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ABSTRACT Multi-Electrode Arrays and High-Density Multi-Electrode Arrays of sensors are a key instru-
ment in neuroscience research. Such devices are evolving to provide ever-increasing temporal and spatial res-
olution, paving the way to unprecedented results when it comes to understanding the behaviour of neuronal
networks and interacting with them. However, in some experimental cases, in-place low-latency processing
of the sensor data acquired by the arrays is required. This poses the need for high-performance embedded
computing platforms capable of processing in real-time the stream of samples produced by the acquisition
front-end to extract higher-level information. Previous work has demonstrated that Field-Programmable Gate
Array and All-Programmable System-On-Chip devices are suitable target technology for the implementation
of real-time processors of High-Density Multi-Electrode Arrays data. However, approaches available in
literature can process a limited number of channels or are designed to execute only the first steps of the
neural signal processing chain. In this work, we propose an All-Programmable System-On-Chip based
implementation capable of sorting neural spikes acquired by the sensors, to associate the shape of each spike
to a specific firing neuron. Our system, implemented on a Xilinx Z7020 All-Programmable System-On-Chip
is capable of executing on-line spike sorting up to 5500 acquisition channels, 43x more than state-of-the-art
alternatives, supporting 18KHz acquisition frequency. We present an experimental study on a commonly
used reference dataset, using on-line refinement of the sorting clusters to improve accuracy up to 82%, with
only 4% degradation with respect to off-line analysis.

INDEX TERMS Field programmable gate arrays, signal processing, neural engineering, APSoC, HDMEA,

spike sorting.

I. INTRODUCTION

During the past decades, understanding neural signals and
interaction between neural units has been a topic of inter-
est in the medical and biomedical scientific community.
Lots of research efforts have been dedicated to advance the
knowledge on the field, mainly aimed at long-term important
objectives, such as the comprehension of neural networks
functional principles [1] and the implementation of neural
prosthetic systems [2].

To foster studies on the behavior of neural units,
researchers have developed a wide range of hardware and
software instruments. Among these solutions, in the hardware
domain, literature presents Multi-electrode arrays (MEAs)
[3] permit long-term multi-units recording. Multielectrode

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhen Ren

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

probes have been also proposed, well suited to monitor neu-
rons in both superficial and deep brain structures. Probes
host hundreds of recording sites in 5 mm length [4] and
almost one thousand in 10 mm [5]. Finally, High-density
MEAs (HDMEAs) permit to retrieve information at the single
cell level [6], to study electrical- and light-evoked neural
response and to acquire from tens of thousands recording
sites. For example, [7] features 4096 recording sites, and
[8] features 65,536 recording sites. In HDMEAs, the num-
ber of channels, growing from tens to thousands, drastically
improve spatio-temporal resolution and the yields of the anal-
ysis and processing of the sampled activity. To be effectively
exploitable, such evolution of the sensing hardware must be
supported by the design of adequate processing platforms
executing the analysis of the sensed signals. The large amount
of collected data requires high throughput to comply with
real-time constraints and to avoid data loss, especially when
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analysis must include Spike Sorting [9], i.e. extraction of
high-level features, aimed at distinguishing the activity of dif-
ferent firing neurons recorded on the same track. Moreover,
latency must be controlled, to support interaction with neural
tissues in a closed-loop fashion.

To comply with such tight requirements, mainstream
general-purpose processing systems (PCs and workstations),
in this case, are hardly good target platforms, due to the
low latency response required by the system dynamics, typ-
ically in the order of some milliseconds. Instead, ASIC- and
FPGA-based embedded systems implementations are usually
preferred. However, at the state-of-the-art, such devices only
support a limited number of electrodes, thus do not match the
requirements of HDMEA applications.

In our work, we focus on FPGA-based solutions, since
FPGAs are prospectively very well suited for parallel and
highly DSP-intensive signal processing. HDMEA signal
analysis requires operating in parallel on signals acquired
by a high number of channels, each one requiring a high
number of multiply-and-accumulate operations, especially
needed for removing noise, and other multiplications and
arithmetic operations implementing the analysis of the main
waveform features. Thus, this processing well matches the
high number of DSP slices and BRAM tiles of the modern
programmable devices.

Moreover, the flexibility provided by FPGA technology,
permitting the hardware architecture to be reconfigured, is a
key advantage in this kind of domain, where research efforts
are often in an exploratory phase, requiring algorithms and
methods to be refined easily during experiments.

To bring flexibility one step forward, we use All-
Programmable SoCs (APSoCs), which allow (part of) the
system functionality to be defined and refined in software,
enabling tuning by researchers and users without hardware
design and implementation expertise.

In this work, we rely on a previously presented neural
signal processing system [10], named ZyON (Zyng-based
On-line Neural processor), implemented on a Xilinx Zynq
APSoC, that hosts on the same chip a dual-core ARM-based
Processing Sytems (PS) and a fabric of FPGA-based recon-
figurable logic. In ZyON, the PS is used to close the loop
and apply stimuli to the tissue, whereas the circuitry imple-
mented on the FPGA is capable to execute the most compu-
tationally demanding portions of the processing operating in
parallel on the streams of samples acquired by the different
channels, such as filters and threshold monitoring for spike
detection.

The main contribution of this work, we extend ZyON
implementing support for spike sorting. We implement addi-
tional digital modules on the programmable logic, to speed-
up most compute-intensive processing tasks within a typical
spike sorting pipeline, such as extraction of signal features
and feature-to-template comparison for classification. The
results of such processing are made available to the PS,
allowing the exploitation of common techniques used in
machine learning, such as, for example, K-Means [11] and
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Self Organizing Map (SOM) [12]. In this way, the high-level
intelligence implementing the sorting can be programmed in
software and easily replaced or repeated over the same or dif-
ferent experiments, further improving the system flexibility
and adaptability to multiple analysis cases.

The main findings of this paper can be summarized as

follows:

« we demonstrate the feasibility of an FPGA-based
implementation of compute-intensive tasks within spike
sorting, operating in real-time for high channel counts;

« we demonstrate the feasibility of a hybrid hardware-
software approach that concurrently exploits Pro-
grammable Logic (PL) and Processing System (PS)
inside the APSoC;

o We propose an example of co-operative use of PS and PL
which periodically refines the identification of reference
spike templates using different spike subsets, to reduce
the impact of an unfavorable subset selection on the
overall spike sorting accuracy;

« we validate our system architecture capabilities on a set
of widely used reference benchmarks [13] and explore
its parameters to validate and justify our design choices.

The remainder of this article is organized as follows.
Section II contains an overview of existing online spike
sorters and online spike sorting algorithms; Section III
presents the target processing tasks and the overall structure
of the sorting pipeline; Section IV describes the process-
ing system architecture and the involved functional blocks;
Section V discusses the achieved results, presenting experi-
ments to assess accuracy and performance; Section VIis dedi-
cated to a comparison with alternatives available in literature;
conclusions are reported in Section VII.

Il. RELATED WORK

The landscape of different implementations and algorithms,
proposed in the last years to interact with the neural tis-
sue and to sort neural data, is multifaceted. Approaches
available in literature have a wide scope of objectives: the
purpose may be to interact with the tissue [14], or to par-
tially process the data to limit memory [15] and bandwidth
requirements [16]. Some instruments are designed to operate
offline, such as [13] and [17], which reaches outstanding
performance on different numbers of neurons, provides a
graphic user interface and could use a variable number of
CPUs and GPUs to speed up the analysis. Other works, more
related to the presented work, are focused on online analysis
[18]. Moreover, spike sorting systems and algorithms have
been implemented using a wide variety of target technology:
researchers have developed software implementations exe-
cuted on PC/workstations [13], as well as custom hardware
devices implemented on FPGA [10] or ASIC [19].

