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ABSTRACT Local differential privacy (LDP) is an effective privacy-preserving model to address the
problems which do not have a trusted entity. The main idea of the LDP is to add randomness in real
data to guarantee individual’s private sensitive information. Here, the technology of randomized response
is an effective method to realize the LDP mechanism. In fact, the randomized response is a probabilistic
mapping from the real data to perturbed data, which can be modeled as an information-theoretic lossy
compression mechanism. What’s more, the privacy budget ε has become a de facto standard to quantify
the worst-case privacy leakage. However, such a metrics can not capture the question that which one is the
optimal privacy mechanism in a set of equivalent ε-privacy mechanisms. Besides, the privacy and utility are
closely correlatedwith the privacymechanism, and existingmethods do not consider the strategic adversary’s
behavior. In this paper, we tackle the problem of tradeoffs privacy and utility under the rational framework
within an information-theoretic approach as the metrics. To address the problem, we first formulate this
trade-off as a minimax information leakage problem. Then, we propose a privacy preserving attack and
defense (PPAD) game framework, that is, a two-person zero-sum (TPZS) game. Further, we develop an
alternating optimization algorithm to compute the saddle point of the proposed PPAD game. As a case
study, we apply our method to compare several alternative ln2-privacy mechanisms, the experimental
result demonstrates that can provide an effective method to compare equivalent ε-privacy mechanisms.
Furthermore, the numeric simulation result confirms that the proposedmethod also be useful for the protector
to assess privacy disclosure risks.

INDEX TERMS Privacy-preserving, information-theoretic utility, mutual information privacy leakage,
minimax game, local differential privacy.

I. INTRODUCTION
The problem of leaking private sensitive information is
widely concerned with society and academia, and is becom-
ing one of the main challenges in today’s big data era. The
privacy issues bring the demands of privacy protection for
data collection, data release as well as data analysis, which
urgently need the effective privacy protection models and
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algorithms. Specifically, the differential privacy (DP) [1], [2]
is a privacy protocol, which provides rigorous data privacy
guarantees. In fact, the DP has become a de facto standard
for privacy-preserving community because it has a rigorous
mathematical proof of privacy guarantees. In general, DP is
classified as two working settings, i.e., centralized setting
and local setting. In the centralized setting [2], a trusted data
curator performs the privacy protocol to protect sensitive
data records. The basic idea is to add randomness to the
accurate results. However, there is not always having the
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trustable data curator who processes the data. To this end,
local differential privacy [3] (LDP) is proposed to address the
problem of untrustworthy data curator. In the LDP, each user
perturbs her real data locally before sending reported data to
the data aggregator. The original motivation of the LDP is
achieved by randomized response, which was first discussed
in [4]. In recent years, many state-of-the-art LDP mech-
anisms have been developed (e.g., randomized aggregat-
able privacy-preserving ordinal response, RAPPOR [5], [6],
k-ary randomized response, k-RR [7]) to provide privacy
preserving. Currently, the LDP is widely investigated in
the privacy protection area, and has been applied into
privacy-preserving data collecting and analyzing, such as
Google Chrome browser [5], Apple’s OS [8] etc.

Specifically, each user independently sends her own
reported data to the aggregator in the data collection scenario.
Afterwards, the aggregator collects, stores these reported
data, and then prefers to infer the individual’s information
from the collected data since hemay be an honest-but-curious
adversary. In such case, each user performs LDP locally to
protect her privacy. In practice, the randomized response (RR)
technique is an effectivemethod to achieve LDP [7], [9]–[11].
Essentially the RR mechanism is a probabilistic mapping
from real data to disguised data. Thus the randomness of
privacy-preserving mechanism corresponds to the problem
of trade-off between privacy protection and data accuracy,
which is the well-known problem of privacy-utility trade-
off. At present, this problem is still the concern of academic
research.

Indeed, the LDP mechanism can be modeled as a
noisy channel from the perspective of private information
flow [12], [13]. Meanwhile, privacy and utility metrics are
the fundamental work to investigate the privacy-utility trade-
off. Currently, the privacy budget ε is a de facto standard to
quantify the indistinguishability level. However, it still has
its drawbacks. As mentioned in [14], a deterministic privacy
protocol Q(x) = x mod 2 which provides privacy guarantee
with ε is infinity, but it still prevents some privacy disclo-
sure. In addition, such a metrics can not evaluate equivalent
ε-indistinguishability mechanisms. To solve these draw-
backs, information-theoretic approach is used to measure
privacy leakage, and has been widely studied in recent
years [7], [15]–[18]. The mutual information (MI) mea-
sures how much information about real data is contained
in disguised data. It captures the aggregators’ knowledge,
and assumes aggregator does not know the true distribution
exactly, but only knows it lies in a probability distribution
set [7], [13]. The MI has its advantage to solve this prob-
lem. In fact, the users aim to reduce privacy leakage, they
are analogous to privacy defender. However, the goal of an
aggregator is to obtain the privacy statistics information and
attempts to infer personal information, who is similar to
privacy attacker. Thus, the concerned problem evolves into a
privacy attack-defense game between attacker and defender.

