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ABSTRACT Fault detection and diagnosis (FDD) of wind energy conversion (WEC) systems play an
important role in reducing the maintenance and operational costs and increase system reliability. Thus, this
paper proposes a novel Interval Gaussian Process Regression (IGPR)-based Random Forest (RF) technique
(IGPR-RF) for diagnosing uncertain WEC systems. In the proposed IGPR-RF technique, the effective
interval-valued nonlinear statistical features are extracted and selected using the IGPR model and then fed
to the RF algorithm for fault classification purposes. The proposed technique is characterized by a better
handling of WEC system uncertainties such as wind variability, noise, measurement errors, which leads to
an improved fault classification accuracy. The obtained results show that the proposed IGPR-RF technique
is characterized by a high diagnosis accuracy (an average accuracy of 99.99%) compared to the conventional
classifiers.

INDEX TERMS Gaussian process regression (GPR), interval-valued data, random forest (RF), feature
extraction and selection, fault detection and diagnosis (FDD), wind energy conversion (WEC) systems.

I. INTRODUCTION
The deployment of Wind Energy Conversion (WEC) systems
has witnessed an increasing need for the reduction of mainte-
nance and operational costs [1], [2], where the most effective
solutions are found in condition monitoring and diagnosis
[3]. Indeed, the operation of WEC systems is usually accom-
panied by unexpected faults, which should be detected and
classified at an early stage to avoid a system collapse. The
wind variability, vibrations, and mainly the power electronics
interfaces remain the main sources of failures [4], [5].

Many fault detection and diagnosis (FDD) approaches
have been proposed forWEC systems in the literature [6], [7].
Generally, FDD techniques can be categorized into two main
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classes: data-driven [8], [9] andmodel-based techniques [10],
[11]. The Data-driven FDD techniques make only use of the
available diagnosis data [8], [9]. The data are first applied to
build a model in the training phase, which is then applied in
the testing phase for diagnosis purposes.

On the other hand, model-based FDD techniques consist
in comparing systems’ measurements with system variables
calculated from the mathematical model, which is usually
computed using some fundamental understanding of the sys-
tem under normal operating conditions [10], [12], [13]. The
residual which presents the difference between the measure-
ments and the predicted model can be used as a chart for fault
diagnosis.

In [1], [3], the authors presented a brief description of dif-
ferent kinds of faults, their generated signatures, and diagno-
sis solutions. Using the gearbox vibration signal, the authors
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in [14] have proposed a deep learning technique while a
multiscale convolutional neural networkwas proposed in [15]
to extract the faulty wind turbine features under different
operating modes. In [16], the authors proposed fault detec-
tion and identification approaches which can identify faults,
determine the occurring time and location, and estimate its
severity. The authors in [17] proposed observer-based FDD
techniques for wind turbines, where the diagnosed residu-
als are generated using Kalman filter, the detection phase
is addressed using generalized likelihood ratio test, and the
isolation phase is achieved using dual sensor redundancy.
Finally, the performance of the proposed FDD techniques is
assessed using Monte Carlo schemes. In [18], the authors
developed a data-driven FDD approach for the gearbox of
a WEC system. Moreover, in the paper [19], the authors
proposed unknown input observer based scheme for detect-
ing faults in a wind turbine converter. In [20], the authors
proposed a data-drivenmultimode FDD technique to discrim-
inate the WEC system faults. In the developed technique, the
wind turbine nonlinear characteristics were approximated by
multiple piece-wise linear systems.

Furthermore, several approaches have been developed to
improve the overall performance of WEC systems [21]–[23].
The first phase in the WEC system diagnosis is the extrac-
tion of the most relevant patterns/features from the original
dataset. Gaussian Process Regression (GPR) is one of the
most well-known feature extraction and modeling strategies.
In [24], it has been shown that the GPR presented an
improved modeling and prediction accuracy when compared
to the classical techniques. However, the mostly used GPR
based diagnosis technique considers only single-valued data
and does not take into account the system uncertainties.

To address the above issue, this paper proposes an interval
GPR (IGPR) algorithm where the data is interval-valued-
represented. The developed IGPR is characterized by a better
handling of WEC system uncertainties such as wind variabil-
ity, noise, measurement errors, which leads to an improved
fault classification accuracy.

The IGPRmethod is applied to extract the multivariate and
interval-valued features, including the interval mean vector
MIGPR and the interval variance matrix CIGPR. It is character-
ized by its efficient extraction of multivariate and uncertain
patterns from any data set. The developed approach, the so-
called IGPRCR, consists of concatenating center and range
matrices to compute the new numericalmatrix and then fitting
a GPR model on the matrix.

