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ABSTRACT Deep learning provides appropriate mechanisms to predict vessel trajectories for safer and
efficient shipping, but still existing models are mainly oriented to longer-term prediction trends and do not
fully support real time navigation needs. While most recent works have been largely exploiting Automatic
Identification System (AILS), the complete semantics of these data haven’t so far fully exploited. The research
presented in this paper introduced an extended sequence-to-sequence model using AIS data. A Gated
Recurrent Unit (GRU) network encodes historical spatio-temporal sequences as a context vector, which
not only preserves the sequential relationships among trajectory locations, but also alleviates the gradient
descent problem. The GRU network acts as a decoder, outputting target trajectory location sequences. Real
AIS data from the Chongqing and Wuhan sections of the Yangzi River were selected as typical experimental
areas for evaluation purposes. The proposed ST-Seq2Seq model has been tested against the LSTM-RNN
and GRU-RNN baseline models for short term trajectory prediction experiments. A 10-minute historical
trajectory sequence was used to predict the trajectory sequence for the next five minutes. Overall, the findings
show that LSTM and GRU networks, while applying a recursive method to predict a sequence of continuous
trajectory points, when the number of predicted trajectory points increases accuracy decreases. Conversely,
the extended sequence-to-sequence model shows satisfactory stability on different ship channels.

INDEX TERMS Sequence-to-sequence (Seq2Seq), recurrent neural network, spatio-temporal, AIS, vessel

trajectory prediction.

I. INTRODUCTION

Over the last decades, maritime traffic has widely increased
as a result of higher demand on global trade, likely caus-
ing channel congestions, collisions risks and environmental
threats at sea [1]. Safety and security are then becoming
crucial concerns of maritime navigation due to this world-
wide exponential growth of maritime traffic [2], and where
maritime surveillance data should be fully exploited to sup-
port higher levels of situational awareness. Consequently,
the past few years have seen a rapid increase in research and
development of information-oriented infrastructures and sys-
tems addressing many aspects of data integration, analysis,
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visualization and diffusion of data related to movement at
sea. Automatic Identification System (AIS) technology, as a
navigation system, provides a vast amount of near-real time
maritime positioning information [3]., linking a unique ship
identifier, the Maritime Mobile Service Identity (MMSI) to
longitude and latitude, speed, course, and other contextual
information [4]. Large-scale AIS data can be used to track
most vessels, to mine extract ship navigation patterns. Time
series can be for also applied to compare the patterns that
emerge from different maritime trajectories [5].This shipping
knowledge can be exploited to predict ship trajectories for
collision avoidance, trajectory monitoring, analysis and pre-
diction [6].

Amongst many issues to deal with, trajectory prediction
is a hot issue as this should be dealt with in real-time, high
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accuracy and computational efficiency. Different attempts
have been so far made from various domains to predict
human, flight, and vehicle trajectories to mention a few
examples [3], [7]-[9]. Trajectory data are a special kind of
time series data combining the spatial and temporal dimen-
sions [10]. Kalman filters have been commonly applied to
waypoints for predicting ship trajectories. With the devel-
opment of deep learning, methods such as recurrent neural
networks (RNNSs) and variational autoencoders have demon-
strated effective generalization performance in trajectory pre-
diction tasks [11].

The research introduced in this paper introduce an
extended spatio-temporal feature optimized Seq2Seq Model
whose objective is to predict short term vessel trajecto-
ries. The approach is based on incoming AIS data and the
aim is to provide a prediction mechanism to mainly avoid
vessel collisions. The main peculiarity of the approach is
that it takes into account historical navigation data and
contextual data to improve vessel navigation predictions
while also considering the irregular sampling of AIS data.
Overall the principles and contribution of our approach are
four-fold:

(1) Design of a Seq2Seq framework based on spatio-
temporal data that automatically predicts a trajectory
sequence. A Gated Recurrent Unit (GRU) is used as the neural
unit, effectively alleviating the problem occurring when some
valuable states are ““‘forgotten”.