Finally, different research works target different sorting
strategies and focus on different steps of the sorting proce-
dure. For instance, some works only implement online spike
detection. However, the objective could be reducing memory
requirements [15], reducing bandwidth requirement [16],
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TABLE 1. Related work summary.

STATE OF THE ART COMPARISON TABLE

Reference Yang [27] Saeed [20]  POSort [28]  SelfSort [23] HAM [24] Do [19] Park [18]  Miiller [14] This work
Year 2017 2013 2019 2017 2014 2018 2017 2013 2020
Hardware FPGA - FPGA - - ASIC FPGA FPGA FPGA
Channels 32 - 128 - - 128 128 126 4096
Sampling [KHz] 20 - 24 - - 25 325 20 18
Detection TEO* TEO - TEO - Filter yes yes yes
Feature DWT ZCF - ZCF FSDE Filter - no FSDE
Class/Clust BDT KM-Class OSort SOM-Class HAM KM-Class Template no K-Means-based
Resolution - 10 16 10 - 9 16 8 12
Accuracy (60%:80%) 82% 87% 93.4% >90% [72% : 86%] - - 82%
SNR [dB] [5:7] 7 [10:13] [0:15] [7:13] [4.6:13] - - [7:13]

or stimulating the neural tissue in real-time, in response to
the sensed activity [14].

Others focus on complete real-time spike sorters, integrat-
ing steps such as processing of raw data, extraction of fea-
tures relevant for classification, clustering, i.e identification
of spike classes to be considered, and assignment of incoming
spikes to clusters. For instance implementations such as [20]
and [21] face the problem of on-line sorting, using signif-
icantly different sorting strategies. In [20], authors rely on
feature extraction using the Zero Crossing Feature (ZCF)
method [22], consisting in taking two different areas extracted
from the spike waveform as features for classification. Subse-
quently, ZCF features are processed using a Moving Centroid
K-Means (MCKM), an online clustering algorithm based on
the K-Means (KM) algorithm. On the other hand, [21] avoids
extracting features and relies on direct processing of the raw
spike waveforms. Such as in [18], where authors directly
cluster raw spike data employing a set of carefully chosen
thresholds, to create and update clusters.

Selfsort [23] in contrast, despite keeping a structure similar
to [20], firstly uses a Self Organizing Map offline to get the
cluster centers, and, secondly, takes advantage of the approx-
imated cluster centers, computed on the first set of incom-
ing spikes only, to simplify the system by implementing in
hardware a classifier instead of a clustering algorithm.

The HAM [24] algorithm is another example of an
online clustering approach, where the clusters are dynam-
ically added, updated, or merged. In [24] a different fea-
ture extractor method called First and Second Derivative
Extrema (FSDE) [25] has been exploited. FSDE estimates
the derivative extrema and uses them as features for
classification.

Multiple research efforts have also proposed in detail the
hardware implementation of spike sorting systems. An exam-
ple of ASIC based spike sorter is [19]: a 128-channel spike
sorting chip designed for low-power. A detection strategy
similar to the Teager Energy Operator (TEO) [26], based on
preemphasising the neural signal is proposed. However the
method is linear and it doesn’t need multiplications, it only
uses sums and shifts. It also applies a similar linear transfor-
mation to the spike waveforms in order to extract features,
which are therefore classified by the use of an improved
K-Means algorithm.
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Furthermore, an example of an FPGA based system is
given in [27]. An Altera Cyclone III FPGA is used to pro-
totype a spike sorting system. Post-synthesis results are also
given. The neural signal processor embeds a binary deci-
sion tree (BDT) classifier based on a collection of two bits
discrete wavelet transform (DWT) features, and it operates
on 32 independent channels. The method provides a 50%
memory reduction compared to distance-based methods.

Most of the spike sorting systems and algorithms consider
a maximum number of neurons present around the electrode
and then a maximum number of clusters or templates to
be matched. [19] considers six as the maximum number
of clusters. HAM [24] and Selfsort [23] set a limit on the
maximum number of clusters per channel referring to [29],
where it was demonstrated that with the current technologies
and algorithms it is possible to correctly identify up to eight
to ten neurons per electrode.

Work in literature more related to ours is summarized in
table 1. All the works address a small number of electrodes
compared to the proposed work. This results in very local
monitoring of the neural tissue or conversely in low resolu-
tion. Summarizing, our system:

e is the first closed-loop system that exploits the
heterogeneous processing architecture of modern
All-Programmable SoCs, fully embedding a spike sort-
ing chain;

« increases by more than one order of magnitude the num-
ber of parallel recording channels processed in real-time
while guaranteeing a closed-loop latency lower than
2.5 ms;

« takes profit from APSoCs to guarantee a higher level
of flexibility in the neural processing domain. We par-
tition the spike sorting chain deployment between the
PS and the PL. Hardware reconfigurability can be used,
at design-time, to change parameters of the spike sort-
ing sub-tasks operating on input samples. We combine
it with software programmability, usable more easily
during an experiment, to change higher-level sub-tasks
operating on spike clusters and spike templates.

Ill. TARGET SPIKE SORTING PIPELINE

Spike sorting (SS) is a key step for the analysis of neural
signals. It consists of the separation of the superimposed
activities of the neuronal cells sensed by the same electrode.

218147



IEEE Access

G. Leone et al.: ZyON: Enabling Spike Sorting on APSoC-Based Signal Processors for High-Density Microelectrode Arrays

Raw Signal Filtering Spike Detection

Feature Extraction

Clustering Sorted Signal

FIGURE 1. The spike sorting chain, from left to right: the raw signal and the filtered signal; Spike detection: the filtered signal is compared to a threshold
represented by an horizontal red line; Feature extraction: valuable features are extracted from the spikes waveforms (the spikes are depicted in the
feature space); Clustering process: the spikes are grouped depending on their features; Sorted signal: the spike trains can be identified with the

respective firing neuron.

At the end of the process, spikes generated from the same
neuron are grouped together. The majority of spike sorting
algorithms are constituted of a four steps processing chain

[9] shown in Figure 1:
« Filtering - First, the acquired raw signal is filtered to

remove noise as much as possible.

« Spike Detection - Spikes are usually detected by means
of amplitude thresholding methods: the samples are
compared with a threshold one after the other.

« Feature extraction - Once a spike is identified, its shape
is considered for further analysis. Some of the main fac-
tors that determine the spike waveform are the position
relative to the electrode and the neuron geometry [30].
Therefore, spikes coming from the same neuron will be
morphologically similar. At this stage, valuable features
are measured on the waveform, as an indication of the
pertinence to a specific active neuron.

o Clustering - Feature values in detected spikes are con-
sidered to partition the feature space in clusters, that
correspond to different spike shapes and, consequently,
to different firing neurons. Clustering associates to each
spike an ID, producing a sorted activity track in output
for further analysis. When facing on-line spike sorting,
the cluster definition cannot rely on the whole set of
spikes involved in the experiment. Two main different
kinds of approaches can be used. A first method runs
a data-stream clustering algorithm, as in [24] and in
[28]. A second possibility is, otherwise, to approximate
the cluster centers considering a reduced recording time
during the experiment, and consequently a limited num-
ber of spikes, and then use such centers to classify the
incoming spikes during the remaining experiment dura-
tion, as in [23]. Thus, in this case, the final processing
stage in Figure 1 can be considered as composed of two
phases:

— a proper clustering, which may take place on a
training subset of spikes, e.g. at the startup, and
identifies the clusters/templates to be considered
during the rest of the experiment;

— a classification procedure, which evaluates on-line
the similarity of incoming spikes to the templates
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identified by the clustering, to perform the eventual
sorting.