Based on those analyses mentioned above, the objective
of this paper is to seek an optimal privacy mechanism by

analyzing the actions of privacy attacker and defender. Intu-
itively, the more randomness of the privacy mechanism will
be obtained the better privacy performance. The works [16],
[18], [19] utilize MI measuring the privacy leakage about
privacy-preserving mechanisms because the notion of MI has
a clear meaning, that is, measuring the amount of uncertainty
reduction about original information. However, the works [7],
[20] adopt MI as utility metrics, and further preserve the use-
ful information as much as possible. Inspired by these works,
the problem mentioned above would become a minimax
problem, and naturally evolved into a two-person zero-sum
game. In this paper, we consider formalizing the concerned
problem as an attack and defense game about privacy since
the game theory has its advantages to deal with such a prob-
lem. Then, we provide the analytic results, which confirm that
our method can be used for privacy defender to take optimal
privacy strategy.

A. OUR CONTRIBUTION
The major contributions of our work can be summarized as
follows:

1) To analyze the rational actions between users and
aggregator, we propose a general game-theoretic
framework of privacy attack and defense, PPAD, and
quantify the private information gain of aggregator
based on the information-theoretic approach.

2) We formalize the objectives of privacy defender and
attacker as a minimax MI privacy problem, and then
construct a two-person zero-sum game to solve the
formalized minimax problem.

3) We propose an effective method to evaluate equivalent
ε-privacy mechanisms. Further, we demonstrate the
MI privacy leakage can reach the upper bound under
the worst-case, and that can be used to assess privacy
disclosure risks.

B. PAPER OUTLINE
The remainder of this paper is organized as follows.
Section II reviews the related work about our research topic,
and Section III introduces the preliminaries to the paper.
Section IV presents the system model and problem formal-
ization. Section V describes the details of privacy attack
and defense game model, and presents its theoretic analysis.
A case study and numerical simulation results are given
in Section VI, followed by the conclusion and future work
in Section VII.

II. RELATED WORK
Differential privacy (DP), has been widely studied in a
series of state-of-the-art literatures (e.g., [1], [2], [21], [22]).
In recent years, many researchers began to measure privacy
leakage and usability with information-theoretic approach
(e.g., [13], [17], [23]), which is used to investigate the optimal
DP mechanism. What’s more, utility-privacy tradeoffs has
been became an important problem in the privacy-preserving
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community. In addressing this problem, the game theoretic
idea is used to study it under the DP becoming a fascinating
research topic. In the following, we survey the important
works in each aspect.

Firstly, the privacy-preserving mechanism can be modeled
as a noisy channel model [13], [17], [23], [24], including the
radio channel model [25] connected with IoT devices. Then,
the privacy leakage can be measured by entropy [19], [26],
[27]. In particular, Alvim et al. proposed measure informa-
tion uncertainty based on the idea of quantitative informa-
tion flow (QIF). Moreover, the notion of mutual information
has also been considered in [15], [18], [28], and given a
formal definition of MI-privacy. Wang et al. [18] formu-
lated a MI-privacy optimization program, and proved that the
MI optimal mechanism guarantees a certain level of differen-
tial privacy. In addition, Cuff et al. [28] adopted MI given
an equivalent definition of differential privacy. The works
of [15] and [29] given a fundamental relation between MI
and differential privacy.

Secondly, the information-theoretic approach has also been
used in the LDP setting. It is indeed true that the LDP can
be represented by a probabilistic mapping from original data
domainX to a regenerated spaceY . LetQ(y|x) be the condi-
tional probability of input x ∈X and output y ∈Y . As such,
the LDP mechanism is captured by a conditional probability
Q (s.t.

∑
yQ(·|x)= 1 and Q(·|x)≥ 0). In this line of research,

[7] proposed k-RR mechanism by using MI as utility met-
rics. Also, [7], [30] proposed k-RR mechanism is optimal
with the probability Q(y|x) = eε

|X |+eε−1 for all x = y, and
Q(y|x)= 1

|X |+eε−1 for x 6= y. As such, the LDP established a
fundamental relation with information-theoretic noisy chan-
nel model, and also represented by a probability transfer
matrix. Based on this fundamental relation, [14] presented
a new metrics approach for LDP from information-theoretic
perspective. Besides, [13], [17] investigated the optimal
LDP mechanism using information-theoretic approach.
In summary, the information-theoretic approach which
applied into the LDP has attracted lots of attentions.

Finally, game theory as an effective analysis tool for the
issue that existing conflict and competition, has been widely
studied in data security recent years (e.g., [31]–[33]). In the
application of differential privacy, Xiao et al. [34] formu-
lated a privacy aware recommendation game to evaluate the
performance of the proposed deep reinforcement learning
based user profile perturbation scheme, which applies dif-
ferential privacy to protect user privacy within recommen-
dation services. Besides, the well known two-player zero-
sum game model has been considered by [35]–[37]. What’s
more, [36]–[38] considered information leakage gamemodel,
which are constructed from the perspective of QIF. Addition-
ally, the non-cooperative differential game [39] and the Stack-
elberg game [40] have been studied in privacy-preserving
under differential privacy. From these related work about
the game and privacy preserving, we can conclude that the
problem of utility-privacy trade-off solved by game-theoretic
approach is becoming an effective method.