The interval-valued statistical parameters obtained from
the IGPR model, including the interval mean vector MIGPR
and the interval variance matrix CIGPR, are then selected as
features and fed to the RF classifier for decision making.
Indeed, the RF classifier, a combination of tree predictors,
has been recently presented as one of the most effective
classification techniques in FDD problems [25], [26].

Therefore, the main contribution of the current work is
to develop a feature extraction and selection method using
IGPR then introduce the selected interval-valued multivariate

features to several RF algorithms for classification
purposes.

To summarize, the developed approach consists of two
phases. First, the IGPR model is applied to the original data
in order to extract and select the most accurate features
(including the mean vector MIGPR and the variance matrix
CIGPR). Then, theMIGPR and CIGPR are introduced to the RF
classifier to perform the detection and classification of faults.
The main difference between the proposed solution and the
conventional RF algorithm is the introduction of a phase that
performs features extraction and selection from the entire
data. Two kinds of classifiers are considered in this work:
a multi-class classifier and a set of one class classifiers The
multi-class classifier consists of classifying instances into
one or more classes. To better improve the diagnosis abili-
ties, a bank of one-class classifiers is proposed. To illustrate
the feasibility and effectiveness of the proposed technique,
a WEC system is used as a validation platform. The open-
circuit, wear-out, and short-circuit are the three transistor
faults considered in this paper. Besides, a comparative study
between the proposed technique and other machine learning
(ML)-based classifiers including interval kernel PCA-based
RF [26], Support Vector Machines (SVM) [27], Decision
Tree (DT) [28], Naive Bayes (NB) [29], Discriminant Anal-
ysis (DA) [30] and K-Nearest Neighbors (KNN) [31], is pre-
sented.

The performance of the proposed techniques is investi-
gated using sets of emulated data extracted under different
operating conditions. The presented results confirm the high-
effectiveness of the developed technique in monitoring uncer-
tain WEC systems due to the high diagnosis capabilities
of the interval-valued features-based IGPR and its ability
to distinguish between the different operating modes of the
WEC system.

The rest of the paper is structured as follows.
Section 2 describes the proposed IGPR-RF technique. The
diagnosis results are evaluated using the WEC system data in
Section 3. The interpretations and conclusions are drawn in
Section 4.

II. DESCRIPTION OF THE PROPOSED METHODOLOGY
A. IGPR FOR FEATURE EXTRACTION AND SELECTION
Nonlinear GPR is a machine learning technique based on
Bayesian theory and statistical learning theory. The main idea
of GPR is to assume that the learning sample follows the prior
probabilities of the Gaussian process and then determines the
corresponding posterior probability. It is suitable for complex
regression problems such as nonlinear and high dimensional-
ity. However, GPR is used for single-valued data, which is
a result of simplification during the data mining procedure.
Thus, GPR based on interval-valued data representation is
required to describe the data uncertainty and variability.

Assuming that [x] = [x, x] represents the input interval-
valued data unit, where x and x ∈ R and x ≤ x. x and x are
called the lower and upper boundary respectively. [y] = [y, y]
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represents the output interval-valued data unit, where y and y
are called the lower and upper output boundary, respectively.
Denote [X ] = [xij] as an (N × m) input and output interval-
valued matrix as per:

[X ] =


[
x11, x11

]
. .

[
x1m, x1m

]
. . .

. . .[
xN1, xN1

]
. .

[
xNm, xNm

]
 (1)

The output interval-valued matrix [Y ] = [yij] ∈ RN×p is
defined by:

[Y ] =


[
y
11
, y11

]
. .

[
y
1p
, y1p

]
. . .

. . .[
y
N1
, yN1

]
. .

[
y
Np
, yNp

]
 (2)

B. IGPR BASED CENTERS AND RANGES
The basic idea of the proposed IGPR-based Centers and
rangesmethod (IGPRCR) is to fitting aGPRmodel to interval-
valued data using the information contained in the centers and
ranges of the intervals in order to improve the model predic-
tion performance compared to the classical GPR technique.

