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ABSTRACT Urbanization has been speeding up social and economic transformations in urban communities,
the smallest social units in a city. However, urbanization brings challenges to urbanmanagement and security.
Therefore, a system of risk prediction of crimes may be essential to crime prevention and control in urban
communities and its system improvement. To tackle crime-related problems in urban communities, this
paper proposes a model of daily crime prediction by combining Long Short-TermMemory Network (LSTM)
and Spatial-Temporal Graph Convolutional Network (ST-GCN) to automatically and effectively detect the
high-risk areas in a city. Topological maps of urban communities carry the dataset in themodel, whichmainly
includes twomodules— spatial-temporal features extractionmodule and temporal feature extractionmodule
— to extract the factors of theft crimes collectively. We have performed the experimental evaluation of the
existing crime data fromChicago, America. The results show that the integrated model demonstrates positive
performance in predicting the number of crimes within the sliding time range.

INDEX TERMS Crime prediction, crime rates, graph convolutional network, long short-term memory
network, spatial-temporal.

I. INTRODUCTION
Nowadays, the majority of the world’s population lives in
urban areas, and the proportion continues increasing as peo-
ple move to fast-developing cities to fulfil their needs and
aspirations [1]. Meanwhile, social, economic, and environ-
mental threats to urban areas have emerged as adverse effects
of urbanization. For example, it presents challenges to the
organizations responsible for city management and essential
service provision, like resource planning (water and electric-
ity), transit, air and water qualities, and public safety [2].
Moreover, for the cities with higher crime rates, crime spiking
is becoming one of the most critical public issues, threat-
ening social stability and economic progress in different
ways [3], [4]. As the smallest constituent units of a city,
urban communities meet the daily needs of urban residents
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for living, work, leisure, and so forth. As science and tech-
nology develop, crime prevention and control systems for
urban communities are also improving [5]. Risk prediction
of crimes in urban communities can effectively improve the
overall level of crime prevention and control in urban areas.

Theft is one type of common property crimes all over the
world, which generally refers to the act of illegal possession
of the public or other people’s properties. In recent years,
despite generally downward crime rates, preventing and com-
bating crime remains a challenge. This may be explained
by the following facts: more and more criminals have been
equipped with high-tech tools and even well trained; local
governments and the police often pay more attention to mur-
der, assault, and other violent crimes [6], so limited resources
are allocated to prevent or fight against property crimes. Thus,
the rate of theft crimes seemsmuch higher than that of violent
crimes. Moreover, effective prevention strategies against new
types of theft (such as theft of electric vehicles) are quite
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inadequate. Quantitative and accurate risk analysis is vital
to prevent theft when police resources are limited. Besides,
there are strong correlations between crime rates and other
variables such as the geographic location of a community
(with low-risk and high-risk areas), time and climate during
the year (seasonal patterns) [7]. An accurate prediction model
of crime in urban communities is required to detect the com-
munities more vulnerable to crime incidents. This method can
optimize the allocation of police resources, thereby deploying
police officers to high-risk areas or dismissing police force
from the areas with declining crime rates to prevent or quickly
respond to criminal activities.

In order to analyze both spatial and temporal feature extrac-
tion trends of crime to automatically detect the high-risk
communities in urban areas and predict the number of crimes
in each community, this paper proposes a new model based
on LSTM and ST-GCN. The algorithm includes three steps.
First, a topological map of neighboring communities is made
according to the regional location and neighboring relation-
ships of urban communities, and each node on the topological
map stores historical crime data, the weather data and the
holiday data of the community. Second, ST-GCN is utilized to
capture the transition tendency of crimes between neighbor-
ing communities over time (spatial-temporal features extrac-
tion module); LSTM is used to capture the trend of crimes in
each community over time (temporal feature extraction mod-
ule). Third, a Gradient Boost Decision Tree (GBDT) is used
to integrate the predicted values from the spatial-temporal
features extraction module and the ones from the temporal
feature extraction module. The result is a spatial-temporal
model of crime predicting, which consists of a set of topo-
logical maps of neighboring communities and a set of crime
predicting modules to predict the number of crimes in each
community.

