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ABSTRACT Themulti-dividing ontology learning framework has been proven to have a higher efficiency for
tree-structured ontology learning, and in this work, we consider a special setting of this learning framework in
which ontology sample set for each rate is divided into two groups. This setting can be regarded as the classic
two-sample learning problem associated with multi-dividing ontology framework. In this work, we mainly
focus on the theoretical analysis of multi-dividing two-sample ontology learning algorithm, whose ontology
objective function is proposed, and the generalization bounds in this setting is obtained in terms of U -
statistics technique. The theoretical result given is of potential guiding significance in the field of ontology
engineering applications.

INDEX TERMS Small ontology, multi-dividing ontology learning, similarity measure.

I. INTRODUCE OF ONTOLOGY
The concept of ontology originally belongs to the category
of western philosophy, which refers to the expression and
summary of the objective existence at the logical level. Ontol-
ogy began to be introduced in the artificial intelligence in the
1980s, with 20 years of development, and it has been widely
recognized in this century which was defined by a clear for-
mal specification of a shared conceptual model. Ontology can
specifically describe the complex conceptual relationships in
a certain field. Human-machine can communicate and share
data information between machines because the definition of
domain information by ontology is unanimously recognized.
In addition to the study of ontology in the field of philosophy,
computers and other aspects have also made active research
on ontology theory and applied it to corresponding fields (see
Gao et al. [1] and [2]).

Artificial intelligence has its own definition of ontology,
for example, the standard stipulate the concept of ontology
can be described as follows: ‘‘Ontology can define concepts
in a specific field and give clear terms, describe the rela-
tionship between them in detail, and vocabulary extension
rules can also describe and express based on defined terms.’’
The main research problem of ontology in the field of engi-
neering is how to construct ontology, which involves the use
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of ontology principles. Although the definitions of ontolo-
gies given by experts in various fields are different from all
angles, researchers agree that ontologies can clearly define
the information concepts in the field, and the use of ontolo-
gies in specific fields can make each subject accessible [3].
This is the essential connotation of the ontology concept.
Ontology is defined in the field of library and information
science as ‘‘Ontology can use a specific domain vocabulary
to describe a specific fact and infer the deep meaning of
the vocabulary’’, and it’s also defined to be able to repre-
sent specific domain conceptual information from a specific
perspective [4].

Ontology has been studied and applied in various engi-
neering applications. Skalle and Aamodt [5] showed how
tricks of knowledge modeling and drilling ontology have
been employed to predict downhole failures during drilling.
Sobral et al. [6] proposed an ontology-based modelling to
support integration and visualization of data from ITS. Al-
Sayed et al. [7] presented a comprehensive cloud ontology
named CloudFNF. Tebes et al. [8] evaluated identify and
synthesize the available primary studies on conceptualized
software testing ontologies. Pradeep and Sundar [9] sug-
gested retrieving the information with the design of QAOC
architecture. Hema and Kuppusamy [10] raised a trust-based
privacy preservationmodelling for service handling bymeans
of ontology service ranking. Messaoudi et al. [11] pre-
sented a review of medical ontologies. Mantovani et al. [12]
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introduced an ontology based trick for the interpretation and
the encoding of the map data. Abeysinghe et al. [13] devel-
oped a SSIF by leveraging a novel term-algebra on top of
a sequence-based representation of gene ontology concepts.
Kossmann et al. [14] presented an ontology based federative
trick to managing the inherent complexity of CM in the
context of SoS.

In this article, we don’t consider the philosophical category
of ontology, but regard it as a structured conceptual model.
The so-called structured means the data in the ontology is
not a single record, but the data are mutually related, and a
graph can be used to represent the data structure. Vertices
are used to represent concepts, and edges between vertices
represent direct connections or relationship between con-
cepts. Hence, the entire ontology is represented by a graph.
In addition, after all the information related to the concept is
numerically expressed, a multi-dimensional vector is used to
encapsulate the representation, that is, each vertex is a fixed
p-dimensional vector, and then a learning model can be used
to learn various ontology graphs [15].

II. SETTING OF ONTOLOGY ALGORITHM
A. ONTOLOGY LEARNING ALGORITHM
Set G = (V ,E) as an ontology graph whose vertex set cor-
responds to concepts and edge set reveals the set of directly
relationship between two concepts. Suppose Sim : V 2

→

R+ ∪ {0} as the similarity function and it always unitizes the
value to interval [0,1] for convenience. Let v1, v2 ∈ V (G)
be two differ vertices, Sim(v1, v2) = 1 indicates the same
meaning of concepts corresponding to v1 and v2. Conversely,
Sim(v1, v2) = 0 reveals no relationship between two concepts
corresponding to v1 and v2. Threshold parameter M ∈ [0, 1]
is determined in light of field experts, then for the given vertex
v, {v′|Sim(v, v′) ≥ M} is returned to the user as similarity ver-
tices. In this whole article, suppose n is the sample capacity,
i.e., the number of ontology samples.