IV. SYSTEM ARCHITECTURE

The proposed processing system architecture is shown in
Figure 2. The architecture is designed to exploit the char-
acteristics shared by APSoC devices that are part of the
Xilinx Zynq-7000 family. The architectural template can be
configured at design time and parameterized to fit in different
devices of the family. However, the system configuration
presented in this paper is implemented on a Z-7020 device.

As mentioned, in this work we start from a previously
presented platform, named ZyON [10]. Zyon, in its previous
implementation, shares the principles of this paper. Both the
PL and PS are used in cooperation. The PL is populated with
modules, described in HDL, that implement the front-end
tasks of the neural signal processing chain, until the spike
detection phase. The PS is programmed in C and, analyzing
the detection results, evaluates higher-level metrics such as
firing rate and spike locations, to take array-level decisions
in real-time. As an example, in [31] the spike redundancy
among the channels has been used to reduce the number
of active electrodes and lower the computational burden of
the HDMEA signal analysis, in the case of retinal circuits.
This work adds further steps in the chain to the pipeline,
implementing and assessing feature extraction and clustering
on several reference signal datasets.

As presented in [10], the system is instrumented to be
interfaced with a BioCam X platform by 3Brain AG. Such
platform embeds an active CMOS-MEA device, capable of
acquiring 4096 signals with adequate electrodes, sampled at
a maximum frequency of 18KHz and, digitalized and trans-
mitted to the external environment through a Camera Link
interface. The interfacing logic implemented on the FPGA
is modular and easily replaceable to interface with other
HDMEA platforms, nevertheless, the BioCam X has been
used as a reference to design the performance of our system,
in terms of sampling frequency and channel count.

ZyON embeds a filtering stage, where the digital neural
signals are multiplexed in time to be processed by a bank
of 32 digital FIR filters of order 63, with cut-off frequency
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FIGURE 2. Schematic block diagram of the experimental setup. Biocam X provides ZyON with digital data of 4096 electrodes mounted on the HDMEA.
ZyON processes the data and generates and applies the output stimuli through the Stimulus Generator.

of 300 and 3400 Hz, implemented by the use of Vivado FIR
Compiler. Since every filter completes the computation after
40 clock cycles, the overall filter bank throughput is equal
to 0.8 (32/40) samples/cycles. The filtered signals are subse-
quently further serialized and processed by the downstream
modules, that, exploiting an efficient hardware-level pipelin-
ing, implemented in the RTL description of each module,
reach a throughput of 1 samples/cycles.

The Spike Detector reads the filtered samples from the
Serializer and triggers the Feature Extractor when a spike is
detected.

The Feature Extractor reads the samples from a
BRAM-based FIFO, whose main functionality is buffering an
adequate number of samples, serving as a short pre-threshold
history of the sample stream, to be processed as soon as the
threshold is exceeded and an activation signal is received
from the spike detector.

Once the features are computed, the Classifier evaluates
the distance metric between the feature vector and a set of
pre-stored templates. It classifies the spikes by identifying the
template producing the minimum distance. The features com-
putations elapse for W sampling cycles, where W is the num-
ber of samples in the window representing the spike. All the
mentioned modules, which take care of the data-crunching
tasks in the pipeline, are implemented on the programmable
logic. We have used two dedicated AXI High-Performance
ports, available in Zynq-7000 devices to allow communica-
tion between such modules and the processing system. More
details about specific communication items are available in
Section IV-C. In this way, the processing system is available
to access the results of the different processing stages. When
focusing on spike sorting, its main function is related to
clustering: the PS can be used to receive feature vectors from
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the programmable logic, to process them to identify cluster
centers, and to store them in the Classifier. For example,
in the main experiments presented in this paper, the PS has
been used to execute a K-means clustering algorithm on a
subset of spike feature vectors, to create templates to be
considered during classification.

Moreover, the PS takes care of:
« implementing closed-loop interaction tasks;

« refining the templates, if needed, considering partial
results of the classification during a spike sorting exper-
iment;

« taking care of the system housekeeping tasks, such
as memory management, network communication,
input/output, interaction with the user;

Exploiting the peculiar characteristics of APSoCs for such
purpose, in our approach, allows drastically increased flex-
ibility, allowing for easier tuning/refinement of the cluster-
ing algorithm, Classifier templates, and stimulus patterns
provided, based only on software modification. Hardware
changes are required only when lower-level algorithm param-
eters, such as detection method and classification metrics,
have to be replaced.

In Figure 3 we use Wavedrom, an open-source digital
timing diagram rendering engine, to show a waveform time-
line representing the flow of data through the modules
implementing the sorting pipeline.

A. FEATURE EXTRACTOR

Our Feature Extractor implements the First and Second
Derivative Extrema (FSDE) feature extraction algorithm [25].
FSDE based spike sorters use the minimum and maximum
extrema of both derivatives as features. However, usually not
all the extrema are considered. By relying on the evidence
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FIGURE 3. The 4096 channels are time-multiplexed and processed by the FIR filter bank. At the beginning of every sampling cycle the channels ranging
from 0 to 32 are processed in parallel, the channels 33 to 63 follow after 40 clock cycles, and so on, up to the last group of channels (from channel
4064 to channel 4095). When the firsts 32 samples are ready, they are further serialized and analyzed one by one in a time-multiplexed fashion by the
Spike Detector module that looks for samples above a certain predefined threshold. As soon as the following 32 samples are computed by the filter
bank, they are processed as well, up to the last group (from channels 4064 to 4095). When a spike is identified, i.e. when a sample is above the
threshold, that in the example happens at the first sampling cycle for channel zero, the Spike Detector triggers the Feature Extractor, which collects the
spike samples during the following 23 sampling cycles and computes the feature vector. When the feature vector is ready, the Classifier is enabled and

the spike vector is classified.

proved in [25], the maximum of the first derivative and both
the maximum and the minimum of the second derivative used
together permit to achieve the best possible accuracy.

The first and second derivatives of the spike waveform
are respectively evaluated as the difference between adja-
cent samples and as the difference between adjacent first
derivative values:

FD(@) = x(i) —x(i—1) 1)
SD(i) = FD(i) — FD(i — 1) 2)
where FD and SD are respectively, the first and second deriva-

tives and x(i) is the i sample of the spike window. Then,
the extrema of FD and SD may be computed as follow:

FDyax = max(FD(i)) 3)
SDpax = max(SD(i)) “4)
SDyin = min(SD(i)) 5

The features are computed within a window placed before
the detection event. Performing max and min search without
a-priori knowledge about the location of the spike detection
event requires some memory. In order to retrieve the previous
samples, a FIFO is placed between the Serializer and the
Feature Extractor. The FIFO size is defined by Equation 6.

FIFOge =D x C x S (6)

where D is the required number of samples, prior to the
threshold trespassing that determines the spike detection,
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to be considered as head of the spike waveform. D also deter-
mines a certain delay between a sample entering the Feature
Extractor and its actual contribution to feature evaluation. C
is the number of channels and S is the dimension in bits of
the recorded samples. The FIFO size grows linearly with the
required delay D, and, at the same time, has an impact on
accuracy. Excessively limiting D removes too much infor-
mation contained in the early sample of a spike, affecting
the spike characterization and the overall clustering results.
Therefore this parameter needs to be carefully evaluated.