Taking Chicago as a case study, we made an analysis
of about 0.32 million crimes within a period of six-year
or so. The crime data were collected from Chicago’s open
data portal [8], a web framework that provides data, map
and graphs about the city, and free download service. The
experimental evaluation result substantiates the effectiveness
of the approach by achieving good evaluation scores in the
spatial-temporal prediction of the number of crimes in the
sliding time range. In addition, we conducted a comparative
analysis of the results with other algorithms presented in
previous studies and got a higher evaluation score of the
former as opposed to the latter.

The paper is organized as follows: Section 1 is an intro-
duction to the research background. Section 2 is a literature
review of crime data mining. Section 3 shows a general
description of the Chicago data set, in particular the theft data.
Section 4 focuses on the spatial-temporal crime prediction
algorithm, describing its steps in detail and the experimental
evaluation of a case study. The experimental results are pre-
sented and discussed in Section 5. Finally, Section 6 draws a
conclusion and points to the future research.

II. RELATED WORK
Crime prediction is a scientificmethodology to analyze, exca-
vate and investigate existing crime dataset, information and
other variables positively correlated with crimes. It analyzes
the number and tendency of crimes that may occur in specific
spatial-temporal nodes in the future, as well as focuses on
prediction and inference of the probability of crime or re-
offending [9]. In the United States, data analysis was first
proposed and applied to crime prediction [10]. However, due
to the high-dimensional nature of crime factors, traditional
crime analysis that only rely on human resources cannot
adequately predict crimes. With the development of intelli-
gent technology, such as machine learning and deep learning,
crime prediction has become a research focus [11].

In terms of prediction content, the prediction of crimes
is roughly subcategorized as follows: re-offending predic-
tion [11], [12], victim prediction [13], offender predic-
tion [14], [15] crime pattern prediction [16], [17] and crime
hot spots prediction [18]. Crime hot spots prediction can
be classified into temporal prediction [19], spatial predic-
tion [20] and spatial-temporal prediction [21], [22].

The spatial-temporal prediction of crime hot spots relies
on the theory of near repeat of crime [23], which means the
risk of a certain type of crime may spread in a particular
time-space range, showing specific spatial-temporal correla-
tions between new crime data and historical crime data. How-
ever, this correlation gradually weakens with the expansion
of the time-space range. When a crime occurs in a specific
place, the occurrence probability of the same type of crime
in the area adjacent to it will significantly increase in a short
time. The theoretical backgrounds of the near-repeat theory
are daily activity theory [24], rational choice theory [25], and
foraging theory [26]. According to daily activity theory, the
emergence of crimes is affected by three major factors —
people with criminal motives, suitable criminal targets, and
the lack of guardians.When the three elements occur, the pos-
sibility of crime will show an upward trend. If the occurrence
coincides in time and space, it may lead to crimes. The ratio-
nal choice theory mainly interprets the impact of its action
purpose on the possibility of crime from the perspective of an
attacker. The theory explains that under the premise of ratio-
nal choice when there are different action strategies to choose
from in a particular environment, individuals subjectively
have different preference arrangements for the results caused
by different choices. Actors often decide to minimize the
cost but maximize the benefits by an action strategy, that is,
rational selectors tend to choose an optimal strategy and max-
imize the benefits at the minimum cost. Foraging theory was
introduced from behavioral ecology and was initially used to
predict the possible infested locations of carnivorous animals
by analyzing their foraging patterns. It treats the offenders as
a kind of ‘‘foraging’’ animal to analyze their possible crime
locations and crime patterns. The theory holds that there is a
specific spatial pattern between the offender’s foothold and
the crime location, and the offender often chooses a place he
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is familiar with to commit a crime. The crime continues in
and around the area [27]. The above theories provide essential
theoretical bases for the near-repeat theory of crime. It is
worth noting that an actor in the case must be a sufficiently
rational individual since near-repeat theory originates from
rational choice theory. Therefore, crimes of passion between
acquaintances are not within the scope of near-repeat theory.

The near-repeat phenomenon was first observed in bur-
glary cases [28]. A scholar from the University of London
in the United Kingdom studied the theft data in Merseyside,
the UK in 2004, and found that the burglary rate, within
a 400-meter area around the stolen household significantly
increases within two months after a burglary case occurs.
Since then, the near-repeat phenomena were noticed in more
and more types of cases, including armed robbery [29], motor
vehicle theft [30], shooting [31], and urban grenade explosion
attacks [32] and so on.