III. PRELIMINARIES
In this section, some basics will be summarized for our usage
in this paper for readers’ convenience. Here, we only give a
brief introduction because of space limitation, if readers need,
refer to the relevant materials for more details.

A. LOCAL DIFFERENTIAL PRIVACY SETTING
Let X be a discrete random variable, which takes its value
from a candidate set X , and x ∈ X represents user’s pri-
vate data. In order to protect the secret data, a randomized
privacy-preserving mechanism will be used to produce a
disguised data. We assume the disguised data is a discrete
random variable Y , and its value y comes from a candidate
setY . Thus the privacy-preserving mechanism forms a prob-
abilistic mapping fromX toY . In fact, DP has an underlying
assumption, i.e., there is a trusted data curator who has the
real data. However, it is generally a semi-honest participator
who follows the privacy protocol, but attempts to obtain
private information. In such case, each user locally perturbs
her original data to obtain disguised data, and then sends
it to the aggregator. As such, the randomized mechanism
is an uncertain function mapping Q(y|x). Thus, we give the
following equivalent definition.
Definition 1 (Local differential privacy, LDP): Let X

and Y are finite discrete sets, a probabilistic function Q
mapping X to Y , denoted as Q(y|x)y∈Y ,x∈X : X → Y .
It is a ε-LDP mechanism, if and only if it satisfies

Q(y|x)≤ eεQ(y|x ′), (1)

for all x,x ′ ∈X and y ∈ Y . Further, the privacy budget ε is
a positive real number, which is defined as

ε = max
x,x′∈X ,y∈Y

{
ln
Q(y|x)
Q(y|x ′)

}
. (2)

In particular, the privacy budget ε describes the strength
of privacy preserving as well as provides a quantitative
method to measure privacy leakage. A natural question is:
how does the privacy budget affect the privacy leakage?
Intuitively, the ε is a metrics, which measure the probabilistic
distinguishability level of obtaining same output for any two
distinct inputs. Further, a smaller ε demonstrates a greater
indistinguishability, that is, the attacker can hardly com-
pletely identify x. Thus leading to less privacy leakage.
Remark 1: The definition 1 shows that LDP provides the

worst-case privacy guarantee, and the privacy budget ε is
independent with source probability distribution P(x) but
only depends on the conditional probability Q(y|x).

B. INFORMATION-THEORETIC METRICS
Let X and Y are discrete random variables, and X ∈ X ,
Y ∈ Y . Therefore, a probabilistic function Q maps X to
Y forming a typical Shannon [41] discrete noise channel
Q : X × Y → R, which is represented by a probability
matrix Q(y|x) (s.t. 0 ≤ Q(y|x) ≤ 1 and

∑
y∈Y Q(y|x) = 1 for

all y ∈ Y and x ∈X ).
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The notion of entropy is proposed to measure the
uncertainty about random variable X . In particular, Shan-
non entropy [41], [42] is a popular metrics method, and
which is defined as H (X ) = −

∑
x∈X P(x) logP(x). Then,

the notion of conditional entropy defines the remaining uncer-
tainty about X after observing Y , denoted as H (X |Y ) =
Ey∈Y [H (X |Y = y)]. Further, the mutual information I (X;Y )
measures the amount of uncertainty reduction about X ,
i.e., the amount of information has learned from X by know-
ing Y , denoted as I (X;Y ) = H (X )−H (X |Y ). More specifi-
cally, I (X;Y ) quantifies how much information flow from X
to Y , that is the basic idea of QIF [24]. Therefore, MI has
an important property, that is, it will always be nonnegative.
Furthermore, the relation between entropy and MI indicates
that it can be calculated by

I (X;Y )=
∑
x∈X

∑
y∈Y

P(x)Q(y|x) log
(
Q(y|x)
P(y)

)
, (3)

where P(y)=
∑

x P(x)Q(y|x).
In addition, MI as an information measure method,

it considers the influences of Q(y|x) as well as the prior
distribution P(x). That is to say, it reflects the statistical
characteristics of the specific noisy channel.

C. TWO-PERSON ZERO-SUM GAME AND MINIMAX
THEOREM
Next, we consider a two-person attack and defense game,
that is, a game between attacker and defender. Formally, such
a game is defined as (D,A ,uD ,uA ), of which D , A be
nonempty finite sets, and represent defender’s and attacker’s
available actions, respectively. Furthermore, the measure
functions uD : D ×A → R and uA : D ×A → R map the
Cartesian product ofD andA to a real number. More specif-
ically, they are payoff functions of defender and attacker,
respectively.