As soon as the Spike Detector triggers the Feature Extrac-
tor, it starts computing the features on the delayed stream of
samples coming from the FIFO. Figure 4 shows the Feature
Extractor architecture. While, with a reduced number of
channels, the internal buffers required to store the samples
and the derivatives could use distributed Look-Up-Tables to
create small RAM modules inside the datapath, in our case
study, acquiring from thousands of channels simultaneously,
BRAM blocks are more effectively used to create the buffers.
The Feature Extractor is composed by two main blocks:
Delta and Extrema. Delta computes the derivatives, whereas
Extrema computes the derivative extrema. Delta computes
the First Derivative (FD) employing a subtractor and a BRAM
buffer in which the samples of the previous sampling cycle
are stored, implementing Equation 1. The Second Deriva-
tive (SD) is computed in the same way. The FDs are stored
inside a buffer and the SDs are evaluated using a second
subtractor.
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FIGURE 4. The Feature Extractor evaluates the derivative extrema of the
spike waveform, the maximum of the first derivative FDmax and both the
extrema of the second one SDmax and SD,,;,. The Delta block computes
the derivatives. The Extrema block evaluates the derivative extrema.

After initialization, starting from the second sampling
cycle, the new FD and SD are compared with the contents of
the buffers, as shown in Figure 4. When one of the updating
conditions obtained by Equation 3-5 is satisfied, the old value
of the extrema is updated. Since the algorithm elapses for
many sampling cycles (equal to the dimension of the spike
window in samples W) and is potentially executed indepen-
dently on every channel, one counter per channel is also
needed. It is possible to implement BRAM-based counters
since every counter is accessed only two times per sampling
cycle: to read and update the value if the FSDE algorithm is
running.

The data sampled by BioCam X are quantized using
12 bits. FSDE features can also be expressed using 12 bits
since subtraction of adjacent samples does not determine
overflows. To validate such a choice, we tested it on the
dataset [13], verifying that, due to limited distance between
successive samples, overflows are never experienced.

The Feature Extractor drives the results of the algorithm
on the output and triggers the Classifier when the features
are ready.

B. CLASSIFIER

Sorting algorithms rely on an on-line classification process,
that, based on a similarity metric, associates incoming data to
one element inside a set of pre-defined classes. Thus, a wide
variety of approaches, e.g. the strategy proposed by Selfsort
[23], which identifies candidate clusters evaluating spikes in
the firsts seconds of recording, or other alternatives based
on data stream clustering, such as Hierarchical Adaptive
Means [24], share a common computational core: a classifier.
Therefore, we decided to implement a classifier inside the
programmable logic, in charge of computing the euclidean
distance between points in the feature space, to compare
each spike with a set of templates, representing the centers
of the clusters. Centers may be updated and stored in the
system by the PS, through one of the two AXI interfaces
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in use. While several algorithms require a different kind of
classifier, euclidean distance is a common choice that may
serve different alternative clustering algorithm, such as, for
example, K-Means [11], whose results are evaluated in more
detail in the following, and SOM [12], which is also tested
as an alternative to highlight the flexibility of the software
programmability offered by the PS. Nevertheless, given the
system modularity and the FPGA reconfigurability, replacing
the Classifier with a different module computing a different
metric is a straightforward process that does not require any
modification to the system architecture. The current Classi-
fier implementation is based on equation 7, where the square
of the euclidean distance D; is evaluated for each and every
templates 7;, with i € [1, K]. With K the number of templates
per channel.

D;i = (FDyax — Ti))?
+(SDmax - Ti2)2
+(SDyin — Tiy)* (7

The distances D; are then compared to select the class
whom the spiking neuron belongs:

neuron id = argmin(D;) (8)

The Classifier is triggered by the Feature Extractor once
the spike waveform has been processed entirely and the fea-
ture vector is ready. However, a certain number of templates
are needed to carry on the classification. The templates are
stored into a BRAM-based buffer by the PS through one
of the two AXI interfaces. The throughput required to load
the templates depends on process parameters. In more detail,
defining the number of templates per channel as K, the num-
ber of features as F' and the samples size as S, the required
throughput is:

Templates;yy = K X F x § ©)]
whereas the size of the buffer is equal to:
Templatesgi;p = C X K X F x § (10)

where C is the number of channels. The Classifier accesses
the templates memory and it evaluates the euclidean dis-
tances among the feature vector and the K templates. Then,
it compares the K resulting euclidean distances to assign
the incoming spikes to the class with the smallest value of
distance. The number of templates represents the number of
estimated neurons sensed by the electrode and it is a process
parameter (K is set to 8 in this hardware [29]).

Every evaluation consists of three independent differences,
three independent multiplications, and a final sum of the
three products. The module in charge of implementing such
computations is the Distance block, shown in Figure 5. Sub-
tractions and multiplications are embedded into DSP blocks,
whereas the three terms additions are demanded to three
inputs lut-based adders. Even though the final adder of a DSP
block is a three terms adder, unfortunately, two addends are
required to carry out the multiplication and so the three inputs
lut-based adders are required. The euclidean distances are
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FIGURE 5. A simplified Classifier block with a number of templates K
equal to 4 (instead of 8). The Distance block computes the Euclidean
distance between the feature vector and a template. K Distance blocks
are instanced, then the Comparator Tree figures out the smallest
Euclidean distance identifying the firing neuron.

computed concurrently, therefore an instance of the Distance
block is necessary for each template. Furthermore, since a
DSP is needed for every multiplication, it is possible to
estimate the number of DSPs required:

Classifierpsp =T x F (11)

A LUT-based three terms adder is also needed for every
Distance block, i.e. K three-terms adders are also instanced.
Figure 5 shows the Classifier architecture for K equal to 4.

The subtractions and the multiplications take advantage of
the registers present inside the DSPs to pipeline the com-
putation, meanwhile, other registers are added to guarantee
low latency three-terms additions. Finally, the distances are
compared to select the winning class. The comparison is
implemented through a pipelined tree of comparators. The
size of the three is directly related to the number of templates
K and so as the latency:

Comparatorigency = log2 K (12)

The comparators needed to make up the tree:
Comparators = K — 1 (13)

Differently from the feature computation results, which
fit in 12-bits registers, the euclidean distance partial results
require more bits. In particular, feature-to-template differ-
ences require an extra bit to avoid overflow, i.e. 13-bits,
the square computation requires to double the register size
to 26-bits, and the three-addends final sum needs two
extra bits, the euclidean distances are therefore represented
in 28-bits. Although using wider data representation has an
impact in terms of area, in both the Distance block and
in the Comparator-Tree, the method guarantees the same
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accuracy of the floating-point representation, as shown in
Section V-D2. At the end of the classification, the Classifier
triggers the Communication block to transmit the results.

C. PS-PL COMMUNICATION

Communication between the PS and the PL takes place
through two independent AXI ports. One is used to send
bursts of processed data from the PL to the DDR memory
reachable through the PS interconnect. We have reserved for
this stream a region in the DDR customizing the operating
system configuration. The second AXI interface is used to
set up the system by storing initialization data and to update
the Classifier templates. The system can be set in different
communication-related operating modes, which may happen
alternatively depending on the needs of the experiment. The
first AXI interface can be set to transmit alternatively fea-
ture vectors and sorting results, sorting results only, or to
limit communication to spike detection results. Furthermore,
it possible to use the second AXI interface both to update
the Classifier templates and to set up the sorting parameters
by programming some memory-mapped storage locations.
In more detail:

o Transmission of output data: The programmable logic
transmits the features of the detected spikes as two burst
AXI transactions, the former is used to store feature
vectors, and the latter burst is used to send information
composed by a channel ID, which identifies the elec-
trode where the spike has been detected, and the classi-
fication result. In the worst-case scenario, where a spike
is present in every channel, the burst transmits a packet
of 40KB (4096 channels x 64-bits + 4096 channels x
16-bits). Since this packet should be sent within the
sampling cycle, and the maximum sampling frequency
allowed by Bio CAM X is 18 KHz, the highest DDR
bandwidth required for this stream is about 700 MB/s
(40 KB x 18 KHz), which is below the maximum writing
rate allowed between the PL and the PS [32]. A region
of 40KB of the DDR should be reserved for this kind
of transmission. Despite the high punctual transmission
rate required, the physiology of the neurons is charac-
terized by a refractory period corresponding to around
24 sampling cycles after each spike. The spike detection
mechanism is designed consequently: when a spike is
detected, the coming 24 sampling cycles are used to
collect the samples composing the tail of the spike wave-
form. During this period, the detection module is paused
and will not request new transmissions to DDR memory.
Therefore, the bandwidth requirement cannot reach the
worst-case peak of 700 MB/s in physiologically realis-
tic experiments. This transmission mode must be used
during Clustering. During such procedure, the PS scans
the DDR region reserved for the previously described
packets and fills a data structure collecting training
spikes. Subsequently, it runs the clustering algorithm
and updates the templates if needed. The data scan of
the 40KB packet elapses for less than 900 ys.
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o Transmission of sorting results: Information related to
each channel is encoded in 4 bits. The first bit declares
the presence or absence of a spike in the channel,
whereas the remaining three bits are the classification
results. A 2 KB packet (4 bits x 4096 channels) is written
from the PL at each sampling cycle, once every 55.6 us
(18KHz). The worst-case to-DDR bandwidth required
for this stream is 35 MB/s (18 KB x 4096 channels). A
region of 4 KB is reserved in the DDR for this purpose,
which is used as a double buffer. Buffer locations are
used alternately to avoid overwriting. The PS reads the
packets during the following sampling cycle, in about
20 us, to copy it outside the PL-dedicated memory
region.

o Transmission of detected spikes: The programmable
logic sends a stream of one bit per channel, to give
information about the presence or absence of spikes.
The bandwidth required for the transmission is about
8.8 MB/s (4096 channels x 1 bits x 18 KHz). This kind
of transmission requires reserving a DDR region of 1
KB served as a double buffer (2 buffers x 4096 channels
x 1 bit).

« Transmission of new templates: at the start-up, or when
an update of the templates is required, the PS can run
some kind of clustering algorithm on a collection of
features stored in the DDR to generate new templates
and update the Classifier. The amount of data necessary
to update a single Classifier is 36 Byte, which can be
sent in 384 ns. It is possible to update the full battery
of Classifiers by sending 144 KB of data through the
dedicated AXI-port in 1.6 ms.

o Transmission of control signals and sorting parame-
ters: The PS can set the transmission mode to DDR,
enable/disable the sorting chain, threshold level, and the
DDR baseline address.

V. EXPERIMENTAL RESULTS

In this section, we present our experimental results.
First, we present a hardware-related evaluation of our
implementation. Second, we present our experimental setup,
the reference benchmark dataset used and the reference
software implementation developed to choose the sorting
algorithm and to validate our hardware implementation.
Third, we assess the possibility of applying on-line clas-
sification after a template characterization performed on
different numbers of training spikes, to assess the usabil-
ity in real-life experiments. Furthermore, online template
re-characterization is analyzed and the obtained accuracy is
reported. Fourth, we assess our implementation testing the
selected feature set, comparing with a ZCF [22] scheme, and
evaluating the impact of the used fixed-point data format,
and exploring the trade-off between accuracy and memory
requirements in the spike window centering problem.

A. HARDWARE REPORT

The target device is the ZedBoard, a low-cost development
board for the Xilinx Zynq Z-7020 All-Programmable SoC.
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TABLE 2. Classifier resource requirements at the varying of the number
of templates K and the number of features F.

CLASSIFIER RESOURCE REQUIREMENTS

BRAMs
(K,F) DSP  Adders Comparators (36,18) Kb
(3,2) 6 3 2 8,2)
3,3 9 3 2 (12, 3)
(6,2) 12 6 5 (14, 6)
(6,3) 18 6 5 (21,9)
(8,2) 16 8 7 (22,0)
(8,3) 24 8 7 (33,0)

The chip embeds 106400 Flip-Flops (FFs), 53200 Look-
Up Tables (LUTs), 140 36Kb BRAMs tiles (RAMB36), and
220 DSP48EI1 slices. Each DSP48E1 contains a 25-bits pre-
adder, a 25 x 18 bits multiplier, and a 48-bits accumulator.

The FIR filter block is constituted by 32 FIR filters and
every filter is implemented using one DSP48E1 only.

The Feature Extractor requires two lut-based subtractors
and three comparators to implement the FSDE algorithm
described by Equations 1-5. Furthermore, previous sam-
ples and previous derivatives need to be stored along the
sampling cycles to carry on the FSDE algorithm. Thus,
five BRAM-based buffers are instanced, with an entry
of 12 bits per channel, requiring one RAMB36 and one
RAMBI8 blocks each. The FSDE algorithm also needs a
counter per channel. The counters are BRAM-based and they
need log, W bits each, where W is the dimension in samples
of the spike window.

The Classifier requirements, in terms of FPGA resources,
are highly related to process parameters like the number
of templates per channel K and the number of features F.
Depending on the number of features and templates, the num-
ber of operations changes as well as the memory required to
store the templates, as shown in Table 2.

The DSPs, the adders and the comparators are used to
compute the euclidean distances between the feature vector
and the templates; the BRAMs are used to store the templates.

We select eight as the maximum number of neurons per
electrode because, being a power of two, it is a more hardware
friendly parameter. The architecture can be easily extended to
support a different number. The limiting factor is the number
of BRAMs, which poses the limit to the number of neurons
per channel to 16. By looking at Table 2, 33 BRAM tiles
are required for K = 8. For K = 16, implementation would
increase BRAMs by 2x, almost saturating (137 out of 140)
the availability in the device.

After implementation, using Vivado v2017.4, it has been
possible to obtain about the overall hardware resource uti-
lization in the device, as shown in Table 3.

Thanks to the hardware-friendly algorithms selected for
this implementation, it is possible to satisfy real-time con-
straints with low utilization of available DSP slices. However,
due to the nature of the FSDE algorithm, the samples of the
previous sampling cycle and the derivative extrema found up
to that moment need to be stored, thus the BRAM utilization
is relatively high. In addition, the FIFO storing pre-threshold
samples of the spikes inside the Feature Extractor module,
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TABLE 3. Post-implementation resource requirements of the Xilinx Zynq
Z-7020 obtained by using Vivado v2017.4.

POST-IMPLEMENTATION RESOURCE REQUIREMENTS

Resource Utilization ~ Available %
LUT 28984 53200 54.48
LUTRAM 3753 17400 21.57
FF 26444 106400 24.85
BRAM 104 140 74.29
DSP 61 220 27.73
Easy 1 Easy 2

Difficult 1 Difficult 2

)

FIGURE 6. Spike waveform models of the four datasets presented in [13].

contributes to increase the BRAMs utilization. Overall, con-
sidering the resource requirements of the different modules
and the throughput performance of the system, the Xilinx
Zynq Z-7020 would be able of hosting up to 5500 channels
still satisfying the real-time constraints.

B. EXPERIMENTAL SETUP

1) REFERENCE BENCHMARK DATASET

To assess the functionality of the system, we have used, as a
reference benchmark, the dataset presented in [13], composed
of four simulations, named Easy I, Easy 2, Difficult 1 and
Difficult 2, each including the activity of three neurons. Every
track is available with different levels of noise: 0.05, 0.01,
0.15 and 0.2. The noise levels are intended to be the stan-
dard deviations o of the neural tracks. The simulations were
created starting from real spike waveforms recorded in the
neocortex and basal ganglia, whereas the background noise
is obtained by adding together random spikes. As explicated
by the simulation names, the sorting is more challenging for
the Difficult simulations and easier for the Easy simulations.
Figure 6 shows the waveform models of the three neurons in
the four datasets. The model waveforms are built by com-
puting a sample by sample average between all the spike
waveforms in the dataset.