The proposed IGPRCR model consists first of transforming
the input [X ] and output [Y ] matrices into numerical matrices
based on the interval centers and ranges. The input center X c

and range X r matrices, and output center Y c and range Y r

matrices are defined by:
X c = [xc1, x

c
2, . . . , x

c
N ]

T
∈ RN×m

X r = [xr1, x
r
2, . . . , x

r
N ]

T
∈ RN×m

Y c = [yc1, y
c
2, . . . , y

c
N ]

T
∈ RN×q

Y r = [yr1, y
r
2, . . . , y

r
N ]

T
∈ RN×p

(3)

where the input center xci and range x
r
i vectors, and the ouput

center yci and range yri vectors are defined, respectively, by:

xci =
1
2
(y
i
+ yi), xri =

1
2
(x i)− x i (4)

yci =
1
2
(y
i
+ yi), yri =

1
2
(yi − yi) (5)

The new input XCR and output YCR data matrices are
constructed by the concatenation of centers and range data
matrices as: {

XCR = [X c X r ] ∈ RN×2m

YCR = [Y c Y r ] ∈ RN×2p (6)

For an input vector xCR = [xc, xr ] and its corresponding
output vector yCR = [yc, yr ], an interval Gaussian process
f (xCR) can be fully specified by its mean function m(xCR)
and covariance function k(xCR, x ′CR). The interval Gaussian
process is defined as:

f (xCR) = GP
(
m(xCR), k(xCR, x ′CR)

)
(7)

where m(xCR) = E
[
f (xCR)

]
and k(xCR, x ′CR) =

E
[(
f ((xCR)− m(xCR)

) (
f ((x ′CR)− m(x ′CR)

)]
.

The covariance function k(xCR, x ′CR) or the kernel plays an
important role in the IGPR operation. A large variety of kernel
functions can be used depending on the specific application.
In this study, a Gaussian kernel function was chosen for the
GPR, which takes the following form [32]:

k(xCR, x ′CR) = exp(−
1
2δ2
‖ xCR − x ′CR ‖2) (8)

where δ is the characteristic length-scale. The output vec-
tor yCR can be related to an underlying arbitrary regression
function f (xCR) with an additive independent identically dis-
tributed Gaussian noise ε, which represents the noise com-
ponent from the interval data. This relationship is expressed
by:

yCR = f (xCR)+ ε (9)

where ε is the additive white noise and assumed to be the
independent and identically distributed Gaussian noise such
that ε ∼ N (0, σ 2

n ), with σ
2
n is the standard deviation of this

noise.
The interval Gaussian process represented in equation 10

becomes,

yCR = GP
(
m(xCR), k(xCR, x ′CR + σ 2

n )
)

(10)

The prior joint distribution of the observation value YCR

and the prediction value yCR∗ can be obtained by:[
YCR

yCR∗

]
∼ N

(
m
[
XCR

xCR∗

]
,

[
K + σ 2

n I kT∗
k∗ k∗∗

])
(11)

where I is the identity matrix, K is the Gram matrix of
training dataset, k∗ =

[
k(xCR1 , xCR∗ ) · · · k(xCRN , xCR∗ )

]T
and

k∗∗ = k(xCR∗ , x
CR
∗ ).

Conditioning the joint Gaussian prior distribution based on
XCR, Y , and xCR∗ , the predictive distribution can be calculated
by:

p(yCR∗ | X
CR,Y , xCR∗ ) ∼ N (y∗CR,CIGPR) (12)

where MIGPR is the predictive mean and CIGPR is the predic-
tive variance which are given respectively, by

MIGPR = m(xCR∗ )+ k∗
[
K + σ 2

n I
]−1

(YCR − m(XCR)) (13)

CIGPR = k∗∗ − k∗
[
K + σ 2

n I
]−1

kT∗ (14)

The choice of the MIGPR and CIGPR as input features to
the RF classifier should enhance the diagnosis performance.
In the following, more details on the methodology are pre-
sented.

C. RANDOM FOREST FOR FAULT CLASSIFICATION
Once the statistical quantitiesMIGPR andCIGPR are computed
using the IGPR model, the system faults should be isolated.
In the current paper, the RF algorithm will be applied to iso-
late/classify these faults and distinguish between the different
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FIGURE 1. Flowchart of the proposed FDD technique.

operating modes. The RF classifier algorithm was developed
by Breiman [33] based on the bagging idea. It combines mul-
tiple decision trees to create a forest [34], [35]. The features
of each generated tree are randomly chosen and then the most
popular class is voted. The output of the classifier is obtained
by a majority vote of the trees in the forest. The RF classifier
is one of the most prevalent algorithms adopted to address
the problems of multi-classification. However, the RF imple-
mentation suffers from certain drawbacks when considering
the correlations between variables. In addition, to perform
diagnosis, the RF uses only the raw data by the direct use
of measured variables, which might lead to a low perfor-
mance due to the data redundancies and noises. Therefore,
to improve the diagnosis effectiveness of the conventional RF
classifier, the IGPR-based features should be extracted and
selected before their introduction to the RF for classification.