In order to analyze the near-repeat phenomenon of crimes
in the spatial-temporal range, the methods of predicting
the space-time distribution of crimes are commonly used,
for example, Zhang J et al. [33] proposed a method based
on deep learning, called spatial-temporal residual network
(ST-ResNet), to simultaneously predict the inflow and out-
flow of passengers in each area of a city. Wang B et al. [21]
used ST-ResNet to predict crime distribution in Los Ange-
les. Since the above-mentioned methods only make predic-
tions based on spatial-temporal grids and are inapplicable to
topological spaces, Kipf TN et al. [34] proposed a Graph
Convolutional Network (GCN) as an active variant of the con-
volutional neural network. Then, Yan S et al. [35] combined
ST-ResNet and GCN to propose ST-GCN for human action
recognition. This method can capture the transition of crimi-
nal events in a topological space to remedy the deficiency of
traditional spatial-temporal prediction model. ST-GCN was
quickly applied to motion recognition and traffic. For exam-
ple, Kong Y et al. [36] built a dynamic skeleton model based
on ST-GCN, combined with the attention module; Geng X
et al. [37] proposed a spatial-temporal multigraph convolu-
tional network based on ST-GCN (ST-MGCN) to forecast the
demand for rides. ST-GCN has a good prediction effect on the
transition of crimes in a topological space, but it attaches less
importance to timing changes on a single node. For the crime
field, the number of crimes in each community is influenced
by the transition of crimes in surrounding communities and
the previous number of crimes in this community. Therefore,
it is difficult to predict the crime risk accurately in a single
community only through ST-GCN.

Previous studies could provide references for crime predic-
tion research, but fewmade spatial-temporal crime prediction
analysis based on a topological space, or combined temporal
prediction and spatial-temporal prediction to forecast com-
munity crime risk.

In this context, this paper, based on near-repeat theory and
deep learning, proposes an integrated model of crime predic-
tion by combining LSTM and ST-GCN to analyze the risk of
crime in a specific time-space range in urban communities.

III. DATA
A. DATA SET DESCRIPTION
The data utilized to train the models and perform the exper-
imental evaluation are housed on Chicago open data por-
tal, a web framework developed (and currently managed)
by the Chicago government that provides data, map and
graphs about the city, and free download service. The crime
data were collected from the ‘Crimes - 2001 to present’
dataset, a real-life collection of criminal cases happening in
Chicago from 2001 to present.We selected 77 communities in
Chicago, among which the largest and the smallest commu-
nities have areas of 371.8 square kilometers and 19.9 square
kilometers, respectively. Starting from the ‘Crimes - 2001 to
present’ dataset, we collected all criminal cases within the
communities over six years (1985 days), from January 1,
2015, to March 10, 2020.

FIGURE 1. The daily number of crimes from January 1, 2015, to December
31, 2019.

Figure1 shows the daily number of crimes from January 1,
2015, to December 31, 2019. It is evident that the number of
theft crimes in Chicago each year shows a steady reversed
‘‘V’’ pattern in which the occurrence of crimes varies with
season. The number of crimes significantly increases in late
spring, peaks during the summer, decreases in autumn and
generally falls in winter. Through an analysis of the impact
of climate change on crime [7], we argue that temperature
variation may explain the seasonality. Therefore, the weather
data are entered as an external environmental factor into the
model for training.

FIGURE 2. The topological map of adjacent communities and the node
data. The feature ‘number’ indicates the number of crimes in a day; the
feature ‘holiday’ indicates whether the day is a weekend or not, if it’s a
weekend, its value is 1, otherwise, its value is 0; the feature ‘holiday’
indicates whether the day is a holiday or not, if it’s a holiday, its value
is 1, otherwise, its value is 0; the feature ‘AT_DI’ means heat stress
calculated by sensible temperature testing.