Let S = {vi}ni=1 be the ontology sample set with n ontology
vertices which is independent identically distributed accord-
ing to an unknown distribution D (written as vi ∼ D for
i ∈ {1, · · · , n}), f : V → R be an ontology function
which maps each ontology vertex to a real number (in this
setting, the similarity between ontology vertices v1 and v2 is
determined in terms of |f (v1) − f (v2)| in which we desire
a small number for a high similar pair (v1, v2), and on the
contrary a large number for dissimilar pair) and l(f , v) be
the ontology loss function. The expected risk of ontology
learning model can be formulated by

R(f ) = Ev∼Dl(f , v).

Unfortunately, we can’t directly calculate R(f ) since D is
unknown. Instead, ontology empirical framework is applied
in the specific ontology learning process which is denoted as
follows

R̂S (f ) =
1
n

n∑
i=1

l(f , vi).

For the supervised ontology learning, assume that ontology
samples are denoted by (vi, yi) where yi ∈ Y is the label of
vi. For given f : V → R, ontology loss l(f , vi, yi), and hence
the expected ontology risk is denoted as

R(f ) =
∫
V×Y

l(f , vi, yi)D(dvi, dyi).

The corresponding empirical ontology risk with
S = {(vi, yi)}ni=1 can be modified as

R̂(f ) =
1
n

n∑
i=1

l(f , vi, yi).

B. MULTI-DIVIDING ONTOLOGY ALGORITHM BY
MAXIMIZING AUC MEASURE
Multi-dividing ontology learning framework has attracted the
attention of scholars in the recent decade since it fits the
ontology graph with tree structure. In this special ontology
learning setting, the ontology vertex set is divided into k
rates corresponding to k branches under the top vertex. The
values of different branches are always obtained from domain
experts. For ontology function f , we expect f (va) > f (vb)
where va and vb belong to branches a and b respectively, and
a, b are positive integers with 1 ≤ a < b ≤ k .
Specifically, the learner is inferred to a set of ontology

sample S = (S1, S2, · · · , Sk ) ∈ V n1 ×V n2 ×· · ·×V nk where
Sa = (va1, · · · , v

a
na ) ∈ V

na (1 ≤ a ≤ k). Ontology function
f : V → R is learned in terms of S which assigns the Sa
vertices larger value than Sb vertices, where a < b. Let Da
be the conditional distributions for a ∈ {1, · · · , k} and the
sample capacity is denoted by n =

∑k
i=1 ni with ni = |Si|.

The expected multi-dividing ontology expected risk with
the ontology function f : V → R is formulated by

R(f ) =
k−1∑
a=1

k∑
b=a+1

Ev∼Da,v′∼Db{l(f , v, v
′))}. (1)

The transformation expression for expected ontology risk can
be denoted as

R(f ) =
k−1∑
a=1

k∑
b=a+1

∫
V a×V b

l(f , va, vb)Da(dva)Db(dvb). (2)

The firstR(f ) expression is in expectation form, while the sec-
ond R(f ) expression is displayed in integral form, and the
two are equivalent. Furthermore, the multi-dividing empirical
error is formulated as

R̂S,l(f ) =
k−1∑
a=1

k∑
b=a+1

1
nanb

na∑
i=1

nb∑
j=1

l(f , vai , v
b
j ). (3)

Hence, the desired ontology function is deduced from ontol-
ogy learning framework f ∗ = argminR̂T ,l(f ) in which
R̂S,l(f ) can be simply written as R̂(f ).
From another angle, the idea of multi-dividing ontology

learning modelling can be explained in terms of maximizing
AUC (Area Under the ROC (Receiver Operating Characteris-
tic) Curve) criterion. Consider k = 2 or imagine it as a binary
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classification problem, ROC curve is relied on a series of
different two classification methods (cut-off value or decision
threshold), with true positive rate (sensitivity) as the vertical
coordinate, false positive rate is the curve drawn on the
abscissa. AUC is introduced by the area under the ROC curve
and the coordinate axis. Clearly, the value of this area will not
be larger than 1. Because the ROC curve is generally above
the line y = x in, the value range of AUC is between 1/2 and
1. The closer the AUC is to 1, the higher the authenticity of
the detection trick; when it is equal to 1/2, the authenticity is
the lowest and it has no application value. In multi-dividing
ontology setting, there are k classes corresponding to k rate,
and we consider the pairwise comparison. Hence, in this
case, the AUC criterion in multi-dividing setting can be
formulated by the accumulation of each pair of (a, b) with
1 ≤ a < b ≤ k .