2) EXPERIMENTAL SETUP

To test the device on the dataset [13] a PC is used to send
the data samples through a UART interface operating at
115.200 baud/s. For this purpose, we have implemented a
slightly modified design, integrating a Microblaze proces-
sor implemented on the PL, managing the streaming of the
datasets. Short dataset segments corresponding to a track
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TABLE 4. Resource utilization overhead related with the additional logic
used for testing, on the Xilinx Zynq Z-7020 obtained by Vivado v2017.4.

EXPERIMENTAL SETUP RESOURCE REQUIREMENTS

Resource Utilization ~ Available %
LUT 2774 53200 0.05
LUTRAM 140 17400 0.01
FF 5122 106400 0.05
BRAM 18 140 0.13
DSP 0 220 0.00

of 18K samples, converted to 12-bits, are sent to the FPGA,
encoding each 12-bits sample in two UART packets. A simple
program executed by the Microblaze receives UART packets,
recomposes the samples, and stores them into a 64K local
BRAM memory. Once the complete segment is received,
the processor sends the same stream of samples to all the fil-
tering and sorting channels, through two AXI-Stream Broad-
caster modules. The resource occupation overhead due to
such testing infrastructure is shown in Table 4. For the accu-
racy evaluation used during preliminary design space explo-
ration, we have used the software implementation described
in Section V-B3.

3) REFERENCE SOFTWARE IMPLEMENTATION
To enable preliminary selection of the spike sorting strategy
and comparison with available alternatives, before hardware
development, we realized a software pipeline embedding the
typical spike sorting processing steps [9] in Python, available
for download and contribution as open source.! Thanks to
such software implementation, it is possible to try different
strategies of filtering, spike detection, feature extraction and
clustering on both single and multi channels data.

The platform embeds Finite Impulse Response (FIR) filters
and the offline Absolute Value Thresholding method proposed

in [13]:
Thr = o X median o (14)
0.6754

where x is the neural signal and « is a parameter set to 4.0 as
suggested in [13].

Furthermore, different feature extraction algorithms might
be compared, such as Integral Transform, Zero Crossing
Feature, First and Second Derivative Extrema. The coher-
ence between results obtained by software and on the hard-
ware platform has been thoroughly verified. A comparison
between processing results based on floating-point data for-
mat and the fixed point implemented on the hardware is
presented in the following.

C. ACCURACY EVALUATION

We used our system to perform several accuracy tests, com-
paring the spike-to-cluster association decided by our Classi-
fier, to the ground truth provided with the datasets. As men-
tioned, we have detected spikes using Equation 14, we used
FSDE features and on-line classification based on Euclidean
distance. Figure 7 shows the obtained cluster distribution
over the feature space. The plots show two out of the three

1 https://github.com/gianlucaleone/Spike_Sorting
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FIGURE 7. Cluster shapes of the 16 simulations [13]. The noise increases from left to right,
the radius of the clusters increases with the noise, and the clusters get closer. The Difficult
simulations exhibit closer clusters compared to the Easy simulations.

features, first derivative maximum on the x-axis and second
derivative minimum on the y-axis, to improve readability. It
may be observed, looking at the clusters of the same dataset
at different noise levels, that spikes in the same cluster spread
out and the gap between the clusters decreases. It is also
possible to observe that the spikes of the dataset Easy I are
much more distinguishable with respect to others at every
noise level. On the contrary, at some noise level, in the other
datasets, clusters eventually start to be close or to overlap.
In Figure 7, cluster centers are computed off-line using
a K-Means algorithm on all the spikes in the datasets. This
kind of approach is not usable to implement on-line sorting,
thus is not suitable for any kind of closed-loop application
involving the HDMEA. Conversely, we have evaluated the
overall accuracy for each dataset, using a limited number
of training spikes to define the templates of the Classifier,
through the use of the K-Means clustering algorithm. We have
explored the number of training spikes to evaluate its impact
on accuracy. Figure 8 shows the results. Dashed lines repre-
sent the accuracy of the offline method. The average offline
accuracy obtained is about 86%, ranging from 62% got in
Difficult 2 with a level of noise 0.2 to 95% got in Easy
1 with a level of noise 0.05. Every box-and-whisker plot,
except the rightmost one, contains the results of 200 exper-
iments where the training spikes were taken randomly from
the dataset tracks. We vary the number of spikes used to
run the K-Means algorithm along the x-axis, ranging from
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100 up to 400. In most datasets, 100 training spikes are often
sufficient to reach an accuracy similar to offline analysis,
as may be noticed by the median value, which converges to
the dashed line. However, in some datasets, e.g. Easy 2 with
a very low or very high level of noise, at least 300 spikes are
required to converge to offline accuracy levels set respectively
to 0.94 and 0.73. Moreover, in general, it is possible to notice
a significant accuracy deviation from the median value, when
selecting some specific spike sets for training, corresponding
to larger boxes: i.e. depending on the set of feature vectors
considered for the template creation, accuracy may change
significantly. The Easy I dataset does not show noticeable
variability. Difficult 2 shows limited variability, since, even
if some corner cases determine significant degradation (up to
0.3 points), three quartiles of the experiments overlap with
the offline accuracy level. Difficult 1 and Easy 2 show bigger
boxes, i.e. results are less predictable for 100 and 200 training
spikes. In these cases using 300 spikes appears to be the value
minimizing, at the same time, variability and training set size.

1) ITERATIVE CLUSTERING ON THE PS

Considering that, in general, most of the considered training
sets result in an accuracy level close to the off-line analy-
sis, we have tested a template definition methodology that
repeats the K-means clustering along the duration of an exper-
iment, to limit the effect of poorly-performing training sets of
spikes using each template set for a shorter time. The tested
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FIGURE 8. Sorting accuracy at the varying of the number of spikes used to prepare the Classifier templates trough the use of the
K-Means clustering algorithm. The noise increases along the columns, the dataset changes along the rows. The dashed line states the
offline accuracy of the method and the box-and-whisker plots show the collected accuracy obtained by running the k-means over
200 randomly chosen sets of spikes. The last box-and-whisker plot of every figure shows our real-time accuracy.

TABLE 5. K-Means run time on the PS. The dataset is constituted
of 300 spikes. Every time measure is averaged over 1000 runs.

[es] 0.050¢ 0.0lc 0.150¢ 0.200

Easy 1 85 98 116 120
Difficult 1 102 143 190 203
Easy 2 73 80 71 75
Difficult 2 71 78 90 108

K-Means implementation, in C language, is taken from [33].
Cluster centers are initialized by the use of K-Means++ [34].
The maximum number of iterations for refining the center is
set to 10. To assess the possibility of repeating the clustering,
we have measured the execution time on the PS. Table 5
shows the average execution time over 1000 runs.

As may be noticed, the execution time changes for different
datasets, since the algorithm requires a different number of
iterations to converge.

Execution is in general reasonably fast. The average time
in table 5 is about 106 ws, corresponding to less than 4 sample
times, confirming the possibility of executing the algorithm
multiple times to refine the coordinates of the centers during
an experiment.

The rightmost box-and-whisker plots in Figure 8 show
the accuracy obtained by repeating the K-Means cluster-
ing over 300 spikes once every three seconds (an execu-
tion rate that can be comfortably supported considering
run-times in Table 5 for 4096 channels). We run the exper-
iment 10 times per each dataset selecting a different starting
point in the neural signal, to obtain more reliable results.
As may be noticed, variability is significantly reduced.
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Unfavourable corner cases are avoided and the worst-case
accuracy is significantly improved. The obtained overall
mean accuracy is about 82.4% and variability is much more
contained, with values ranging from 79.8% to 84.9%.