In addition, the players of a game always be assumed
as rational decision makers, and they pursue to maximize
their payoff functions. In particular, for any sd ∈ D and
sa ∈ A , the sum of payoff function ud (sd ,sa) and ua(sd ,sa)
equals to zero, i.e., the defender’s loss is equivalent to the
attacker’s gain. Thus, the goal of attacker is to maximize the
payoff function, while the defender is to minimize it. Usually,
the two-person zero-sum game always corresponds to the
minimax problem. As for this situation, the well-known von
Neumann’s minimax theorem [43] provides an effective anal-
ysis method. In the following, we give a brief introduction.
Theorem 1 (von Neumann’s minimax theorem): Let P

and Q be nonempty compact, convex subsets of Euclidean
space, and U : P ×Q → R be a continuous function.
If U (P,Q) is quasiconcave for all P ∈P and quasiconvex
for all Q ∈Q. Then it has

max
P∈P

min
Q∈Q

U (P,Q)= min
Q∈Q

max
P∈P

U (P,Q) (4)

The notion of saddle point is related to minimax
Theorem 1, that is to say, if P∗ ∈P , Q∗ ∈Q be the saddle

point of U (P,Q), when they satisfy

U (P,Q∗)≤ U (P∗,Q∗)≤ U (P∗,Q) (5)

for all P ∈P and Q ∈Q. This is equivalent to say,{
U (P∗,Q∗)= supP∈PU (P,Q∗)
U (P∗,Q∗)= infQ∈QU (P∗,Q).

(6)

Then, (P∗,Q∗) is called as the saddle point of function
U (P,Q) in P×Q.

IV. PROBLEM STATEMENT
In this section, we introduce the data collection architecture
of this paper, and then establish its system model. Further,
we formally define our research problem.

A. APPLICATION ARCHITECTURE
Our application architecture is depicted in Figure 1, where
a number of users and an aggregator participate in the data
process procedures. To protect personal privacy, each user
performs the privacy-preserving protocol to perturb her own
secret data. In fact, an informed aggregator may know some-
thing a priori about the data distribution. To capture this
priori, we assume he only knows the distribution lies in a
set but does not know it exactly. In this situation, users and
aggregator are considered as rational players, and they decide
the privacy mechanism together. When the protocol has to be
agreed, the process of the privacy-preserving data collection
follows three steps.

FIGURE 1. The application architecture of privacy-preserving data
collection.

Step 1: The aggregator releases a signal of data collection
task, and determines the details of data to be collected. The
data to be collected might include individual data such as
home address, marital status. Then, the aggregator recruits
users to report their own data.

Step 2: We consider the rational decision makers that
they can decide whether or not they will report their data
to the aggregator. If a user agrees to participate the current
collection task, she performs the privacy protocol to derive
reported data, and then sends it to the aggregator.

Step 3:Based on steps 1 and 2, the data aggregator collects,
stores users’ reported data, and then analyzes these collected
data.
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Problem: We consider an honest-but-curious aggregator
who follows the privacy-preserving protocol but desires to
infer personal information from the reported data. Thus our
objective is to seek an optimal privacymechanism to trade-off
privacy and usability, that is, an optimizationmechanism both
for user and aggregator.

B. SYSTEM MODEL
We consider there are n users in the privacy-preserving data
collection system, [n]= {1,2, · · · ,n},X (resp.Y ) be a finite
set that represents all possible values of personal data (resp.
disguised data). Let X (resp. Y ) be a discrete random vari-
able representing an individual’s data (resp. disguised data).
Furthermore, let |X | be the number of distinct atoms in X ,
and use a set of integers increase from 1 to |X | to represent
the real ordinal number in X . The LDP forms a probabilistic
functionwhichmaps x ∈X to y∈Y with probabilityQ(y|x),
denoted as Q :X → Y . In addition, we use the subscript xi
(resp. yi) to represent the personal data (resp. disguised data)
of ith user in some cases.

To protect personal privacy, each user perturbs her own
data independently, and then sends the disguised data to
an aggregator. Generally, the obfuscation mechanism corre-
sponds to a noisy channel because ε-LDP is defined by a
probabilistic function. In this way, a fundamental correlation
has been established between LDP and information theory.
To better illustrate this correlation, we first give the following
example.
Example 1: For the problemwith ‘‘yes’’ or ‘‘no’’ opinions,

it captured by a binary candidate set with {0,1}. In this case,
the obfuscation mechanism can be considered as a binary
crossover channel. For instance, Q(0|0) = Q(1|1) = 0.7 and
Q(1|0) = Q(0|1) = 0.3, then it satisfies ε = ln(7/3) local dif-
ferential privacy.

Let P be an arbitrary probability distribution on discrete
set X , and P be a finite set representing all possible proba-
bility distributions, denoted as P ∈P . We assume that each
personal data to be drawn independently from a potential dis-
tributionP∈P that it is not known by the aggregator but only
knows the true distribution lies in P . Further, we consider
strategic users and aggregator that know the strategic space
of each other. In this case, an honest-but-curious aggregator
aims to maximize the success probability of privacy infer-
ence. For convenience, some notations used in this paper are
listed in Table 1.