(2) While most related works apply long-term prediction
models, the peculiarity of our approach is that it is oriented
towards short-term prediction. This is particularly significant
for maritime navigation and ship collision warning and avoid-
ance.

(3) Trajectory tracking points are temporally processed
as time intervals, and the position points are processed as
relative positions in order to improve the prediction accuracy.

(4) The demonstration of the relevance of the proposed
approach is experimented on real datasets from the Wuhan
and Chongging waterways

The remainder of the paper is organized as follows.
Section II briefly reviews current methods applied to vessel
trajectory prediction. Section III provides the background of
our modelling approach. The proposed method is detailed in
Section IV while Section V develops the experiments. Finally,
Section VI outlines the findings and draws a few perspectives
for future work.

Il. RELATED WORK

Significant work has been done from the maritime engineer-
ing and scientific community on extracting valuable informa-
tion from AIS data. This section mainly reviews AIS-based
trajectory forecasting approaches. Current modeling and pre-
diction vessel trajectory methods can be categorized into
two broad classes according to their underlying implementa-
tion mechanisms: physical model based methods or learning
model based methods [12].
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A. PHYSICAL MODEL-BASED METHODS

Early methods of vessel trajectory prediction rely on a phys-
ical model of the vessel movement and are mainly based on
curvilinear models [13], [14], lateral models [4], [15] and
ship model [16], [17]. Physical ship motion is represented
using a conjunction of mathematical equations and laws that
consider all possible influencing factors such as mass, size,
inertia, and mass center. The accuracy of such methods relies
on ideal r very precise representation of the environmental
and state assumptions, which are difficult to attain in most
real-world vessel trajectory prediction scenarios.

B. LEARNING MODEL-BASED METHODS

Learning-based methods model ship motion from previous
and current trajectories using historical and real-time AIS
data, implicitly integrating all possible influencing factors.
For instance, Kalman filter approaches use dynamic infor-
mation from the vessel target, and removes noise to get a
prediction of the next vessel target locations [18]. Siegert G
et al used EKF to track vessel trajectories [19], and allows
for failure detection based on residual monitoring. In [12],
an Extended Kalman Filter is proposed as an adaptive filter
algorithm for the estimation of position, velocity, and accel-
eration that are in turn, used to predict maneuvers for ocean
vessel trajectory. The advantage of this extended Kalman
filter is that it is a well-studied classical method, so there
are many successful applications that can be exploited. How-
ever, the extended Kalman filter is generally not globally
optimal [7].

Deep learning is another popular approach for trajectory
prediction due to its powerful ability to fit complex func-
tions [20]. [21] [22] combined recurrent neural networks
with latent variable modeling to address the peculiarities of
AIS data streams: massive amount of streaming data, noisy
data and irregular time sampling.

As detailed hereafter, we develop a seq2seq framework
based on spatio-temporal data to predict vessel trajectory and
demonstrate its relevance from experiments on a real AIS
dataset on a regional scale. Most of the existing researches are
long-term predictions, and there are few short-term predic-
tions, and most of them are iterative predictions of trajectory
points. The more iterations, the greater the error. The Seq2Seq
model proposed in this paper solves the problem of short-term
prediction of ship trajectory. At the same time, the model
in this paper is a continuous trajectory point sequence pre-
diction, which can reduce the error caused by iterative
prediction.

lIl. BACKGROUND KNOWLEDGE

Trajectory prediction is a difficult issue to deal with and
different attempts have been made in various fields, including
the prediction of human, animal, aircraft, vehicle and vessel
trajectories. A trajectory can be roughly considered a spa-
tial time series, where the spatial as well as the temporal
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dimension are the main dimensions to represent plus
the semantic one for some specific application-oriented
cases. This section first briefly introduces the main prin-
ciples behind the trajectory data model and the Seq2Seq
model [23], [24].