Specifically, let Hf ,a(t) = P{f (v) ≤ t|Y = a} and
Ĥf ,a(t) = 1

na

∑na
i=1 I(f (v

a
i ) ≤ t) for a ∈ {1, · · · , k}, t ∈ R,

and I(·) is a binary function such that its value takes 1 if argu-
ment is true and 0 otherwise. For convenience, in what fol-
lows, we write Hf ,a and Ĥf ,a instead of Hf ,a(t) and Ĥf ,a(t) in
the AUC expression. The expected AUC framework in multi-
dividing setting is associated with Hf ,a which is denoted by

AUCHf ,a,Hf ,b (f ) =
k−1∑
a=1

k∑
b=a+1

{P{f (va) > f (vb)}

+
1
2
P{f (va) = f (vb)}}, (4)

and the corresponding empirical multi-dividing ontology
framework under AUC certerion is

ÂUCHf ,a,Hf ,b (S, f )

=

k−1∑
a=1

k∑
b=a+1

1
nanb

na∑
i=1

nb∑
j=1

{I(f (vai ) > f (vbj ))

+
1
2
I(f (vai ) = f (vbj ))}. (5)

If we limit it to a specific pair (a, b), the AUC criterion can
be expressed as

AUCa,b
Hf ,a,Hf ,b (f ) = {P{f (v

a) > f (vb)}

+
1
2
P{f (va) = f (vb)}}, (6)

ÂUC
a,b
Hf ,a,Hf ,b (S, f ) =

1
nanb

na∑
i=1

nb∑
j=1

{I(f (vai ) > f (vbj ))

+
1
2
I(f (vai ) = f (vbj ))}. (7)

Hence, we admit

AUCHf ,a,Hf ,b (f ) =
k−1∑
a=1

k∑
b=a+1

AUCa,b
Hf ,a,Hf ,b (f ), (8)

ÂUCHf ,a,Hf ,b (S, f ) =
k−1∑
a=1

k∑
b=a+1

ÂUC
a,b
Hf ,a,Hf ,b (S, f ). (9)

The aim of this article is to propose the statistical char-
acterization of multi-dividing ontology learning algorithm in
the two-sample setting, where each Sa with a ∈ {1, · · · , k} is
divided into two groups S0a and S

1
a . In the classic two-sample

learning problem, the first data set is used to obtain an ontol-
ogy function on its function space and the second ontology
data set is served to compute a pseudo-two-sample test statis-
tic from the given ontology data. In our multi-dividing ontol-
ogy setting, we can consider the two-sample ontology data as
the similar meaning, for example, the first group of ontology
data is applied to training, and the second group of ontology
data is for testing, ect. More contents on two-sample learning
problem in different setting and applications can be referred
to Ma and Wong [16], Tang et al. [17], Chen et al. [18],
Kim et al. [19], Rabin et al. [20], and Emura and Hsu [21].
The two-sample ontology setting can be explained from

another angle. We require ontology learning algorithms
to have generalization capabilities, i.e., ontology functions
deduced from one ontology sample set can be well applied
to other ontology data sets in the same type. In other words,
for the same type of ontology data, the ontology functions
obtained from different ontology sample sets should have
similar characteristics, and should not be very different.
In statistical learning theory, it can be understood that two
ontology functions obtained from different ontology samples
of the same type of ontology data are very close in the ontol-
ogy function space and have similar statistical characteristics
to each other.

The main result regarding to generalization bounds in this
setting is manifested in next section, the proof of this result
relies on the techniques of U -statistics and its applications
which can be found in Fuchs et al. [22], Bouzebda and
Nemouchi [23], Fuglsby et al. [24], Privault and Serafin [25],
Bachmann and Reitzner [26], and Garg and Dewan [27], and
we skip the details here.

III. THEORETICAL ANALYSIS IN TWO-SAMPLE SETTING
For a ∈ {1, · · · , k}, we denote z ∈ {0, 1} as the natation of
two groups, i.e., ontology sub sample set Sa in new multi-
dividing ontology setting is divided into two sets Sza : S

0
a

and S1a (denote n0a = |S
0
a | and n

1
a = |S

1
a |). Let H

z
f ,a(t) =

P{f (v) ≤ t|Y = a,Z = z} and Ĥ z
f ,a(t) =

1
nza

∑na
i=1 I(f (v

a
i ) ≤

t,Zi = z) for a ∈ {1, · · · , k}, t ∈ R. To simplify the symbol,
we use H z

f ,a and Ĥ
z
f ,a to replace H z

f ,a(t) and Ĥ
z
f ,a(t). Hence,

the AUC framework in multi-dividing ontology setting is re-
formulated by

AUCH0
f ,a,H

0
f ,b
(f )

=

k−1∑
a=1

k∑
b=a+1

{P{f (va) > f (vb)|z = 0}

+
1
2
P{f (va) = f (vb)|z = 0}},

AUCH1
f ,a,H

1
f ,b
(f )

=

k−1∑
a=1

k∑
b=a+1

{P{f (va) > f (vb)|z = 1}
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+
1
2
P{f (va) = f (vb)|z = 1}},

ÂUCH0
f ,a,H

0
f ,b
(S, f )

=

k−1∑
a=1

k∑
b=a+1

1

n0an
0
b

na∑
i=1

nb∑
j=1

{I(f (vai ) > f (vbj ), z = 0)

+
1
2
I(f (vai ) = f (vbj ), z = 0)},

ÂUCH1
f ,a,H

1
f ,b
(S, f )

=

k−1∑
a=1

k∑
b=a+1

1

n1an
1
b

na∑
i=1

nb∑
j=1

{I(f (vai ) > f (vbj ), z = 1)

+
1
2
I(f (vai ) = f (vbj ), z = 1)}.