C. MINIMAX PRIVACY PROBLEM
The privacy budget ε of LDP is a de facto standard for
measuring privacy level. However, we noticed that the notion
of ε-LDP provides the worst-case privacy guarantee, that is,
it has the strongest hypothesis of background knowledge for
privacy attacker. Thus, this metrics has its drawbacks [14]
in some cases, since ε is only determined by the probabilis-
tic function mapping (defined by definition 1). If a set of
privacy mechanisms all provide ε-privacy guarantee, then
the ε-metrics can not distinguish which mechanism is better

TABLE 1. Summary of Symbols and Notations.

than others. In many applications, the qualities of privacy
protection for these mechanisms need to be evaluated. The
information-theoretic approach is an effective way to solve
this problem. We present the method in details, which begins
with a definition.
Definition 2 (Equivalent ε-privacy mechanisms): Let Q

be a finite set representing a set of privacy-preserving mech-
anisms where contains k mechanisms. If each mechanism
Qi
: X → Y (s.t. 1 ≤ i ≤ k) of Q is a ε-privacy mecha-

nism, then these mechanisms are called equivalent ε-privacy
mechanisms.
Remark 2: The condition of definition 2 can be relaxed to

obtain a relaxing LDP mechanism set, that is, an arbitrary
privacy mechanism Qi

∈Q is εi-LDP mechanism.
In fact, the privacy mechanism Qi

: X → Y is a lossy
compression mechanism, which controls how many bits
of private information flowing from real data to disguised
data. To quantify the amount of information, we borrow an
information-theoretic method, and define the aggregator’s
information gain as
Definition 3: For a given private information xi, the prob-

ability distribution P(X = xi) and P(X = xi|Y = yi) repre-
sent the prior and posterior distribution after observing yi,
respectively. The ratio log

(
P(X=xi|Y=yi)

P(X=xi)

)
is defined as the

aggregator’s information gain.
From the definition 3 above, we can measure the amount

of uncertainty reduction about real data after the aggregator
has observed the disguised data. In fact, such metrics is a
comparison between the priori and posterior probability of
the real data. What’s more, we noticed that this metrics has
the same form with the well-known MI in information the-
ory. Furthermore, the expected MI measures the information
of a user loses on average, which can be used to measure
information leakage of a privacy mechanism, i.e., MI leak-
age. Based on the notion of MI leakage, we argue that the
equivalent ε-privacy mechanisms is comparable with each
other. To demonstrate a partially ordered relation, we give the
following definition.
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Definition 4: For a given prior probability distribution P,
and arbitrary two privacy mechanisms Qi,Qj

∈ Q (s.t. 1 ≤
i, j ≤ k), if I (P;Qi) ≤ I (P;Qj), then Qi

� Qj, otherwise
Qi
≺ Qj.
More especially this relation is transitive, and it can be

used to compare the privacy protection intensity of differ-
ent mechanisms. Next, we consider the meaning of MI for
privacy-preserving mechanism. First, the MI measures pri-
vacy leakage, which focus on the uncertainty of the real data
given the disguised data. Second, the disguised data should
preserve the information content of real data as much as pos-
sible while meeting the LDP constraints. Further, the infor-
mation content in disguised data about real data is measured
by the well-known MI [7]. Based on these theoretical sup-
ports, we consider the rational user aims to decrease the
MI between real data and disguised data so that the aggre-
gator can not have enough information to complete iden-
tify a user’s personal data. However, the rational aggregator
wants to maximize the privacy leakage to get more private
information. From the analysis above, we can formulate
the objective of users as the following minimax problem,
such as

inf
Q∈Q

sup
P∈P

I (P;Q). (7)

In addition, the aggregator will estimate a distribution that
maximizes MI because the set of priori distribution is avail-
able for him. In this case, the worst-case MI leakage of any
privacy mechanism will be

sup
P∈P

inf
Q∈Q

I (P;Q). (8)

In fact, the above problem is formulated as a minimax prob-
lem, which becomes an convex optimization problem [44].
The minimax problem captures a basic scenario, where the
players’ goals are just opposite. In practice, the aggregator
may be an strategic player rather than limited to observing the
disguised data, who can change his own strategy according
to the user’s protection strategy. In such case, we consider
MI leakage as the gain of the aggregator.

V. GAME MODEL AND ANALYSIS
In this section, we formulate the minimax privacy problem
as a two-person zero-sum game, and further provide the
theoretic analysis.

A. PRIVACY-PRESERVING ATTACK AND DEFENCE GAME
MODEL
Each user perturbs her real data using privacy-preserving
mechanism, who is analogous to a defender. As such,
the aggregator is analogous to an attacker. Analogy-based,
the above minimax problem naturally evolves into an attack
and defence game problem. To have a better presentation,
we first provide a formal definition.
Definition 5: The privacy-preserving attack and defense

(PPAD) game-theoretic framework is a tuple (D,A,D,A ,U ),
where D and A are the strategic space of the privacy

defender D and attacker A respectively, and U : D ×A →
R is a von Neumann-Morgenstern utility function. Then,
the rational behaviors both for them can be defined as{

s∗d
def
= argminsd∈D UD(sd ,s∗a)

s∗a
def
= argmaxsa∈A UA(s∗d ,sa).