B. DATA PREPROCESSING
The topological graph of communities and the data placed
in each graph node are shown in Figure 2 where the feature
‘number’ represents the number of crimes in communities,
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the feature ‘weekend’ represents whether the day is a week-
end or a weekday, and the feature ‘holiday’ represents
whether the day is a holiday or not. The feature ‘AT_DI’ is
the thermal stress calculated based on temperature, humidity
and wind speed, and the calculation formula is as follows:

AT_DI = 0.5TW + 0.5AT (1)

where AT is the apparent temperature (◦C), and its value is
approximately calculated by equation (2); TW is the thermo-
dynamic wet-bulb temperature (◦C), and its value is approx-
imated by equation (4);

AT = 1.07T + 0.2e− 0.65V − 2.7 (2)

where AT is the apparent temperature (◦C); T is the air
temperature (◦C); e is the water vapour pressure (hPa), and
its value is approximately calculated by equation (3); V is the
wind speed (m/sec);

e =
RH
100
× 6.105× e

17.2T
237.7+T (3)

where RH is relative humidity (%);

Tw = AT arctan(0.151977
√
RH + 8.313659)

+ arctan(AT + RH )− arctan(RH − 1.676331)

+ 0.00391838RH
3
2 arctan(0.023101RH )− 4.68035

(4)

A total of 145,992 spatial-temporal crime cases were
gathered in the process, of which 145,679 crime cases col-
lected from January 1, 2015, to December 31, 2019, are
used as a train set, and 5,313 crime cases collected from
January 1 toMarch 10, 2020, are used as a test set. The above-
mentioned data have different roles in the model training
process according to distinct time characters. For instance,
the data before 2020 are only regarded as a temporal feature;
the other data are used as both a temporal feature and a label.
That will be explained in detail in the following section.

IV. METHODOLOGY
This section will describe the proposed model framework and
experimental details.

A. PROPOSED MODEL FRAMEWORK
From Figure 3, we can see the proposed integrated model,
which can be categorized into three modules—spatial-
temporal feature extraction module, temporal feature extrac-
tion module, and feature integration module. First, the
spatial-temporal feature extraction module is a combination
of GCN and ST-ResNet (ST-GCN) to extract the transition
of crimes in space over time. Then, in order to detect crimes
in each community, the temporal feature extraction module
is built based on the LSTM network. Finally, the feature
integration module employs GBDT model to integrate the
predicted values from the spatial-temporal feature extraction
module and the temporal feature extraction module.

FIGURE 3. The structure of the integrated model, where blue points and
green points refer to inputted temporal data and the predicted data,
respectively.

1) SPATIAL-TEMPORAL FEATURES EXTRACTION MODULE
In this module, community is set as a graph node with
the features included in the historical data of crimes.
We employed Spatial-Temporal Graph Convolutional Net-
works (ST-GCN) to deal with the graph data. Graph Convo-
lutional Networks (GCN) was used to deal with this graph,
and Spatio-Temporal Residual Networks (ST-ResNet) was
applied to extract the spatial-temporal features within each
graph set.

GCN, based on Convolution Neural Network (CNN), was
first proposed by TN Kipf et al. (2016) [34], which can be
leveraged for the graph structure data in deep learning. Its
definition is given as follows.

f (X ,A) = ReLU(D̂−
1
2 ÂD̂−

1
2XW+ b) (5)

where X is the feature matrix, A is the adjacency matrix
with added self-loops, D is its degree matrix, ReLU is the
activation function of the network,W and b are the parameters
of the network.

As can be seen from the definition above, a GCN layer
can get the effects of the nodes around each node and attach
them to it. However, in view of topology with such a large
number of nodes, the transition effects between them must be
considered. In this sense, we need numerous GCN to capture
further transition effects from long-range or even citywide
dependencies, which requires a very high network depth.
Besides, the transibility of crime is influenced by not only
nearby feature, but also periodic feature and trend feature.
Therefore, it is necessary to set ST-ResNet as a base model to
host the GCN layer (ST-GCN).

ST-ResNet was proposed by J Zhang [33] based on deep
Residual Network (ResNet) [38] to solve the problems of
inefficient learning and inability to significantly improve
accuracy or even reduced accuracy due to network deepening.
On this basis, we define the nearby data as the data collected
within three days before the date of prediction; the periodic
data as the data collected within three weeks before the date
of prediction; the trend data as the data collected within three
years before the date of prediction.
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Previous research clearly shows that there are strong corre-
lations between crimes and complex external factors. In our
experiment, weather, holiday and weekday fall within the
external data (see Fig.2). Unlike other features, the future
weather cannot be ex ante known, and forecasting weather
will represent the weather in date d .

2) TEMPORAL FEATURE EXTRACTION MODULE
Crime cases are collected as the timing data when Long
Short-TermMemory network (LSTM) [39] is working in this
module to compute the number of crimes.