A. TRAJECTORY PATTERN

A trajectory represents the path tracked by an object moving
in space over time. Trajectory data are usually collected by
installing sensors on moving objects. A sensor periodically
transmits location data of a considered object, such as in
the case of AIS that periodically send ship location infor-
mation. Based on different trajectory data mining techniques,
trajectory patterns are generally divided into four types: com-
mon moving pattern, trajectory clustering, trajectory mining
sequence pattern, and trajectory mining cycle pattern [18]. A
trajectory mining sequential pattern represents a sequence of
position points from a moving target according to some regu-
lar time intervals. This pattern is usually used for next location
prediction for either trajectories in free or constrained spaces.

1) TRAJECTORY SEQUENCE PATTERNS IN FREE SPACE
Trajectory sequence patterns in a free space are generally
expressed as a spatio-temporal sequence (ST-sequence). A
spatio-temporal sequence is denoted as a sequence of time
and spatial-stamped tuples given as follows:

S =< (po, 94, 10); - - - » Pk, s 1) > (D

where #;(i = 0...k) represents a series of timestamps with
Yo<i<kti < ti+1,and (p;, g;) denotes a location.

2) TRAJECTORY SEQUENCE PATTERNS IN ROAD GRIDS
When the location information in the track sequence mode
needs to be represented by the road grid, first use the
map matching algorithm to map each track to the road
grid, and then the track is represented by a series of road
segment (IDS).

B. Seq2Seq MODEL
The sequence to sequence model (Seq2Seq) has been widely
used in processing tasks of variable length input and output
sequences, including speech recognition, machine transla-
tion and so on [25]-[27]. Its core idea is to map a variable
length input sequence to variable length output sequence
using cyclic neural network. Cho et al. introduced a neu-
ral network structure so-called RNN Encoder-Decoder [27]
Subsequently, the Google team put forward a Sequence-
to-Sequence model similar to RNN Encoder-Decoder struc-
ture for machine translation [28].Similar solutions have been
then proposed in the literature, and the Seq2Seq model has
also been generated, like building Emotional Conversation
Systems Using Multi-task Seq2Seq Learning. The model
consists of two cyclic neural networks, the structure is shown
in Figure 1 [29], [30].

As shown in Figure 1, the Seq2Seq model consists of two
parts: an encoder and a decoder. The encoder reads every
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FIGURE 1. Seq2seq model.

symbol in the input sequence in sequence. When reading each
symbol, the hidden state will change accordingly. Finally,
a semantic vector C is formed as the input of the decoder. The
decoder is also a {y;, which generates the output sequence
2, ¥+ }, which is different from the calculation of the hidden
state in a common RNN under the condition of a given hidden
state, and predicts the next symbol. The calculation of the
hidden state in the decoder takes into account the semantic
vector C, its formula is given as follows:

hy =f(hi—1,¥1-1,¢) )

f is a nonlinear activation function, and f can be a tanh or
sigmoid function.

The goal of joint training of two parts of Seq2Seq model
is to maximize the conditional likelihood function, ( x;, y;) is
the sequence of the corresponding input and output..

N

1
max X%logw(ynlxn)
n=
V={,vy...,v} 3)

0 represents model parameters, N represents the number of
samples in the training set, (X,, y,) is the sequence of the
corresponding input and output.

IV. THE EXTENDED SEQUENCE-TO-SEQUENCE MODEL

FOR SHORT-TERM VESSEL TRAJECTORY PREDICTION

The ship AIS provides a large amount of near real-time
water monitoring data. The main idea behind our approach
is to design and apply a deep learning model to mine
pre-processed tracking AIS data in order to effectively under-
stand the behavior of the ship and improve the efficiency
of water safety supervision. Specifically, if the predicted
trajectories of two ships cross, there is indeed a risk of
collision. The time granularity of such trajectory predic-
tion tasks is generally within the range of 15 minutes. This
is the main motivation behind our approach that considers
short-term (5-15 minutes) trajectory sequences prediction.
There are two complex factors that are challenging in the
prediction task: irregular time sampling of the track data and
accuracy of the track sequence prediction. In order to solve
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these problems, the main features of our extended sequence-
to-sequence model is to propose a short-term AIS trajectory
sequence prediction model.

