APPLICATION EXAMPLE AND RESULTS
A. TWO-DIMENSIONAL GPR SYSTEM MODELING
DESCRIPTION
Fig. 5 shows the 2-D GPR system used in the ADE-FDTD
simulation and ANNmodeling in this research. The computa-
tional domain is 4.00m× 3.60m, and it is divided into square
cells. The sampling widths 4x = 4y = 4 = 5.00 mm. The
time step is 4t = 4x/2c = 8.33 ps, where c is the speed
of light in free space. Tx and Rx are the transmitter and the
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FIGURE 5. 2-D GPR system with the dispersive and lossy soil.

FIGURE 6. Output Ez for 60 sets of inputs from FDTD simulations.

receiver, respectively. The position of Tx is (0.80m, 3.05m),
and the position of Rx is (2.90m, 3.05m). The excitation is
Blackmann–Harris pulse source as [1]

Jz(t) =


−
2π
Ts

3∑
n=0

ann sin(
2πnt
Ts

), 0 < t < Ts

0, otherwise

(19)

where the center frequency fc = 200 MHz, and Ts = 1.55/fc.
Other parameters of the excitation are given in [1]. The center
of the solid metallic medium is (1.80m, 0.80m) and its size
is 0.30 m × 0.30 m. The metallic medium is buried 2.05 m
below ground level. The details of the model are given in [8].
Compared with the intrusive gPCE method proposed in [8],
the number of uncertain parameters in this paper is increased
from one to seven, and the variation in each parameter is
increased from 5% to 10%. When there are seven uncertain
parameters in the complex relative permittivity εr (ω, θ), the
FDTD outputEz observed in the position of Rx is presented in
Fig. 6. It is shown that the output uncertainty with a variation
of 10% in each uncertain input is much larger than that
with a variation of 5% in each uncertain input. The intrusive
gPCE has difficulty to handle the large uncertainty in output.

FIGURE 7. Seven uncertain input parameters of dispersive and lossy soil
in the GPR simulation with the variation of 10% in each parameter:
(a) mean of normalized Ez and (b) standard variance of normalized Ez .

The quantitative level of confidence held in the ADE-FDTD
simulation results of GPRs is essential.

B. TRAINING THE SURROGATE MODEL
There are seven uncertain parameters in ADE-FDTD simula-
tions and the variation in each uncertain parameter is 10%.
The inputs and outputs in the FDTD simulation are both
normalized before the surrogate model is trained. The dimen-
sions of FDTD output and its code are 5000 and 200, respec-
tively. It is required to run 100 FDTD simulations to collect
the training samples of the autoencoder neural network, and
the proposed surrogate model requires 200 training samples.
The details of the hyperparameters of the proposed surrogate
model and the autoencoder neural network are presented in
Table 4.

C. QUANTIFYING UNCERTAINTY IN GPR CALCULATION
RESULTS USING THE TRAINED SURROGATE MODEL
Once the surrogate model is trained, it can be used for various
analyses such as quantifying the uncertainty in the simula-
tion results. When there are seven uncertain parameters in
ADE-FDTD simulations and the variation in each uncertain
parameter is 10%, the mean and standard deviation evaluated
with the surrogate model are presented in Figure 7. The
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TABLE 4. Hyperparameters of the ANNs.

TABLE 5. CPU Time of the proposed surrogate model and MCS.

results of the proposed surrogate model are compared with
those of MCS, and they agree well with each other in Fig.
7. The CPU time required for the new model includes three
parts: (1) the time to run FDTD simulations to collect the
training data, (2) the time to train ANNs, and (3) the time to
predict the outputs corresponding to a new set of inputs. The
details of the CPU time of the two methods are presented in
Table 5. Compared with running a thousand FDTD simula-
tions in MCS, the proposed surrogate model largely reduces
the number of FDTD simulations and improves the efficiency.
In this paper, all calculations are performed on an Intel i5-
6440HQ 2.6GHz machine with 16GB RAM.

IV. CONCLUSION
This work aims to construct a surrogate model which mimics
the behavior of a 2-D GPR simulation model as closely
as possible. Subsequently, it is used to quantify uncertainty
induced by uncertain parameters of the dispersive and lossy
soil because the surrogate model can predict the outputs of
the GPR simulation fast. The soil is modeled by a two-term
Debye model with a statistic conductivity, and the ADE-
FDTDmethodwith theUPML as theABC is used for calcula-
tion. The proposed surrogate model can quantify uncertainty
in GPR simulation results with the large variation in each
input parameter of the calculation. In addition, it does not
require prior knowledge of the inputs such as the distributions
of the random input variables. The results of the proposed
surrogate model are consistent well with the results of MCS
which performs a thousand of full-wave simulations. The new
method also shows a much faster calculation speed. To obtain
training samples of the proposed surrogate model, multiple
full-wave simulations are required, which is time-consuming.
The futureworkwill focus on reducing the number of samples
required for the training process in the surrogate model with
high accuracy.
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