In order to process the timing data precisely, LSTM,
an improved multilayer perceptron network based on Recur-
rent Neural Network (RNN), is used in this model. LSTM can
learn the long short-term dependence information between
the serial data by determining whether the new input is stored,
forgotten, or stored in the memory unit as an output.

The latest output of the timing data is relevant to early
input and output, that is, the output depends on the input and
the early memory. As an improved version of RNN, LSTM
also includes forward propagation calculation, backpropaga-
tion through time algorithm (BPTT) and Adam parameter
optimization algorithm. The difference lies in that LSTM
has made a certain transformation of the RNN’s memory,
screening the memory information, and only transmitting the
information to be memorized. In this way, gradient disap-
pearance or explosion caused by the growth of the depen-
dent sequence and the increase of the multiplicative term
during the backpropagation of the model may be prevented.
Specifically, LSTM sets a gate to enable historical data of
crimes to pass through selectively, thereby filtering or adding
corresponding crime information to memory. LSTM adds
historical data of crimes and the current inputted number
of crimes so that previous memories will continue to exist
instead of partially disappearing due to multiplication. There-
fore, LSTM will not cause the attenuation of the effective
information on historical crimes long ago and can deal with
long-term memory problems.

The structure of one layer of LSTM is shown in Fig 4,
which is the state of a cell at different moments. The four
small yellow rectangles are the hidden layer structures of the
ordinary neural network. The activation function of the third
small yellow rectangle is tanh and the activation functions of
the rest are sigmoid. The input X at time t and the output
h(t−1) at time t-1 are spliced and then inputted into the cell.
Therefore, the input to LSTM includes not only the original
data set but also the output of previous moment (h(t−1)). The
memory-related part is entirely controlled by various gate
structures (0 and 1). The cell is roughly divided into two
horizontal lines: the upper horizontal line controls long-term
memory, while the lower horizontal line controls short-term
memory.

B. CASE STUDY
This solution leverages an integrated architecture of LSTM
and ST-GCN.

FIGURE 4. The structure of one layer of LSTM at time step t − 1, t , and
t + 1.

In the LSTM model, the data are inputted into the model
through a sliding window, the size of that is set as 8, that
is, the data of eight days prior to the date of prediction for
a particular community are used to predict the number of
crimes in that community on that date. Only the timing data
of the number of crimes are used for prediction. The input
layer connects 5 LSTM layers and is activated by the ReLU
activation function, and the output layer with one node is
obtained. The model uses RMSE as the loss function, and
uses the NAdam optimizer to optimize it. The learning rate
and epoch are set, automatically adjusted by the model. The
initial learning rate is 0.01. The learning rate is adjusted by
using the Cosine Annealing method. When no loss value
lowers after 100 times of epoch, the training will terminate.

In the operation of the ST-GCN model, firstly, the data
are divided into three groups, namely, trend data, period data
and nearby data. Each type of data passes through a graph
convolution layer and 18 residual units, and each layer of
residual units contains four graph convolution layers. Finally,
the results of the three sets of data are fused. After being
inputted, the external data pass through a fully connected
layer and fuse with the graph convolution data in the external
fusion layer. In the experiment, ReLU is used as the activa-
tion function, and the output layer with one node is finally
obtained. The loss function and training method selected for
this model consist with that of the LSTM model.

After the prediction of the two sets of models, the results
enter into Gradient Boosting Decision Tree (GBDT) regres-
sor for final fusion. The regressor uses a grid search method
to adjust parameters, and the loss function is also RMSE.

Actually, the model in training only predicts one-day data
at a time. After 69 times of training and predicting, 69 sets of
prediction data are obtained for the final model verification.

Two metrics are used to evaluate the performance of the
prediction model: Root Mean Square Error (RMSE), and
Mean Absolute Percentage Error (MAPE), which are defined
as follows:

RMSE =

√√√√1
n

n∑
i=1

(origenali − predictedi)2 (6)

MAPE =
n∑
i=1

|
origenali − predictedi

origenali
| ×

100
n

(7)

where n is the total number of days.
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V. RESULTS AND DISCUSSION
In this section, we will analyze and discuss the experimental
results and evaluate the performance of the proposed model
in each community each day within the test data set. The test
set is set from January 1, 2020, to March 10, 2020. For both
evaluation indexes, the model’s prediction performance is the
main concern in our discussion.