To demonstrate the flexibility derived by software pro-
grammability, we have implemented on the PS a second
clustering algorithms, based on Self-Organizing Map (SOM).
A thorough accuracy evaluation for the SOM method in
this case would require a more complex exploration of the
algorithm hyperparameters, which is beyond the scope of
this paper. However, we have tested the execution with some
basic settings to estimate the execution time. We have used
the publicly available C language implementation released as
open-source under MIT license at [35]. The SOM algorithm
is more complex than K-means, its run-time is the same for
all the datasets since it stops when the maximum number of
iterations is reached. By setting a 4 x 2 neural network and
considering 200 training spikes, the average training time is
about 2.67 seconds.

D. DETAILED EVALUATION OF THE IMPLEMENTATION

We have performed multiple tests to confirm our design
choice, evaluating the impact of architectural details on the
overall accuracy.

1) EVALUATION OF FEATURE EXTRACTION AND DETECTION
METHODS

To assess the impact of the chosen First and Second
Derivative Extrema [25] algorithm on the accuracy, we have

VOLUME 8, 2020



G. Leone et al.: ZyON: Enabling Spike Sorting on APSoC-Based Signal Processors for High-Density Microelectrode Arrays

IEEE Access

—@-- FSDE

average accuracy
o o
N U
wl o
a
<]
b
b
Bl

o
o
S

-
o
o

o
~
a

—e-- FSDE
| —e— FSDE-DET
2cF 2ZcF
ZCF-DET ZCF-DET

~e-- FSDE
| —e— FSDE-DET

o
N
[

average accuracy
o
u
o

o
o

0 T T T T
0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20
noise noise

FIGURE 9. First and Second Derivative Extrema and Zero Crossing Feature
extraction methods comparison.

compared it with a Zero Crossing Feature [22] implemented
on our reference software pipeline. We also estimated the
impact of the spike detection accuracy on the overall results.
The K-Means clustering algorithm is used to measure the
final sorting accuracy and to compare the methods.

Figure 9 shows four plots, one for each dataset track. The
plots report the accuracy of the sorting at four different noise
levels. In order to evaluate the impact of the spike detection
phase, we report, besides the overall accuracy, commonly
estimated taking into account the number of false positives
Fp and of false negative Fyy as in Equation 15 (solid lines
in Figure 9), a detection-insensitive metric that only considers
the ratio of correctly classified spikes over those detected by
the system, as in Equation 16 (dashed lines).

Ace — Right Classified (15)
Detected + Fp + Fy
Right Classified

ACCro der = Detected (16)
In the simulation Easy 1, the FSDE accuracy is over 0.9 for
the first three noise levels, and it is only slightly better than the
ZCF one. Nevertheless, the ZCF accuracy falls when the noise
level is increased at 0.200, whereas the FSDE accuracy still
is at 0.83. In simulations Easy 2 and Difficult I, the methods
exhibit the same accuracy for 0.050. However, ZCF is not
able to maintain the same accuracy of FSDE for higher noise
levels, dropping down to less than 0.5 in both simulations.
In the simulation Difficult 2, the accuracy performance of
ZCF is constantly lower than FSDE. FSDE appears to be
dominant in every simulation, showing a better capability
of extracting valuable features, at least when combined with
the use of the K-Means algorithm. Furthermore, FSDE also
appears more resilient to higher noise levels than ZCF on
the considered datasets [13]. Finally, it may be noticed that
both algorithms suffer from some defects in the detection
methodology. Using a static threshold appears to significantly
affect accuracy when the noise increases to 0.20 (deviation
between dashed and continuous lines in the graph). How-
ever, it may be noticed that, when disregarding mis-detected
spikes, the accuracy gap between FSDE and ZCF is even

bigger, especially for higher levels of noise.
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TABLE 6. Spike sorting relative error of the fixed-point data flow. The
error measures the accuracy difference between the fixed and
floating-point algorithms.

FLOATING VS FIXED POINT SORTING ERROR

Datasets Level of Noise
0.050 0.10c 0.150 0.200
Easy 1 0.0 0.0 0.0 0.0
Easy 2 0.0 0.0 0.0 0.22
Difficult 1 0.0 0.0 0.0 0.0

Difficult 2 0.0 0.03 -0.20 0.02

TABLE 7. Accuracy at the varying of the FIFO buffer size.

Shift  Accuracy nBRAM
2 74% 3
4 82% 5
8 86% 11
16 79% 22

2) EVALUATION OF FIXED POINT IMPLEMENTATION

The architecture embeds fixed-point processing elements
rather than floating-point ones. In order to evaluate the
accuracy penalty deriving from such approximated format,
the fixed and floating-point sorting results are compared
inside the software pipeline.

The data sampled by BioCam X is 12-bits wide. We chose
to avoid the impact on accuracy deriving by adapting data
representation to the same format after every processing
step. Instead, we defined the width of internal bus signals to
avoid overflows, at the expense of higher resource utilization.
This does not affect the transmission rate to DDR, since
the information which needs to be sent in output is only
including FSDE features, encoded in 12-bits, and classifica-
tion results, encoded in 3-bits to represent eight neurons per
channel.

Table 6 shows the relative error of the fixed point spike
sorting algorithm compared to the floating-point results. The
spike sorting error for each simulation is given along the
rows, whereas the levels of noise swipe along the columns.
The relative error of the clustering is zero in most of the
simulations, completely at zero for Easy I and Difficult 1. The
simulation Easy 2 0.20 has a loss of accuracy of the 0.22%.
The simulation Difficult 2 presents a loss of the 0.03% for
0.10 and a loss of the 0.02% for 0.2¢ . Finally, the simulation
Difficult 2 0.15¢0 presents an improvement of the accuracy
of 0.2%. This demonstrates that there is no significant accu-
racy drop when moving toward fixed point algebra.

3) SPIKE WINDOW CENTERING EXPLORATION

We found a correct centering of the spike in the window of
samples used to extract features to be key for the overall
accuracy. As previously mentioned, such centering is imple-
mented by continuously keeping track of the recent samples
inside a FIFO, while waiting for the detection to trigger the
Feature Extractor. The number of preceding samples stored
in the FIFO, as well as, obviously, the number of channels,
has a direct impact on the utilization of BRAMs. Table 7
shows the average offline accuracy of the system on the
4 reference datasets [13], at the varying of the centering of
the spike window, expressed in number of sampling cycles
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TABLE 8. Other FPGA-based spike sorters comparison summary.

FPGA STATE OF THE ART COMPARISON TABLE

Reference Park [18] POSort [28] Yang [27] Dragas [36] Valencia [37] Sungjin Oh [38] Schiiffer [39] This work
Year 2018 2019 2017 2015 2019 2017 2020 2020
FPGA Xilinx Kintex-7 ~ Xilinx Virtex-6  Altera Cyclone IIl  Xilinx Virtex-6  Xilinx Artix-7  Xilinx Spartan-6 + PC  Xilinx Zinq Ultrascale+ Xilinx Zing-7000
Input Channels 128 1 32 90 1 1 128 4096
Output Channels 8 0 0 0 0 0 0 16
Sampling [KHz] 325 24 20 20 24 50 20 18
Detection yes yes TEO - TEO 2T TEO DT
Feature no no DWT - - ZCF - FSDE
Class/Clust ™ OSort BDT BOTM ™ K-Means OSort K-Means-based
Resolution [bits] 16 16 10 10 16 12 16 12
Accuracy - 87% (60%:80%) <85% 90% - 86 82%
SNR [dB] [10:13] [5:7] >5 [10:13] [3-10] [7:13]
BRAM - 29 - 865kb 0 - 98 104
DSP - 130 - 5 - 60 61
LUT - 16472 190000 6628 - 51674 28984
REG - 8444 - 29000 4880 - 17484 26444
Frequency [MHz] - 123 0.160 - 102 50 200 125
Clustering Latency [ps] - 0.25 - - 0.55 - - 0.08
Latency [ms] - - 2.65 - - 0.087%* 2.3

stored preventively in the FIFO, and the BRAMs required to
implement the FIFO buffer.