D. FAULT DETECTION AND DIAGNOSIS USING IGPR-RF
Figure 1 shows the flowchart of the proposed FDD technique.
First, the developed IGPR-RF divides the input data set (step
1) into training (used for learning) and testing (used for val-
idation) data sets in order to distinguish between the healthy
and faulty operating modes. During the training phase, the
interval-valued model is firstly built using the IGPR algo-
rithm. Second, the IGPR model extracts and selects the most
effective features (step 2). Then, the RF uses the statistical
IGPR parameters (selected features) for training (step 2).
Finally, the classification is performed as shown in step 3.
In the testing phase (step 3), the statistical IGPR parameters
of the test sample data (belonging to a respective class) are

FIGURE 2. The grid-connected WEC system under study.

extracted and selected using the IGPR technique. Then, based
on the classification model computed in the training phase,
the RF classifies the statistical IGPR parameters (step 3).

III. APPLICATION TO WEC SYSTEMS
The proposed FDD approach is implemented on a WEC
system. Different comparative studies are investigated in this
work. The proposed IGPR-RF technique is compared to
IKPCA-RF, SVM, DT, NB, DA and KNN. In this work, the
radial basis function (RBF) is used for all machine learning
techniques with a kernel parameter σ . All the experiments
are conducted using 10-fold cross-validation in the train-
ing set, after which they are applied in the testing phase.
The minimum root mean-square error (RMSE) is taken as
selection criterion for different machine classifiers. In the
IKPCA algorithm, the parameter σ is equal to the minimum
distance between the training data. The number of kernel
principal components is determined using the cumulative
percent variance (CPV) with a threshold equal to 95%. Naïve
Bayes has an assumption that each attribute follows a normal
distribution. The K value for KNN is set to 3 and for the
SVM classifiers, the parameters C and σ are chosen with
the lowest RMSE value and they are used for the training of
SVMs for the whole data set. The parameters of IGPR model
is optimized using the maximum marginal criterion. For Dis-
criminant Analysis (DA), the regularization parameter is set
as 1. For DT and RF, 50 trees are utilized. The performance
is evaluated using the following criteria: Accuracy, Recall,
Precision and F1 Score [36].

A. SYSTEM DESCRIPTION
In this paper, the studiedWEC system consists of a serial con-
nection of a WT, a squirrel cage induction generator (SCIG),
and a grid-connected back-to-back converter (Figure 2). The
whole system is controlled to feed a fixed frequency current
to the grid at unity power factor. The system parameters are
presented in [23]. However, any fault in one of the above-
mentioned system stages could strongly affect the power
production rate [37]. As the recent studies have shown that the
power electronics interface is the most sensitiveWEC system
stage to faults, the inverters operation should be monitored in
order to ensure an effective and continuous operation. Indeed,
many factors lead to the power semiconductors aging which
mainly affects the time response and could lead to addi-
tional switching losses. Moreover, the excessive switching
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FIGURE 3. Back-to-Back converter topology.

TABLE 1. Emulated faults and their locations.

FIGURE 4. Mechanical torque under different modes.

of the transistors might be the origin of different types of
faults. Therefore, it is highly recommended to early detect
the transistors aging in order to prevent the overall inverter
failure. For instance, the IGBT fault is preceded by an abrupt
increase of the collector-emitter voltage, which is considered
as a good predictive maintenance indicator [38]. In this study,
the transistor aging is modeled by the increase of the internal
resistance while a null value is representing the normal oper-
ating condition. In this study, the rectifier and inverter sides
transistors S11 and S21 are respectively encompassed in the
FDD approach (see Figure 3).

The open-circuit, wear-out, and short-circuit faults are con-
sidered in this study (Table 1). The wear-out fault is emulated
by increasing the internal resistance to 2 �. Figures 4 to 8
show the behavior of the mechanical torque, generator speed,
generator current, grid current, and DC bus voltage respec-
tively under normal and faulty conditions.

B. DIAGNOSIS RESULTS AND COMPARISON STUDIES
Twelve variables are generated for diagnosis purposes
(Table 2). Seven operating modes including one healthy
and six faulty modes are used as generated simulation
data series (Table 3). Each mode is adequately described
over 2000 10-time-lagged samples within a 1s time period
and 20 KHz sampling frequency [23]. The IGPR model is
built by 2000 extracted samples. The IKPCA model is built
under normal operating conditions using CPV criterion with
95% of confidence interval. Finally, the statistical quantities

FIGURE 5. Generator speed under different modes.