FIGURE 5. Spatial distribution of the predicted number of crimes and
Absolute Error (AE) of different communities in Chicago. Left panels show
the original crime data, middle panels show the prediction of the number
of crimes, and right panels show the absolute error between prediction
and observation. Bottom panels show the accumulations for the number
of crimes and AE from January 1, 2020, to March 10, 2020.

Fig. 5 shows the distribution of actual incidents and Abso-
lute Error (AE) within three days, and the accumulative inci-
dent quantity and AE within 69 days. On January 1, 2020,
with the max AE of 3.4 (in the community of North Park),
the average AE is 0.62; on February 14, 2020, a weekday,
with the max AE of 2.7 (in the community of North Center),
the average AE of 0.61; on March 1, 2020, a weekend,
with the max AE of 7.2 (in the community of Near North
Side), the average AE of 0.87; on the accumulative incident
quantity, with themaxAE of 48.39 (in the community of Lake
View), the average AE of 14.62.

The four communities with the largest AE are all located
in the northeast of Chicago. This area is adjacent to a
major tourist attraction, Lake Michigan, which seems to be
strongly associated with the local situation. The reasons for

FIGURE 6. The daily crime prediction of six communities in Chicago. Blue
lines and points represent the actual daily number of crimes, and orange
lines and points represent the predictions.

the model’s better prediction of weekdays than holidays and
weekends are irregular life pace and the influx of tourists
during the holidays. Therefore, it is inadequate to estimate the
crime situation during the holidays only through the existing
features, and more features (social factors) need to be taken
into account.

However, when it comes to application, a priority must be
given to the accurate prediction of the communities with a
large number of crime cases. For this reason, we selected six
communities within a specified period of time, and made a
comparison between the daily average actual value and the
predicted value in each community, as shown in Fig. 6. These
six communities are Near North Side, with the fewest actual
crime cases of 3, the most crime cases of 30, the maximum
AE of 7.8, and the average AE of 2.67; Loop, with the fewest
actual crime cases of 3, the most crime cases of 22, the
maximum AE of 4.54, and the average AE of 1.38; Near
West Side, with the fewest actual crime cases of 3, the most
crime cases of 15, the maximum AE of 4.13, and the average
AE of 1.33; West Town, with the fewest actual crime cases
of 1, the most crime cases of 14, the maximum AE of 4.14,
and the average AE of 0.99; Austin, with the fewest actual
crime cases of 1, the most crime cases of 10, the maximum
AE of 5.7, and the average AE of 0.94; Lake view, with the
fewest actual crime cases of 1, the most crime cases of 14, the
maximum AE of 4.09, and the average AE of 1.17.

It is obvious that the biggest fluctuation in terms of the
number of crimes appears in Near North Side. Although the
model’s predicted value of the number of crimes in the com-
munity is not as accurate as that in the other five communities,
it grasps the change tendency of the number of crimes. It can
be concluded that the social structure of Near North Side
is relatively complicated because an influx of tourists arrive
here every day. Due to the fact that constant changes of social
factors lead to the fluctuating number of theft crimes, more
social factors need to be included in our model to capture the
variation pattern of the number of crimes in the community.

In order to figure out whether this fitting effect exists in all
the 77 communities, we average the daily number of crimes
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FIGURE 7. MAPE for the average number of crimes in a community. Blue
bars represent the MAPEs in the communities with the average number of
crimes no more than one, between one to two (including two), and so on.

FIGURE 8. MAPE for the average number of crimes in a community. Blue
bars and orange bars represent the MAPEs in the communities with the
average number of crimes smaller than two and more than two,
respectively.

in each community from January 1, 2020, to March 10, 2020.
The MAPEs predicted by the model are calculated separately
for different average number of crimes in the communities.
The results are shown in Fig. 7. When the average number of
crimes is no more than two, the MAPE is almost 0.6; when
that number is more than two, the MAPE is lower than 0.4.
It also shows that the larger the average number of crimes in
the community, the lower the MAPE between the predicted
value and the actual value, and the better the fitting effect.

For the communities with the average number of crime no
more than two, the model’s MAPE value is very high, which
means that the model cannot capture the variation pattern of
the number of crimes in such communities.

A comparison of the MAPEs of the predicted results for
the communities with the average number of crimes smaller
than two and those with the average number of crimes more
than two is drawn in Fig. 8. In terms of MAPE, the former is
about twice as much as the latter.