(9)

In the above definition 5, we present a standard description
about the PPAD game. To explain in details, we provide
the game description of our PPAD, including players, strate-
gic space and payment. Firstly, the players of PPAD game
are attacker and defender. Secondly, the defender aims to
decrease the private information loss, i.e., the desired infor-
mation gain of attacker. Thus, we define a set of privacy
mechanisms as the strategic space of the defender, denoted
as D , Q. Besides, we define all of possible distributions
P on X as attacker’s strategic space, denoted as A , P .
Thirdly, we define MI as the payoff function. To be specific,
for any P ∈P and Q ∈Q, the payment is calculated by

U (P,Q)=
∑
X

∑
Y

PTQ log
(

Q∑
X PTQ

)
(10)

In the above PPAD game, the private information loss of
the defender is the gaining of the attacker, which means that
the goal of the defender is to minimize the loss, while the
attacker aims to maximize the payment. Thus, the proposed
PPAD is a two-person zero-sum (TPZS) game. We make
a remark regarding the proposed game model. The saddle
point strategy of PPAD game also provides a certain level of
differential privacy. This is because the available actions of
the defender are ε-privacy mechanisms. Hence, PPAD guar-
antees certain level of differential privacy, and ε is determined
by the saddle point strategy. To have a better illustration of our
idea, we provide an example.
Example 2: Assume the set of source distribution P

contains 3 different distributions on source alphabet with
|X | = 3, denoted as Pi ∈P, i ∈ {1,2,3}. The instances are
given in Table 2.

TABLE 2. The prior probability distributions.

Moreover, we consider that the set of privacy mecha-
nisms Q also includes 3 different mechanisms, denoted as
Q = {Q1,Q2,Q3

}. Table 3 shows them in details. As such,
the above PPAD game is an instance of matrix games.

In this paper, we consider a simultaneous gamewith perfect
information, which means that each player makes a decision
without knowing the decision made by the other. In the PPAD
game, we consider that the players’ strategic actions and
payoff function are common knowledge that they are known
both by the attacker and the defender. In this case, we analyze
the rational actions for the players of PPAD game. In fact,
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TABLE 3. ε = ln2 privacy mechanisms.

a solution of the strategic game is captured by the saddle
point. In the following, we provide the theoretic analysis for
the proposed PPAD game.

B. CONVEX-CONCAVE ANALYSIS
The well-known convex-concave game has a special form
that the payoff function is a convex function of one player’s
actions, and it is a concave function of the other’s actions [45].
In such games, the solutions are given by the pure strategies
for each player.

For our PPAD game model, the strategies of attacker
and defender are probabilistic sets, that is, they are convex
sets. Therefore, for any convex combination of P1,P2 ∈P ,
the U (P) satisfies a concave function of a closed convex set.
In addition, for anyQ1,Q2

∈Q, and a parameter λ ∈R+, 0<
λ < 1, then their convex combination Qλ = λQ1

+ (1−λ)Q2

also satisfies ε-differential privacy, which has been proved
in [13]. As a result, for each P, the payoff function is a convex
function ofQ. Based on these theoretic analysis, the game that
we proposed in this paper is a convex-concave game.
Lemma 1: If U :P ×Q → R is a concave function of

P, then attacker has an optimal response strategy such that
maxP∈P minQ∈QU (P,Q). Similarly, if it is a convex function
ofQ, then the defender has an optimal response strategy such
that minQ∈QmaxP∈PU (P,Q).
The proof of Lemma 1 is similar to the proof of

Theorem 5.2 in [45], thus we omit this proof for space
limitation.

In addition to the mentioned above, we noticed that the
PPAD game is a simultaneous game with complete informa-
tion, thus each player can predict other’s optimal response
strategy, i.e. dominant strategy. As a result, no matter an
attacker or defender will have an optimal response strategy
for the other’s strategy. Based on this result, we have the
following Theorem 2.
Theorem 2: For finite probability sets P and Q,

the privacy-preserving attack and defense, PPAD game exists
a saddle-point (P∗,Q∗) satisfying U (P,Q∗) ≤ U (P∗,Q∗) ≤
U (P∗,Q) for ∀P ∈P and ∀Q ∈Q.

Proof: For arbitraryQ1,Q2
∈Q, and a parameter λ∈R+

(0 < λ < 1), their convex combination Qλ = λQ1
+ (1−

λ)Q2 is also a ε-LDP [13]. Because that both P and Q are
probability distribution sets, thus they are convex subset of
Euclidean space. Furthermore, U (P,Q) is a function of two
variables, which is concave in P for each Q and convex in
Q for each P [42]. What’s more, the finite sets of P and
Q are compact, i.e. closed and bounded. Then, according to
the well-known minimax theorem, the PPAD game exists a
saddle-point.