Similarly, if we restrict on a specific combination of (a, b)
with a, b ∈ {1, · · · , k} and a < b, then

AUCa,b
H0
f ,a,H

0
f ,b
(f ) = P{f (va) > f (vb)|z = 0}

+
1
2
P{f (va) = f (vb)|z = 0},

AUCa,b
H1
f ,a,H

1
f ,b
(f ) = P{f (va) > f (vb)|z = 1}

+
1
2
P{f (va) = f (vb)|z = 1},

ÂUC
a,b
H0
f ,a,H

0
f ,b
(S, f ) =

1

n0an
0
b

na∑
i=1

nb∑
j=1

{I(f (vai ) > f (vbj ), z = 0)

+
1
2
I(f (vai ) = f (vbj ), z = 0)},

ÂUC
a,b
H1
f ,a,H

1
f ,b
(S, f ) =

1

n1an
1
b

na∑
i=1

nb∑
j=1

{I(f (vai ) > f (vbj ), z = 1)

+
1
2
I(f (vai ) = f (vbj ), z = 1)}.

Thus, we have

AUCH0
f ,a,H

0
f ,b
(f ) =

k−1∑
a=1

k∑
b=a+1

AUCa,b
H0
f ,a,H

0
f ,b
(f ),

AUCH1
f ,a,H

1
f ,b
(f ) =

k−1∑
a=1

k∑
b=a+1

AUCa,b
H1
f ,a,H

1
f ,b
(f ),

ÂUCH0
f ,a,H

0
f ,b
(S, f ) =

k−1∑
a=1

k∑
b=a+1

ÂUC
a,b
H0
f ,a,H

0
f ,b
(S, f ),

ÂUCH1
f ,a,H

1
f ,b
(S, f ) =

k−1∑
a=1

k∑
b=a+1

ÂUC
a,b
H1
f ,a,H

1
f ,b
(S, f ).

In two-sample ontology setting, the optimal ontology func-
tion is denoted by f ∗λ which is obtained by maximizing the
following ontology objective function:

Rλ(f ) = AUCHf ,a,Hf ,b (f )− λ|AUCH0
f ,a,H

0
f ,b
(f )

−AUCH1
f ,a,H

1
f ,b
(f )|,

where λ > 0 is an offset variable. The corresponding empir-
ical ontology version with positive offset parameter λ is

R̂λ(f , S)

= ÂUCHf ,a,Hf ,b (S, f )− λ|ÂUCH0
f ,a,H

0
f ,b
(S, f )

− ÂUCH1
f ,a,H

1
f ,b
(S, f )|,

and we express its maximizer as f̂λ,S .
We say an ontology function space F with ontology func-

tions f : V → R is VC-major if the major sets of the elements
inF is a VC-class of sets in V . Specifically,F is a VC-major
class if and only if {{v ∈ V | f (v) > t}|t ∈ R, f ∈ F} is a
VC-class of sets.

Our main conclusion reveals the learning rate of multi-
dividing ontology problem in two-sample setting.
Theorem 1: Let F be a VC-major ontology function

space, and 0 be its VC-dimension which is a finite number.
Set nmin = min{n1, · · · , nk}. Suppose there is a positive
number ε satisfying

min
y∈{1,··· ,k},z∈{0,1}

P{Y = y,Z = z} ≥ ε.

Then, with probability at least 1− δ for any δ > 0, we have

ε2(Rλ(f ∗λ )− Rλ (̂fλ,S ))

≤ C
(
k
2

)√
0

2nmin
(4λ+

1
2
)+

(
k
2

)√
log( 13

δ
)

2nmin − 1
(4λ

+ (4λ+ 2)ε)+ O(

(k
2

)
2nmin

).

Proof of Theorem 1. Note that Rλ(f ∗λ ) − Rλ (̂fλ,S ) ≤
2 supf ∈F |̂Rλ(f , S)− Rλ(f )|. Set

9̂ = sup
f ∈F
|ÂUCHf ,a,Hf ,b (f , S)− AUCHf ,a,Hf ,b (f )|,

9̂0 = sup
f ∈F
|ÂUCH0

f ,a,H
0
f ,b
(f , S)− AUCH0

f ,a,H
0
f ,b
(f )|,

and

9̂1 = sup
f ∈F
|ÂUCH1

f ,a,H
1
f ,b
(f , S)− AUCH1

f ,a,H
1
f ,b
(f )|.