The configuration with 8 samples leads to the highest
accuracy. Decreasing the length of the spike head memorized
in the buffer, important information about the characteristics
at the beginning of the spike waveforms are lost and therefore
accuracy is affected. Nevertheless, increasing the number of
samples to 16 loses too much information from the tails of the
spikes, thus does brings to both a negative effect on accuracy
and to over-utilization of the BRAM resources on the device.

VI. COMPARISON WITH STATE OF THE ART
Table 8 shows the main characteristics of the works we target
to be compared to our implementation.

To the best of our knowledge, literature does not present
any implementation able to process 4096 electrodes simulta-
neously in real-time, including support for spike sorting.

In [18] Park et al. present a multichannel neural interface
capable of sorting 128 channels simultaneously and to stim-
ulate the neural tissue from 8 electrodes. The neural interface
presented is based on template matching and it is hosted by
the Xilinx Kintex-7 XC7K160T. The device embeds 600 DSP
slices and 325 36Kb BRAM tiles. No precise resources uti-
lization are given, nevertheless, they require 6 kb of memory
per channel, whereas we only need 0.92 kb per channel by
adding together both the BRAMs and the registers utilization
shown in table 8 and dividing the sum by the number of
the overall channels (4096). Even considering 16 bits of
resolution like in [18], instead of 12 bits, our memory would
increase to 1.23 Kb only.

The Parallel OSort algorithm (POSort), presented in [28],
is prototyped on both the Xilinx Spartan-6 and the Xilinx
Virtex-6 devices. Table 8 reports the Virtex-6 single channel
implementation features, since it is the best version, in terms
of accuracy and latency, between the fully documented ones
shown in [28]. However, the POSort can handle up to 64 and
128 channels if hosted by high-end FPGAs like those in
the Virtex and Kintex families. The memory required to
operate on 64 and 128 channels is respectively 960 and
1920 BRAMs while this work is capable of sorting 4096 inde-
pendent channels with 104 BRAMs only. Even though the
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*without filtering

POSort algorithm requires about half of our LUTs and a
third of our registers, it needs more than double of our DSPs
and about 590 more BRAMs per channel. Its accuracy is
87%, therefore greater than our 82%. However, it couldn’t
scale up to 4096 channels unless an unreasonable amount of
memory were available. The total POSort system latency is
not provided, however, it is available the clustering latency
which is about 0.25 us. Although the total latency of this
work is 2.3 ms, the main contribution is given by the FIR filter
bank and the FIFO, and our classification latency is 0.08 s,
three times less than the POSort.

In [36] Dragas et al. present a 90-electrodes real-time
spike sorting processor hosted by a Xilinx Virtex-6 FPGA.
The presented system can process in real-time up to 650 neu-
rons, which is 50 times less than our maximum number of
neurons (we can consider 8 neurons per channel, over a 4096-
electrodes HDMEA). The work in [36] guarantees a latency
of 2.65 ms, which is comparable to our result, i.e. 2.3 ms.
The implementation requires 865 Kb of BRAM memory,
190000 LUTSs, and 29000 REGs. No information about the
DSP utilization is provided. Considering the significantly
higher LUT utilization, it seems that processing blocks have
been implemented using arithmetic that does not map effi-
ciently on DSP slices, using LUTSs instead. Sorting accuracy
is slightly less than 85%, which is 3 points above our result,
and has been tested on a dataset with SNR above 5 dB.

In [37] Valencia et al. present a single-channel real-time
spike sorter hosted by a Xilinx Artix-7. The system can be
instantiated multiple times (68 times), in order to handle an
array of electrodes (up to 204 neurons), and almost fully
saturating the Xilinx Artix-7 LUT resources (98%). The
reported system accuracy, of about 90%, has been tested
using a dataset with SNR in the range 10-13 dB. To the
best of our knowledge, it is the highest accuracy between the
real-time spike sorters presented in the scientific literature.
Unfortunately, by supporting 204 neurons only, this work is
not compliant with the needs of more recent HDMEAs.

In [27] Yang et al. implement a 32 channels neural sig-
nal processor hosted by an Altera Cyclone III FPGA. The
performance of the system in terms of accuracy has been
assessed to be 60-80% for signal-to-noise ratio in the range
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5-7 dB. Neither resource utilization nor system latency has
been provided in [27]; the reported number of channels and
sorting accuracy are both lower than in our implementation.

In [38] Sungjin Oh et al. present a single-channel real-time
spike sorter hosted by a Xilinx Spartan-6 FPGA and a PC.
The neural signal is filtered, the filter cut-off frequencies are
300 and 5000 Hz, respectively. Then the spikes are detected,
and from the resulting spike waveforms, a technique similar
to the ZCF one is used to extract the features. The features are
finally sent to a PC through an RS232 interface and clustered
in real-time using the K-Means algorithm in MATLAB. The
system has been tested in-vivo, therefore no accuracy data is
provided to compare it to our work. In addition, no utilization
data are even provided in terms of LUTs, DSPs, BRAMs, and
REGs.

In [39] Schiffer et al. present a real-time 128-channels
spike sorter implemented on a Xilinx ZCU106 SoC FPGA
board. The system in [39] filters the neural signals using a
[II-order zero-phase Butterworth Infinite Impulse Response
filter and detects the neural activity by using a NEO spike
detector. For each spike detected a group of 3 x 3 channels
is considered, centered in the channel sensing the highest
absolute signal amplitude. The waveforms acquired by all the
9 channels are processed by means of the Osort clustering
algorithm. This allows for improved accuracy, 86% on aver-
age, tested on a dataset with SNR in the range 3-10 dB, which
outperforms the accuracy obtained in our work. However,
due to the increased complexity, the number of processed
channels is still 32 times lower compared to the capabilities
of our architecture.

VIi. CONCLUSION

We have defined a processing architecture supporting spike
sorting for neural signals acquired by means of HDMEAs.
Such architecture, implemented on a Z7020 APSoC, can
process in real-time up to 4096 sample streams acquired
at 18KHz. This outlines the possibility to use hardware
implemented on FPGA-based reconfigurable logic to imple-
ment highly-parallel and low-latency neural signal proces-
sors. The selected set of hardware-friendly feature extraction
and classification techniques effectively exploits DSP slices
and BRAM storage resources available in the device, and
effective pipelining can be applied to obtain reasonably high
clock frequency. Moreover, we have demonstrated that the
interaction with the integrated programmable ARM-based
processing system can be exploited on-line, to adapt to dif-
ferent experimental conditions. We have proved that the
DDR memory available on the development board, reachable
through the chip circuitry, provides sufficient storage capa-
bilities and IO bandwidth to support data exchange between
the data-crunching functional blocks implemented in the pro-
grammable logic and processing kernels executed by the
hard cores. As an example, we have proposed an approach
that repeats the clustering procedure during spike sorting,
to limit the effects of unfavorable spike selection during the
clustering definition process, improving accuracy to 82%,
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which corresponds to only 4% degradation with respect to
off-line analysis. The proposed system increases by 43 times
the supported number of channels with respect to alternatives
in literature. The approach is suitable for closed-loop experi-
ments since provides sorting results with a latency of 2.3 ms.

A prospective longer-term path of exploitation for our work
derives from its complementarity with recent neuromorphic
FPGA-based architectures, emulating different kinds of neu-
rons on-silicon [40], [41]. Our spike sorter can be used to
build an interface between such devices and HDMEAs, thus
the integration of these two approaches will pave the way
to experiments involving the co-operation of biological and
on-silicon neural networks.
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