A. AIS DATA PREPROCESSING

1) TRAJECTORY SEGMENTATION OF RAW DATA

The way AIS broadcasts and receives information is auto-
matic and continuous. An original AIS data stream is for-
matted according to the receiving time of the AIS message.
Therefore, data preprocessing divides the original AIS data
stream into ship trajectories. This specific process is done in
two steps

1) Separate the trajectory data of different vessels. The
MMSI number is the unique identifier of the ship, and the
trajectory of different ships is separated by the MMSI number
information of the AIS data;

2) Separate the trajectory data of the same vessel. In nav-
igable waters, due to the large number of ships and the
constraints of the AIS working mechanism, the network com-
munication is blocked, For example, the data that should
have been received 1 second ago was received after a delay
of 1 second by the network. This 1 second is the time interval.
Thus, the AIS cannot reserve or listen to the idle time slots,
which causes the AIS information to be delayed, and the
trajectory data of a given ship will appear larger interval.
Overall, a continuous ship trajectory is separated based on
the timestamp information of the AIS data.

2) INPUT TRAJECTORY SEQUENCE STRUCTURE

The model input is a sequence of historical trajectories of
a given ship, and the output is a sequence of predicted ship
trajectories. A ship trajectory V is denoted as a time series of
a state vector v; at time ¢:

V={vi,va,..., v} “4)

The state vector v; at time t is the feature information sepa-
rated from the AIS data. The trajectory features include posi-
tion features, speed and heading, etc., expressed as follows:

Vlz[plvqup_lsa’zl]]‘ (5)

where, p; and g, denote the relative longitude and relative lati-
tude, respectively, p, denotes the Speed Over Ground (SOG),
g, denotes the Course Over Ground (COG), z; denotes the
time interval. The temporal and spatial dimensions of a ship
trajectory are qualitatively represented by time intervals and
relative positions, respectively. This being a major difference
with most current methods where ship positions are quantita-
tively timestamped and referenced by latitude and longitude
coordinates. Therefore, in order to solve the problem of the
irregular frequency sampling of AIS data we resample trajec-
tory data using relative time and position features. This opti-
mizes the data structure of the prediction model. For example,
v, = [ 121.070578, 31.756207, 12.9, 115.8, 0.01], means
this ship is located in 121.070578, 31.756207,and the COG
is 12.9,the SOG is 115.8,the time interval is 0.01 second.
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3) NORMALIZATION

RNNS use the gradient descent method to solve the optimiza-
tion problem during the training process. Therefore, the input
data is normalized, and the input data is mapped into the range
of [0, 1], thereby speeding up the solution of the gradient
descent and improving the model convergence rate.

The Min-Max Normalization method normalizes the
ground heading, and the characteristics of the three tracking
points for the ground speed and time interval.

xr= Xomin ©)
max — min
where max denotes the maximum value found in the sample
data, min is the minimum value in the sample data, and X
is the original data, where X* is the normalized data. For
example, the maximum speed is 21.4, the minimum speed
is 0, and the average is 8.41.

B. IMPROVED Seq2Seq TRAJECTORY SEQUENCE
PREDICTION MODEL

The proposed Seq2Seq trajectory sequence prediction model
combines t spatiotemporal sequence data and the Seq2Seq
model As shown in Figure 2, the ship AIS trajectory real-time
prediction model based on Seq2Seq is mainly composed of
two RNNs modules. The model design fully considers the
influence of temporal and spatial features on the trajectory
prediction accuracy (relative position, speed over ground,
time interval, etc.).