In light of triangular inequality, we acquire
supf ∈F |̂Rλ(f , S)− Rλ(f )| ≤ 9̂ + λ(9̂0 + 9̂1).
Set

pa,b = P{Y = a|Y ∈ {a, b}},

pa,b0 = P{Y = a|Z = 0,Y ∈ {a, b}},

pa,b1 = P{Y = a|Z = 1,Y ∈ {a, b}},

qa,b0 = P{Z = 0|Y ∈ {a, b}},

qa,b1 = P{Z = 1|Y ∈ {a, b}},

for a, b ∈ {1, · · · , k} with a < b and Z ∈ {0, 1}. Thus,
we obtain qa,b0 = 1− qa,b1 .
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Denote

Ûa,b(f )

=
2

(na + nb)(na + nb − 1)

na∑
i=1

nb∑
j=1

{I(f (vai ) > f (vbj ))

+
1
2
I(f (vai ) = f (vbj ))},

and by means of U -statistic tricks, we get

ÂUCHf ,a,Hf ,b (f , S)

=

k−1∑
a=1

k∑
b=a+1

(na + nb)(na + nb − 1)
2nanb

Ûa,b(f ).

Furthermore, by means of characteristics of U -statistics,
we infer Ua,b(f ) = E[Ûa,b(f )] = 2(1 − pa,b)pa,b

AUCa,b
Hf ,a,Hf ,b (f ) and

sup
f ∈F
|Ûa,b(f )−Ua,b(f )|≤2C

√
0

na + nb
+2

√
log 1

δ

na + nb − 1

(10)

holds with possibility at least 1 − δ where C is an
universal constant. The details on the proof and related state-
ment (10) can be found in Bousquet et al. [28] and Clémen-
con et al. [29]. Using supf ∈F |Ûa,b(f )| ≤

2nanb
(na+nb)(na+nb−1)

,
we deduce

9̂ ≤ sup
f ∈F

k−1∑
a=1

k∑
b=a+1

{|(
(na + nb)(na + nb − 1)

2nanb

−
1

2(1− pa,b)pa,b
)Ûa,b(f )|

+
1

2(1− pa,b)pa,b
|Ûa,b(f )− Ua,b(f )|}

≤

k−1∑
a=1

k∑
b=a+1

{
1

(1− pa,b)pa,b
|
na + nb

(na + nb)2

− pa,b(1− pa,b)+
nanb

(na + nb)2(na + nb − 1)
|

+
1

2(1− pa,b)pa,b
sup
f ∈F
|Ûa,b(f )− Ua,b(f )|}.

It follows from Hoeffding inequality that

k−1∑
a=1

k∑
b=a+1

|
na

na+nb
−pa,b| ≤

k−1∑
a=1

k∑
b=a+1

√
log 2

δ

2(na + nb)
. (11)

Note that na+nb
(na+nb)2

−pa,b(1−pa,b) = (1−2pa,b)( na
na+nb

−p)−

( na
na+nb

−pa,b)2. By setting4a,b(δ) = 1
4(na+nb−1)

+
log 2

δ

2(na+nb)
=

O( 1
na+nb

), we yield

k−1∑
a=1

k∑
b=a+1

|
na + nb

(na + nb)2
− pa,b(1− pa,b)

+
nanb

(na + nb)2(na + nb − 1)
|

≤

k−1∑
a=1

k∑
b=a+1

(|
na + nb

(na + nb)2
− pa,b(1− pa,b)|

+
1

4(na + nb − 1)
)

≤

k−1∑
a=1

k∑
b=a+1

((1− 2pa,b)

√
log 2

δ

2(na + nb)
+4a,b(δ)).

In view of

k−1∑
a=1

k∑
b=a+1

1
2(na + nb)

≤

k−1∑
a=1

k∑
b=a+1

1
na + nb − 1

,

the following inequality is established with possibility at least
1− δ:

9̂ ≤

k−1∑
a=1

k∑
b=a+1

{(C

√
0

na + nb
(12)

+ 2(1− pa,b)

√
log 3

δ

na + nb − 1

+4a,b(
2δ
3
))((1− pa,b)pa,b)−1}. (13)

Now, we consider 9̂0. Since

ÂUCH0
f ,a,H

0
f ,b
(S, f )

=

k−1∑
a=1

k∑
b=a+1

(na + nb)(na + nb − 1)

2n0an
0
b

Û0
a,b(f ),

where

Û0
a,b(f )

=
2

(na + nb)(na + nb − 1)

na∑
i=1

nb∑
j=1

{I(f (vai )

> f (vbj )|z
a
i = zbj = 0)

+
1
2
I(f (vai ) = f (vbj )|z

a
i = zbj = 0)}.

Moreover, it’s not difficult to verify the following fact

U0
a,b(f ) = E[Û0

a,b(f )]

= 2(qa,b0 )2pa,b0 (1− pa,b0 )AUCa,b
H0
f ,a,H

0
f ,b
(f ).