From the Theorem 2 above, we can see that the
saddle-point of proposed PPAD game is an extremal sta-
tus of privacy leakage, which is the worst-case for privacy
defender. In addition, Equation (6) indicates that the payment
of saddle-point is the minimum information gain that an
attacker can obtain from the real data. At the same time,
this payment is the defender’smaximumpossible information
loss. Therefore, the saddle point of PPAD can be used to
assess mutual information (MI) leakage. Indeed, the corre-
sponding payment is an upper bound of MI leakage.

C. GAME ANALYSIS
Game analysis aims to find the solutions of games, which
is one of the major research objectives in the game theory.
It is well-known that the solution of game is a steady state
that each player has no incentive to deviate from this state,
i.e., no player wants to change his current strategy. Based on
the above Lemma 1, the strategy profile of saddle point needs
to be the optimal response strategy that both for each player.
In fact, the proposed PPAD game is a TPZS game with finite
strategies. From the Theorem 2, our PPAD game has a saddle
point because the convexity and concavity of the payoff
function. In calculating the saddle point, the calculation is
an iterative optimization problem between two convex sets.
Inspired by this idea, we propose an algorithm to calculate
the solution of the established PPAD game.

The procedures of solving maximin problem is an alter-
nating optimization, and it is similar to the problem of min-
imizing distance between two convex sets. The basic idea is
alternate to calculate an optimal response strategy between
two convex sets, which mainly includes three steps:

Algorithm 1 Optimal Response Strategy for PPAD Game
Input:

Strategic actions P , Q and payoff function U (P,Q)
Output:

Saddle point (P∗,Q∗) and its payment SD
1: Initialize set S1← Q0 with an arbitrary Q0

∈Q
2: Calculate P∗ via Equation (8)
3: Calculate Q∗ by Equation (7)
4: while (P∗,Q∗) is not a saddle point do
5: Calculate P∗ via Equation (8), and update P∗ to recal-

culate U (P∗,Q∗) by Equation (10)
6: if (P∗,Q∗) is saddle point then
7: return (P∗,Q∗) and SD← U (P∗,Q∗)
8: else
9: Calculate Q∗ = argminQ∈Q\S1U (P∗,Q),

and U (P∗,Q∗) by Equation (10)
10: Update set S1← S1

⋃
Q∗

11: end if
12: end while

Step 1: For a single arbitrary strategy of defender,
the attacker calculates an optimal response strategy satisfying
argmaxP∈PU (P,Q);
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Step 2: Further, the defender predicts the attacker’s pref-
erence, thus the defender would like to take the action that
satisfies argminQ∈QmaxP∈PU (P,Q);

Step 3: Finally, alternating procedure updates their
strategy choices, and repeats the above steps until a strategy
profile (P∗,Q∗) that is optimal both for the attacker and
defender.

Next, we present these calculation procedures in a algo-
rithm, and provide the description in details.

The Algorithm 1 receives the structure of PPAD game,
including strategic spaces P and Q and payoff function
U (P,Q). Then, it performs the calculations to output the sad-
dle point and payment. Firstly, it initializes an arbitrary strat-
egy Q0

∈Q, and calculates an optimal response strategy for
Q0 by using Equation (8) (lines 1 ∼ 2 of Algorithm 1). Sec-
ondly, it calculates an optimal response strategy of defender
by Equation (7), which is used to defend attacker’s strategy
(line 3 of Algorithm 1). Thirdly, it repeats these procedures
of alternating optimization until a stable state (P∗,Q∗) that
are both optimal for the attacker and defender (lines 4 ∼ 13
of Algorithm 1). Finally, it returns the saddle point and cor-
responding payment.

To understand our algorithm intuitively, we provide the
explanation using Example 2 and illustrate the payments
in Table 4. We demonstrate these procedures by assuming
the algorithm begins with the strategy Q1, then, the attacker
prefers to take P3 for the purpose to obtain a maximum
payment 0.0662, i.e.,P3 is an optimal strategy for the attacker.
Further, the defender predicts the attacker’s action, and takes
Q2 to minimize the privacy loss. That is to say, the defender
desires to achieve 0.0315, thus Q2 is the defender’s optimal
strategy to defend P3. Meanwhile, P3 is also the optimal
strategy for defender’s strategy Q2. Therefore, the strategy
profile (P3,Q2) is a saddle point of the PPAD game, which
has a payment 0.0315. Also, the saddle point strategy guaran-
tees ε = ln2 differential privacy. Additionally, we depict the
procedures of rational decision in Figure 2 to have a better
illustration.

TABLE 4. The payments of Example 2.

We provide the computation complexity of Algorithm 1 by
analyzing some fundamental operations. First, the attacker’s
strategic space P is searched to find an optimal response
strategy P in the first iteration. Second, the algorithm calcu-
lates the optimal reaction Q to the attacker’s strategy, which
searches the strategic space of the defender. Finally, the termi-
nation condition guarantees the solution of maxmin problem.
It is clear then that the cost grows with the sizes of P and Q.

FIGURE 2. Illustration of the rational decision.

As long as both P and Q are finite, the whole procedures
will be efficient.