The improved Seq2Seq trajectory sequence predic-
tion model combines the characteristics of spatiotemporal
sequence data and Seq2Seq model, as shown in Figure 2. The
real-time Seq2Seq prediction model is mainly composed of
two RNNs modules. This model can be regarded as a process
of encoding historical ship AIS trajectory input data and
obtaining trajectory features, and then decoding the features
to help predict future ship AIS trajectories. The model goal is
to estimate conditional probability p(yi, ..., YmlX1, .., Xn),
among them, xi, ..., X, represent the input historical track
data, yi,...,yn represent the output predicted trajectory
sequence.

1) ENCODER

The encoder part uses a cyclic neural network composed
of a single-layer GRU unit to obtain the context feature
information of the trajectory point sequence, and encode the
ship trajectory input sequence (historical trajectory) into an
abstract context vector C, the formula is as follows:

c=f(hy,..., hy) )

Among them, A1, ..., h, represent the hidden state value of
each step in RNNs. For RNN, for a certain sequence, for time
t, it is related to the state at the previous moment and the
current input, that is by = f(hi—1, x¢),

where f is a non-linear activation function, and the context
vector c is directly assigned by the last hidden state &,.
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FIGURE 2. A Seq2Seq neural network model for vessel real-time
trajectory prediction.

2) DECODER

The decoder part uses a recurrent neural network composed of
a single-layer GRU unit. The traditional Seq2Seq is used for
machine translation, and the initial input value in the decoder
is the sequence start character < BOS >. The model predicts
the future trajectory from the current position, so x;, is used
as the initial input value of the decoder part. It can be seen
from Figure 2 that the decoder part of RNNs uses the context
vector ¢ as mentioned in formula (7),and the initial input value
X, to generate the predicted ship trajectory sequence. That
is, the decoder uses the trajectory features extracted by the
encoder and the current trajectory point position to predict
the future ship trajectory. The calculation formula for the first
hidden state A is as follows:

h1 = f(c, xp) (8)

The sequence of ship predicted trajectory points is generated
one by one following the time step of the encoder. The input
of each RNN unit consists of the output of the hidden layer
of the previous unit and the output of the previous unit. The
expression is as follows:

yi =f(hi-1,y1-1) ©))

While f is our given activation function.
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3) MODEL TRAINING

The Seq2Seq-based ship AIS trajectory real-time prediction
model is a smooth interconnected model. The encoder and
decoder parts of the model are all differentiable, that is,
the trainable parameters in the model can be updated using
the gradient descent method. This paper uses an adaptive
learning rate in the optimization algorithm Adam to update
the network parameters.

During the training process, the model is optimized by
minimizing the root mean square error for each output.
Adam algorithm is different from traditional stochastic gra-
dient descent. Stochastic gradient descent maintains a single
learning rate (that is, alpha) to update all weights, and the
learning rate does not change during the training process.
And Adam designs independent adaptive learning rates for
different parameters by calculating the first-order moment
estimation and the second-order moment estimation of the
gradient. The author of the Adam algorithm described it as a
set of advantages of two extended stochastic gradient descent:

(1) The adaptive gradient algorithm (AdaGrad) reserves a
learning rate for each parameter to improve performance on
sparse gradients (i.e. natural language and computer vision
problems).

(2) Root Mean Square Propagation (RMSProp) adaptively
preserves the learning rate for each parameter based on
the mean of the nearest magnitude of the weight gradient.
This means that the algorithm has excellent performance on
non-steady state and online problems.

The root mean square error formula is as follows:

>in Gi —yi)?

n

loss = (10)
where y represents the true value, y represents the predicted
value, and n represents the number of samples.

V. EXPERIMENTS

In this section, we present the evaluation of the benefits of
the spatio-temporal Feature-optimized Seq2Seq Model using
two real-world AIS datasets. This paper introduces real AIS
data of the Yangtze River Channel as experimental data to
compare and verify the validity of the model. There are
differences in the channel between different areas of the
Yangtze River Channel, as show in Fig3, Wuhan is located in
the middle reaches of the Yangtze River, and the navigation
channel is relatively straight, Chongqing is located in the
upper reaches of the Yangtze River, with a curved navigation
channel and many bayonet bay. Therefore, two data sets of
Chongqing section and Wuhan section are used to conduct a
confirmatory study on the accuracy and training speed of the
model.