In light of the similar trick as dealing with 9̂, we acquire

9̂0 ≤

k−1∑
a=1

k∑
b=a+1

{
1

(qa,b0 )2pa,b0 (1− pa,b0 )
|

n0an
0
b

(na + nb)2

− (qa,b0 )2pa,b0 (1− pa,b0 )

+
n0an

0
b

(na + nb)2(na + nb − 1)
|

+
1

2(qa,b0 )2pa,b0 (1− pa,b0 )
sup
f ∈F
|Û0

a,b(f )− U
0
a,b(f )|}.
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Via calculation and simplification, we confirm that for each
pair of (a, b),

n0an
0
b

(na + nb)2
− (qa,b0 )2pa,b0 (1− pa,b0 )

= (
n0a + n

0
b

na + nb
− qa,b0 )qa,b0 pa,b0

+ (
n0a

na + nb
− pa,b0 qa,b0 )qa,b0 (1− 2pa,b0 )

+ (
n0a

na + nb
− pa,b0 qa,b0 )(

n0a + n
0
b

na + nb
− qa,b0 )

− (
n0a

na + nb
− pa,b0 qa,b0 )2.

According to Hoeffding inequalities again, we deduce that
with possibility at least 1 − δ, two inequalities stated as
follows estabilished simultaneously:

k−1∑
a=1

k∑
b=a+1

|
n0a + n

0
b

na + nb
− qa,b0 |

≤

k−1∑
a=1

k∑
b=a+1

√
log 4

δ

2(na + nb)
, (14)

k−1∑
a=1

k∑
b=a+1

|
n0a

na + nb
− pa,b0 qa,b0 |

≤

k−1∑
a=1

k∑
b=a+1

√
log 4

δ

2(na + nb)
. (15)

Set ϒa,b(δ) = 1
4(na+nb−1)

+
log 4

δ

na+nb
. We verify

k−1∑
a=1

k∑
b=a+1

|
n0an

0
b

(na + nb)2
− (qa,b0 )2pa,b0 (1− pa,b0 )

+
n0an

0
b

(na + nb)2(na + nb − 1)
|

≤

k−1∑
a=1

k∑
b=a+1

{|
n0an

0
b

(na + nb)2
− (qa,b0 )2pa,b0 (1− pa,b0 )|

+ |
(n0a + n

0
b)

2

4(na + nb)2(na + nb − 1)
|}

≤

k−1∑
a=1

k∑
b=a+1

{qa,b0 (1− pa,b0 )

√
log 4

δ

2(na + nb)
+ ϒa,b(δ)}.

Using
∑k−1

a=1
∑k

b=a+1
1

2(na+nb)
≤
∑k−1

a=1
∑k

b=a+1
1

na+nb−1
again, we have the following holds with possibility at least
1− δ:

9̂0 ≤

k−1∑
a=1

k∑
b=a+1

{(C

√
0

na + nb
+ (1+ qa,b0 (1

− pa,b0 ))

√
log 5

δ

na + nb
+ ϒa,b(

4δ
5
))((qa,b0 )2(1

− pa,b0 )pa,b0 )−1}. (16)

When it comes to 9̂1, we have the similar conclusion that
with possibility at least 1− δ,

9̂1 ≤

k−1∑
a=1

k∑
b=a+1

{(C

√
0

na + nb
+ (1+ qa,b1 (1

− pa,b1 ))

√
log 5

δ

na + nb
+ ϒa,b(

4δ
5
))((qa,b1 )2(1

− pa,b1 )pa,b1 )−1}. (17)

Finally, put (12), (16) and (17) together, apply the assump-
tion miny∈{1,··· ,k},z∈{0,1} P{Y = y,Z = z} ≥ ε, and note the
fact that min{pa,b, 1− pa,b} ≥ 2ε, we get
Rλ(f ∗λ )− Rλ (̂fλ,S )

≤ (C
(
k
2

)√
0

2nmin
(4λ+

1
2
)+

(
k
2

)√
log( 13

δ
)

2nmin − 1
(4λ

+ (4λ+ 2)ε)+ O(

(k
2

)
2nmin

))(ε−2)

holds with possibility at least 1− δ. Hence we get the desired
conclusion. �

IV. CONCLUSION AND DISCUSSION
In this article, a novel multi-dividing ontology learning set-
ting is proposed where each rate of sub ontology sample is
divided into two groups, the corresponding objective function
is given and the generalization bound in this specific ontology
setting is determined by means of U -statistics technique and
presented in Theorem 1.

In the real ontology engineering applications, R̂λ is tough
difficult to maximin since truth function I is a discrete
undifferentiable function. In statistical learning, one com-
mended trick is replacing truth function to logistic function
σ : x → 1

1+e−x . In this way, the surrogate relaxation of multi-

dividing ontology AUC criterion ÂUCHf ,a,Hf ,b is denoted by

˜AUCHf ,a,Hf ,b =

k−1∑
a=1

k∑
b=a+1

1
nanb

na∑
i=1

nb∑
j=1

σ (f (vai )− f (v
b
j )).