FIGURE 6. Generator current for different scenarios.

FIGURE 7. Grid current for different scenarios.

FIGURE 8. Bus voltage under different modes.

(MIGPR and CIGPR) obtained from the IGPR model are intro-
duced to the RF algorithm for classification. To illustrate the
classification accuracy of the developed approach, a 10-fold
cross-validation scheme was adopted. The labeled data are
used as inputs for all classifiers. Two types of classifiers are
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TABLE 2. Description of variables.

TABLE 3. Database construction.

TABLE 4. Performances comparison of different multi-class techniques.

TABLE 5. Confusion matrix using IKPCA-RF.

presented in this work: multi-class classifiers (see Table 4)
and a set of one-class classifiers (Table 7). For the multi-
class classifiers, Table 4 illustrates the results using the IGPR-
RF, IKPCA-RF, SVM, DT, NB, DA, and KNN techniques to
assess the diagnosis performance in terms of accuracy and F1
score.

It can be noticed from Table 4 that the developed IGPR-RF
technique gives a better classification accuracy compared to
the IKPCA-RF and both of them outperform the raw data-
based classifiers. The good performance of the developed
approach is due to its effectiveness in excluding the ineffec-
tive samples and selecting the most accurate features from the
predictive posterior distribution, while the IKPCA-RF uses
the first principal components as inputs to the RF classifier.
The SVM, DT, NB, DA and KNN classifiers are based on the
direct use of the raw data.

TABLE 6. Confusion matrix using IGPR-RF.

TABLE 7. Performances comparison of different one-class techniques.

To further assess the effectiveness of the proposed FDD
method, the results are presented using the confusion matrix
(Tables 5 and 6). The confusion matrix defines the number of
predicted labels in columns and the number of actual labels
in rows. The diagonal of the confusion matrix presents the
correct classification for the seven classes (C0 to C6). For
the testing healthy data, assigned to class C0, the IKPCA-RF
classifier (see Table 5) identifies only 1966 samples among
2000 (true positive). In addition, the detection precision is
99.14% and its recall is 98.30% which also represents the
classification accauracy. So, 1.7% of misclassification is
found (false alarms) for this class. A classification error of
0.200% is found for class C3 in testing data. For the faulty
case (C4), the precision is 98.64% and the recall is 98.25%
with 1.75% of misclassification for testing data set, whereas
the misclassification rate for the faulty class C6 is 0.70%
and 0% for faulty classes C1, C2 and C5. However, using
the proposed the IGPR-RF, the precision is 100% and the
recall is 100% for all cases (Table 6) which means that the
classification errors are equal to 0%.

A set of one-class classifiers is presented here in order to
further improve the classification capabilities of the proposed
IGPR-RF strategy. For this purpose, a classifier bank that uses
two classifiers based on kernel methods (IKPCA-RF, IGPR-
RF) is applied to distinguish between the WEC faults. Each
classifier is trained to classify a specific class with a label
of 1 or−1. The classification results are presented in Table 7.

It can be seen from Table 7 that the average accuracy
rate obtained using the proposed method in the training and
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testing cases are 99.99%. However, the IKPCA-RF indicates
99.13% of classification accuracy for the training case and
99.18% for the testing case. Thus, the developed IGPR-RF
technique presents a very good accuracy in the training and
testing cases compared to IKPCA-RF.

IV. CONCLUSION
In this paper, a new fault detection and diagnosis (FDD)
strategy was proposed to improve the reliability of uncertain
wind energy conversion (WEC) systems. To achieve a fast and
reliable FDD, themost effective interval-valued features were
extracted and selected using a interval GPR (IGPR) model.
Then the selected interval-valued features were introduced
as inputs to the RF classifier for diagnosis purposes. The
simulation results were presented to prove the effectiveness
of the proposed fault diagnosis strategy. The presented results
showed that the IGPR-RF, with nonlinear statistical features
that depend on small selected samples of the dataset, per-
formed better than the IKPCA-RF technique that explicitly
depends on the entire dataset, and way better than the con-
ventional techniques (SVM, DT, NB, DA and KNN) using
raw data. Moreover, the developed IGPR-RF technique pre-
sented a noticeable accuracy improvement compared to the
IKPCA-RF where the entire dataset is used.
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