A. DATASETS

We use real AIS data of the Yangtze River Channel. The
dataset consists of a set of streaming data samples contain-
ing warp-separated tuples. Each tuple is sent by one vessel,
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FIGURE 3. Chongqing and Wuhan waterway.

TABLE 1. Experiments data details.

Dataset ‘Wuhan Waterway Chongqing
‘Waterway

Time Span 6/1/2017- 6/10/2017 6/1/2017- 6/10/2017

Time interval 30s 30s

Longitude Span 114.05°- 114.5° 106.00°- 106.61°

Latitude Span 30.22°- 30.70° 29.00°- 29.62°

timestamp,  relative
longitude,  relative
latitude, SOG,COG

Trajectory  point  timestamp, relative longitude, relative
feature latitude, SOG,COG

containing its contemporary behavior under AIS specifica-
tions including MMSI, latitude, longitude, speed, course,
heading, time stamp, departure port and so on. There are
differences in waterway between different regions of the
Yangtze River Channel, for example, Wuhan is located in
the middle reaches of the Yangtze River, and the waterway
is relatively straight, The ship travels more smoothly here,
with less changes in direction. Chongqing is located in the
upper reaches of the Yangtze River and the waterway has
sharp bends and more bayonet sections, as show in Fig3,
the current here is turbulent and the direction of the ship
changes frequently. Make model predictions in different geo-
graphic environments, so that you can better detect the appli-
cability of the model. We evaluate our model on Wuhan
waterway datasets and Chongqing waterway datasets as show
in Table 1. Each dataset detailed as follows.

1) WUHAN WATERWAY DATASET

Trajectory data is the ship AIS data in Wuhan waterway from
Ist Jun.2017 - 10th Jun. 2017. The geographical range is
114.05° to 114.5° east longitude and 30.22° to 30.70° north
latitude and the selected features are time, longitude, latitude,
ground speed, and heading.
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2) CHONGQING WATERWAY DATASET

Trajectory data is the ship AIS data in Chongqing waterway
from 1stJun.2017 - 10th Jun. 2017. The geographical range is
106.00° to 106.61° east longitude and 29.00° to 29.62° north
latitude and the selected features are time, longitude, latitude,
ground speed, and heading.

AIS training data segment as show in Table 2, For
example, the data of number 1 indicates that at 18:00:10,
the ship with MMSI number 268166 is located at the location
of 114.2705067 longitude and 30.53765 latitude. At this time,
the speed over the ground is 2.2 and the course over the
ground is 206.2.

TABLE 2. AIS training data segment.

No. Time MMSI SOG Lon Lat COG
! 18:00:10 | 268166 | 2.2 a27030 30 53765 2062
2 18:00:50 | 268166 | 2.2 AT 3053707 2116
3 18:01:30 | 268166 | 2.2 114.26986 30 53686333 | 207.6

67
4 18:02:00 268166 2.3 é;4'26974

3 18:02:13 268166 22 (1’;4-26966

30.53668667 : 210.9

30.53657333 : 211.7

B. HYPERPARAMETERS

The python library, Keras, was used to build our models.
In this paper, a stochastic objective function optimization
algorithm (Adam) was used to update the parameters dur-
ing training. The Adam algorithm dynamically adjusts the
learning rate for each parameter according to the first-order
moment estimation and the second-order moment estimation
of the gradient of each parameter according to the loss func-
tion. This algorithm is also based on the gradient descent
method, but the learning step size of each iteration parameter
has a certain range, and the large gradient will not lead
to a large learning step size, so the parameter values are
relatively stable. The learning rate was set to 0.001 and the
decay set to 0.0, indicating the attenuation of the learning
rate after each parameter update. In addition, in order to
prevent over-fitting, a dropout mechanism was used in the
experiment and its value was set to 0.1. Since the experi-
mental training data set was relatively large, the batch-size
used in this experiment was 100. We selected 85% of the
training data for training each model and the remaining
15% was chosen as the validation set, used to early stop
our training algorithm for each model, based on the best
validation score.