When it comes to two-sample multi-dividing ontology set-
ting, for z ∈ {0, 1}, the corresponding objective ontology
function we expect is to maximize
˜AUCHf ,a,Hf ,b (S, f )− cλ| ˜AUCH0

f ,a,H
0
f ,b
(S, f )

− ˜AUCH1
f ,a,H

1
f ,b
(S, f )|,

where

˜AUCH0
f ,a,H

0
f ,b
(S, f )

=

k−1∑
a=1

k∑
b=a+1

1

n0an
0
b

na∑
i=1,zai =0

nb∑
j=1,zbj =0

σ (f (vai )− f (v
b
j )),

˜AUCH1
f ,a,H

1
f ,b
(S, f )

=

k−1∑
a=1

k∑
b=a+1

1

n1an
1
b

na∑
i=1,zai =1

nb∑
j=1,zbj =1

σ (f (vai )− f (v
b
j )).
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However, we don’t know exactly the statistical characters
of the above surrogate relaxation of multi-dividing ontology
criterion in two-sample assumption, and therefore it deserves
to be studied in the future.

So far, thousands of ontologies have been defined accord-
ing to their specific needs, and they are distributed in various
fields of natural science and social science. Due to different
ontology applications, and even different application back-
grounds of the same ontology, the ontology data will perform
large differences, which leads to different ontology sample
dividing in the two-sample setting. In other words, for each
ontology application, specific problems must be analyzed in
detail, and unified parameters and standards cannot be used
for direct execution. Our work only stays at the theoretical
stage. For the specific application of the multi-dividing two-
sample ontology algorithm in the specific ontology applica-
tion field, further research is needed in future works.

REFERENCES
[1] W. Gao, L. Zhu, and K. Wang, ‘‘Ontology sparse vector learning algo-

rithm for ontology similarity measuring and ontology mapping via ADAL
technology,’’ Int. J. Bifurcation Chaos, vol. 25, no. 14, Dec. 2015,
Art. no. 1540034.

[2] W. Gao, Y. Zhang, J. L. G. Guirao, and Y. Chen, ‘‘A discrete dynamics
approach to sparse calculation and applied in ontology science,’’ J. Differ-
ence Equ. Appl., vol. 25, nos. 9–10, pp. 1239–1254, Oct. 2019.

[3] W. Gao, J. L. G. Guirao, B. Basavanagoud, and J. Wu, ‘‘Partial multi-
dividing ontology learning algorithm,’’ Inf. Sci., vol. 467, pp. 35–58,
Oct. 2018.

[4] W. Gao and M. R. Farahani, ‘‘Generalization bounds and uniform bounds
for multi-dividing ontology algorithms with convex ontology loss func-
tion,’’ Comput. J., vol. 60, pp. 1289–1299, Jan. 2017.

[5] P. Skalle and A. Aamodt, ‘‘Petrol 18 946: Downhole failures revealed
through ontology engineering,’’ J. Petroleum Sci. Eng., vol. 191,
Aug. 2020, Art. no. 107188.

[6] T. Sobral, T. Galvão, and J. Borges, ‘‘An ontology-based approach to
knowledge-assisted integration and visualization of urban mobility data,’’
Expert Syst. Appl., vol. 150, Jul. 2020, Art. no. 113260.

[7] M.M.Al-Sayed, H. A. Hassan, and F. A. Omara, ‘‘CloudFNF:An ontology
structure for functional and non-functional features of cloud services,’’
J. Parallel Distrib. Comput., vol. 141, pp. 143–173, Jul. 2020.

[8] G. Tebes, D. Peppino, P. Becker, G. Matturro, M. Solari, and L. Olsina,
‘‘Analyzing and documenting the systematic review results of soft-
ware testing ontologies,’’ Inf. Softw. Technol., vol. 123, Jul. 2020,
Art. no. 106298.

[9] D. Pradeep and C. Sundar, ‘‘QAOC: Novel query analysis and ontology-
based clustering for data management in Hadoop,’’ Future Gener. Comput.
Syst., vol. 108, pp. 849–860, Jul. 2020.

[10] A.M. Hema and K. Kuppusamy, ‘‘A novel trust-based privacy preservation
framework for service handling via ontology service ranking,’’ Wireless
Pers. Commun., vol. 112, no. 3, pp. 1339–1354, Jun. 2020.

[11] R. Messaoudi, A. Mtibaa, A. Vacavant, F. Gargouri, and F. Jaziri, ‘‘Ontolo-
gies for liver diseases representation: A systematic literature review,’’
J. Digit. Imag., vol. 33, no. 3, pp. 563–573, Jun. 2020.

[12] A. Mantovani, F. Piana, and V. Lombardo, ‘‘Ontology-driven represen-
tation of knowledge for geological maps,’’ Comput. Geosci., vol. 139,
Jun. 2020, Art. no. 104446.

[13] R. Abeysinghe, E. W. Hinderer, H. N. B. Moseley, and L. Cui, ‘‘SSIF:
Subsumption-based sub-term inference framework to audit gene ontol-
ogy,’’ Bioinformatics, vol. 36, no. 10, pp. 3207–3214, May 2020.

[14] M. Kossmann, A. Samhan, M. Odeh, E. Qaddoumi, A. Tbakhi, and
S. Watts, ‘‘Extending the scope of configurationmanagement for the devel-
opment and life cycle support of systems of systems—An ontology-driven
framework applied to the enceladus submarine exploration lander,’’ Syst.
Eng., vol. 23, no. 3, pp. 366–391, May 2020.