VI. EXPERIMENTAL SIMULATIONS AND ANALYSIS
In this section, we illustrate the experimental results of our
scheme, and further provide the analytic results. We imple-
ment the algorithm in Java and conduct our experiments on a
PC running Win 10 OS.

A. CASE STUDY
For the case of |X | = |Y | = 6, we assume that the prior
probability distribution lies in a certain set but does not know
the true distribution exactly. To have an illustration intuitively,
we borrow several distributions from [13], and show them
in Table 5.

TABLE 5. The possible probability distributions.

Furthermore, we consider two alternative privacy mecha-
nisms with ε = ln2. Their probability density functions are
shown in Table 6, where Q1 is the truncated 1

2 -geometric
mechanism [46] andQ2 is a privacymechanism that proposed
in [23]. Further, we consider the well-known k-RR mecha-
nism [7] that its diagonal probabilities are eε/(|X |−1+eε).
The k-RR provides ε = ln2 differential privacy guarantee,
if and only if its probability density function Q3 satisfies

Q3
(y|x) =


eε

|X |−1+ eε
y= x,

1
|X |−1+ eε

y 6= x.
⇒ Q3

(y|x) =

{
2/7 y= x,
1/7 y 6= x.

We noticed that the mechanisms of {Q1,Q2,Q3
} are equiv-

alent ln2-privacy mechanisms. To compare these privacy
mechanisms, we assume they are possible privacy strategies
of the privacy defender. In this case, we provide the analytic
result below.

Based on these available actions, we analyze the rational
behaviors of the attacker and defender. The corresponding
game is solved by Algorithm 1. As a result, the algorithm
outputs a saddle point (P1,Q3) and payment 0.0351, which
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TABLE 6. ε = ln2 alternative privacy mechanisms with |X | = 6.

FIGURE 3. The normalized I(X ;Y )/H(X ) of privacy mechanisms for randomly generated 10 distributions.

means the MI privacy leakage would not exceed an upper
bound (0.0351). In other cases, the defender has an incentive
to change his current strategy. For instance, when we consider
the uniform prior distribution, the payment of game will be
0.0633. In summary, these results indicate that the optimal
privacy preserving mechanism is related to the prior distribu-
tion.

What’s more, we solve the problem that not being able
to compare between equivalent privacy preserving mech-
anisms by using the information-theoretic approach. For
instance, taking the uniform prior distribution into consider-
ation, MI privacy leakage of these mechanisms are in fact
strict orderings, i.e. Q1

= 0.5074 > Q2
= 0.2164 > Q3

=

0.0633. In fact, these numbers of MI leakage describe the
defender’s preference for different outcomes. Thus, we have
Q3
� Q2

� Q1. This strict ordering provides an effective
evaluation method for equivalent ε-privacy mechanisms.

B. NUMERICAL SIMULATION
In order to obtain the numerical simulation results, we ran-
domly generate 10 different distributions for |X | = 6
and |X | = 12, respectively. Then, we use the randomized
response to implement the privacy-preserving mechanism.
Following [7], we set ε ranging from 0 to 10 that we can
obtain a set of privacy mechanisms. Based on these simula-
tion data, we provide the following analysis.

We assume that the distributions (resp. mechanisms) are
available actions of the attacker (resp. defender). Further,
we conduct the experiment on these generated data, and

perform Algorithm 1 to calculate the saddle point of PPAD
game. To overcome the effect of randomness, we com-
pare the average performance measured by the normalized
mutual information I (X;Y )/H (X ) for all privacy mecha-
nisms, i.e. privacy payment. In our PPAD game, the rational
privacy attacker (resp. defender) prefers to take the strat-
egy that maximizes (resp. minimizes) the outcome of game.
In fact, MI privacy leakage is monotonicity about ε, thus the
curve of normalized mutual information can be drawn with
ε increasing.

The experimental results are shown in Figure 3.We can see
that the MI privacy leakage of saddle point is the worst-case
privacy leakage for privacy defender. Besides, Figure 3(a) and
Figure 3(b) are confirm that the conclusion is not sensitive
to the size of |X | because two experimental results have the
same tendency. This worst-caseMI leakage can help to assess
privacy disclosure risks and choose the adaptive ε under the
tolerable breach of privacy.

VII. CONCLUSION AND FUTURE WORK
In this work, we have formalized the problem of trade-off
between privacy and utility as a minimax problem,
and proposed the PPAD game-theoretic framework using
information-theoretic approach. In particular, the established
PPAD game is a TPZS game. To find the solution, we pro-
posed an alternating optimization algorithm to compute the
saddle point. Then, we demonstrated our scheme that can be
used to compare the performance between equivalent privacy
mechanisms. Further, we illustrated our privacy measure is
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the worst-case privacy leakage, that is, maximum privacy
leakage for privacy defender.

In the future work, there still exists several interesting
questions that are worthy to be further investigated. For
example, the defender first takes action, and then the attacker
takes action after observing the defender’s action, thus the
game model will evolve into a Steinberg game or dynamic
game model of incomplete information. Moreover, all par-
ticipators are assumed to be rational players to investigate
the privacy-preserving mechanism design, which is also a
fascinating topic.
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