C. EXPERIMENT DESIGN AND ANALYSIS

Seq2Seq-based real-time ship AIS trajectory prediction
model was compared with typical recurrent neural network
model in Wuhan straight and Chongqing curved waterways
to verify the validity of the model.
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1) COMPARISON OF ST-Seq2Seq WITH LSTM-RNN,
GRU-RNN

The proposed model and two recurrent neural network
models are compared on Wuhan and Chongqing waterway
datasets to verify the effectiveness of the model.

(1) LSTM-RNNSs, A prediction model for ship trajectories
based on LSTM was adapted from the literature using a
sequence of historical trajectory points as the input of the
network and output a trajectory point at a time. It cannot pre-
dict the sequence of trajectory points at multiple consecutive
moments at one time, and can only predict multiple times in
a recursive manner.

(2) GRU-RNNSs, A recurrent neural network composed
of neurons for the GRU is used. Compared with LSTM,
the convergence time and model training time of GRU are
shorter. Like LSTM, GRU cannot predict multiple consec-
utive trajectory point sequences at one time, and can only
predict multiple times recursively.

(3) ST-Seq2Seq, This paper presents a ship AIS trajectory
prediction model based on Seq2Seq. The model uses the
RNNs composed of single-layer GRU units to memorize a
historical trajectory point sequence and then uses the RNNs
composed of single-layer GRU units to decode the historical
information to predict a trajectory point sequence in the
future.

These three models were tested on the Wuhan and
Chongqing datasets. A 10-minute historical trajectory
sequence (20 trajectory points) is input to predict the trajec-
tory sequence in the next five minutes (10 trajectory points).
The experimental results are shown in Table 3.

TABLE 3. Performance comparison of different models.

Dataset Model index Root ~ mean ’ljrammg
square error time
LSTM RMSE 0. 01607 459s
Wuhan
waterway GRU RMSE 0.01918 374s
Seq2Seq RMSE 0.00386 167
. LST™M RMSE 0.01229 114s
Chongqing
waterway GRU RMSE 0.01536 94s
Seq2Seq RMSE 0.00849 65s

From the experimental results shown in Table 3, it can
be seen that the Seq2Seq model achieved a reason-
able short-term trajectory sequence prediction on both the
Chongqing section and the Wuhan section. The LSTM and
GRU models predicted the continuous sequence of trajectory
points in sliding window mode. That is, every time the output
of the next time t is predicted, the entire window is moved
backward by one time. The new time window sequence is
used to predict the output of the next time t +1, recursively
until the complete prediction sequence is output. The results
of predicting the sequence of 10 consecutive track points
are shown in Figure 4. When predicting the first and second
trajectory points, the error of the LSTM and GRU models
was smaller than the Seq2Seq model. When the predicted
trajectory points were greater than two, the prediction error in
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FIGURE 4. Comparison of loss of three models.

the Seq2Seq model was significantly smaller than the former.
This is mainly because the sliding window LSTM and GRU
models will accumulate prediction error of the last moment
as the window moved back, the error gradually increased.
Especially when the number of predicted trajectory points
was eight the error between the two greatly increased. When
the Seq2Seq model was used to predict a continuous sequence
of trajectory points, the error changed more smoothly. Since
the basic LSTM and GRU networks use a recursive method
to predict a sequence of continuous trajectory points, when
the number of predicted trajectory points increased, the pre-
diction effect also decreased. As shown in Figure 4, the three
models on the Wuhan segment and Chongqing segment data
sets predict the variation of the error in the sequence of
increasing trajectory points.