[15] W. Gao and Y. Chen, ‘‘Approximation analysis of ontology learning algo-
rithm in linear combination setting,’’ J. Coloud Comput., vol. 9, pp. 1–10,
Dec. 2020, doi: 10.1186/s13677-020-00173-y.

[16] L.Ma andW. H.Wong, ‘‘Coupling optional Pólya trees and the two sample
problem,’’ J. Am. Stat. Assoc., vol. 106, no. 496, pp. 1553–1565, 2011.

[17] M. Tang, A. Athreya, D. L. Sussman, V. Lyzinski, Y. Park, and C. E. Priebe,
‘‘A semiparametric two-sample hypothesis testing problem for random
graphs,’’ J. Comput. Graph. Stat., vol. 26, no. 2, pp. 344–354, 2017.

[18] Y. C. Chen, Y. S. Wang, and E. A. Erosheva, ‘‘On the use of bootstrap
with variational inference: Theory, interpretation, and a two-sample test
example,’’ Ann. Appl. Stat., vol. 12, no. 2, pp. 846–876, 2018.

[19] I. Kim, A. B. Lee, and J. Lei, ‘‘Global and local two-sample tests via
regression,’’ Electron. J. Stat., vol. 13, no. 20, pp. 5253–5305, 2019.

[20] N. Rabin, M. Golan, G. Singer, and D. Kleper, ‘‘Modeling and analysis
of students’ performance trajectories using diffusion maps and kernel two-
sample tests,’’ Eng. Appl. Artif. Intel., vol. 85, pp. 492–503, 2019.

[21] T. Emura and J. H. Hsu, ‘‘Estimation of the Mann–Whitney effect in the
two-sample problem under dependent censoring,’’ Comput. Statist. Data.
Anal., vol. 150, May 2020, Art. no. 106990.

[22] M. Fuchs, R. Hornung, A.-L. Boulesteix, and R. De Bin, ‘‘On the asymp-
totic behaviour of the variance estimator of a U -statistic,’’ J. Stat. Plan.
Infer., vol. 209, pp. 101–111, Apr. 2020.

[23] S. Bouzebda and B. Nemouchi, ‘‘Uniform consistency and uniform in
bandwidth consistency for nonparametric regression estimates and con-
ditional U -statistics involving functional data,’’ J. Nonparametr. Stat.,
vol. 32, no. 2, pp. 452–509, 2020.

[24] C. Fuglsby, C. P. Saunders, and J. Buscaglia, ‘‘U -statistics for estimating
performance metrics in forensic handwriting analysis,’’ J. Stat. Comput.
Sim., vol. 90, no. 6, pp. 1082–1117, 2020.

[25] B. Privault and G. Serafin, ‘‘Normal approximation for sums of weighted
U -statistics—Application to Kolmogorov bounds in random subgraph
counting,’’ Bernoulli, vol. 26, no. 1, pp. 587–615, 2020.

[26] S. Bachmann and M. Reitzner, ‘‘Concentration for Poisson U -statistics:
Subgraph counts in randomgeometric graphs,’’ Stochastic Processes Appl.,
vol. 128, no. 10, pp. 3327–3352, 2018.

[27] M. Garg and I. Dewan, ‘‘On limiting distribution of U -statistics based
on associated random variables,’’ Stat. Probabil. Lett., vol. 132, pp. 7–16,
Jan. 2018.

[28] O. Bousquet, S. Boucheron, and G. Lugosi, ‘‘Introduction to statisti-
cal learning theory,’’ Advanced Lectures on Machine Learning (Lecture
Notes in Computer Science), vol. 3176. Berlin, Germany: Springer, 2004,
pp. 169–207.

[29] S. Clémencon, G. Lugosi, and N. Vayatis, ‘‘Ranking and empirical mini-
mization of U -statistics,’’ Ann. Stat., vol. 36, no. 2, pp. 844–874, 2008.

LINLI ZHU was born in Badong, Hubei, China,
in 1975. He received the master’s degree in com-
puter software and theory from Yunnan Normal
University in 2007. He is currently pursuing the
Ph.D. degree with the School of Information and
Control Engineering, China University of Mining
and Technology. He has been an Associate Profes-
sor with the Department of Computer Engineering,
JiangsuUniversity of Technology, since 2012. As a
researcher in computer science, his interests are
computer networks and artificial intelligence.

GANG HUA received the B.S. degree from South-
east University, Nanjing, and the M.S. and Ph.D.
degrees from the China University of Mine and
Technology, Xuzhou, China, in 2000 and 2004,
respectively. He is currently a Professor with the
Department of Information and Electronic Engi-
neering, China University of Mine and Technol-
ogy, Xuzhou, China. His research interests include
the control and supervision of mining safety, sig-
nal processing, compressed sensing, and network
technology.

VOLUME 8, 2020 220709

http://dx.doi.org/10.1186/s13677-020-00173-y