The predicted errors of these communities are analyzed
to explore the differences in the MAPE results. Through an
analysis, no matter it is a community with a large number

FIGURE 9. Average errors for the average number of crimes in different
communities. The two red broken lines represent the average number of
real daily crimes; blue error bars represent the average error between
prediction and observation in the communities with the average number
of crimes smaller than two, and orange error bars represent the average
error between prediction and observation in the communities with the
average number of crimes more than two.

of crimes or with a small number of crimes, the prediction
error of the model is all about one, as demonstrated in error
bars (Fig. 9), which is key to explaining the difference of the
MAPE results in these two communities.

For the communities with a large number of crimes, the
acceptable prediction error has less influence on the com-
munity. However, for the communities with a small number
of crimes, this error margin cannot be accepted. Hence, the
prediction accuracy of our model for the communities with
no more than two crimes still needs to be improved. In appli-
cation, it means that the community’s security situation is
tolerable if the number of crimes is no more than two within
a single day because the occurrence of theft crimes in such
a community tends to be probabilistic, but not affected by
environmental factors. In a sense, our model may turn out to
be effective, although it demonstrates poor predictability of
crimes in the communities with a small number of crimes.

In addition, we compared the accuracy of our model with
other traditional crime prediction models within the same
data set by using the linear model, the tree model, and the
timing model, as shown in Table 1. In this experiment, other
models were trained to use the same data and features as
our model (i.e., training without parameter adjustment or
with simple parameter adjustment) to select the best per-
forming linear model, tree model, and timing model. And
then, Ridge, Random Forest, and LSTM were chosen as
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TABLE 1. Comparison with different model.

comparison models, whose evaluation results (MAPE and
RSME) in the initial training are higher than other similar
models (ST-GCN is not used in comparison since it has fewer
predictive results than LSTM). Besides, sliding window pre-
diction was applied in this process (only one day’s data are
predicted at a time, and 69 times of training and prediction
are completed simultaneously to obtain all the predictions
from January 1, 2020, to March 10, 2020). Global tuning
of Ridge and Random Forests are performed based on grid
search. The training method of LSTM is the same as that
of the LSTM part in the temporal feature extraction module
(seen in 4.2.1). The communities with the number of crimes
more than two are selected to calculate MAPE, RMSE and
R2 of their predictions.

The result indicates that our model has a lower value
than the other models listed in Table 1 in terms of MAPE
and RMSE, and the R2 shows a higher value than the other
models, meaning that its performance is better than the others.
Moreover, the significance levels of the regressionmodels are
investigated. The results show that the significance levels of
LSTM and the IntegratedModel are both lower than 0.05, and
that of ridge or RandomForest is higher than 0.05, which indi-
cates that the regression results of LSTM and the Integrated
Model we proposed are significant and reliable while those of
ridge and Random Forest are not significant. Due to spatial
factors, our model shows an improvement compared with the
one that only uses LSTM for prediction.

VI. CONCLUSION
This paper investigates crime prediction through an integra-
tive model of LSTM and ST-GCN by using the crime data
and external social factors collected from the communities of
Chicago.

A comparative study of the predicted results and actual
crimes, as well as the superiority of the proposed model
over traditional models, verifies that the proposed method
is highly efficient for crime prediction in urban commu-
nities. The proposed method, by combining the temporal
feature within a community and the spatial-temporal features
between communities, is possible to capture the occurrence
of crime and effectively predict the trend in crime, and then
predict the number of theft crimes in communities the next
day. The advantage of this model lies in that an integration of
ST-GCN and LSTM helps to reasonably define the weighted
relation between the impact of the number of historical crime
incidents to be predicted in a community and the impact of the

transition of crime incidents from surrounding communities
in the prediction process. Besides, the temporal and spatial
factors can be combined more effectively. As a result, the
model captures crime patterns more accurately than the other
models mentioned in this paper. The prediction results of
the model may provide a valuable reference for crime risk
prevention and control in urban communities.

However, there is still much research to do. Our experi-
mental results indicate that the model is influenced too when
the communities are severely affected by social variables.
Therefore, apart from weather and time, social factors should
be included in the future study. Besides, some training dif-
ficulties remain to be overcome since the structure of this
model is relatively complicated.

The future study will focus on a more effective but precise
model for crime prediction by adding more external features
and simplify its structure.
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