2) COMPARISON OF DIFFERENT STRUCTURE Seq2Seq
MODELS

The encoder and decoder in the Seq2Seq are composed
of recurrent neural networks; therefore, when predicting
a ship’s trajectory, the structure of the recurrent neu-
ral network in the decoder and encoder will affect the
prediction effect of the trajectory. This experiment com-
pares the ship trajectory predictions from differently struc-
ture Seq2Seq models. The input sequence is a 10-minute
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FIGURE 5. Comparison of Seq2Seq model with different structures.

historical trajectory sequence, and the output sequence is a
5-minute predicted trajectory sequence.

(1) The encoder is a recurrent neural network composed
of a single-layer LSTM unit, and the decoder is a recurrent
neural network composed of a single-layer LSTM unit.

(2) The encoder is a recurrent neural network composed
of a single-layer GRU unit, and the decoder is a recurrent
neural network composed of a single-layer GRU unit. The
experimental results are shown in Table 4.

TABLE 4. Performance comparison of different structures of Seq2Seq.
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Dataset encoder decoder :zzo;re ernr]s:n :;?:ning
Wuhan LSTM LSTM 0.003971 1067s
waterway GRU GRU 0.003823 997s
Chongging LSTM LSTM 0.008079 304s
waterway GRU GRU 0.007765 261s

From the experimental results shown in Table 4, it can
be seen that when the encoder and decoder are both GRU
networks, the trajectory prediction effect is better. In addition,
in the same environment, when the encoder and decoder are
GRU networks, the model takes less time to complete an
iteration. This is because the GRU structure is simpler than
that of LSTM, and GRU has one less cell state than LSTM.
Figure 5 shows the comparison of the training process of the
two structures of the model on the Wuhan segment training
set and the Chongqing segment training set when predicting
the ship trajectory sequence.

It can be seen from Figure 5 that the prediction model
for ship trajectories based on Seq2Seq can effectively pre-
dict the ship trajectory over a short period in the Wuhan
and Chongqing segments. Where the encoder and decoder
both use GRU networks, convergence was faster. Because
the Wuhan waterway is smoother than the Chongqing water-
way, the forecast error is small. Based on the comparison of
Table 4 and Figure 5, it can be seen that when the encoder
and decoder are GRU networks, the prediction effect is more
reasonable and the training time is shorter.

As shown in Figure 6, when using the Seq2Seq model to
predict the sequence of trajectory points, the error changes
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FIGURE 6. Forecast result.

less as the number of predicted trajectory points increases.
Moreover, the prediction result of Wuhan segment is slightly
higher than that of Chongqing segment.

VI. CONCLUSION AND FUTURE

In this paper, we propose a seq2seq framework model based
on spatio-temporal data, which can automatically predict the
trajectory sequence, and the model can be used for short-
term prediction, which can improve the timeliness of ship
collision warning. We evaluate our model on two types of
waterways in Wuhan and Chongqing, outperforming three
baseline methods, confirming that our model is more appli-
cable to ship trajectory prediction. In the current ship trajec-
tory predictions, the time range of the predicted trajectory
tends to be large, so the prediction result cannot be applied
to collision avoidance, while some models that can predict
the ship trajectory in a short time cannot predict multiple
times at one time. The trajectory point can only be predicted
multiple times in a recursive manner, so that the error between
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the predicted trajectory point and the real trajectory point is
continuously increased. The model proposed in this paper can
encode the historical trajectory by the encoder, and effectively
extracts historical trajectory features. The decoder decodes
the feature and applies it to the prediction of all trajectory
points, reducing error when predicting a trajectory.

The current model is not effective in predicting future
trajectories over five minutes. Therefore, the focus of future
work will be on improving the model, the encoder and
decoder might use different network structures or the network
deepened to predict the ship trajectories for a longer time and
thus providing an early warning to avoid ship collisions. As it
is it will be difficult to combine LSTM and GRU methods
with our ST-Seq2Seq method but this might be considered in
our further work.
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