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ABSTRACT Under the increasingly stringent environmental regulations, the installed capacity of distributed
renewable energy is increasing rapidly. How to fully absorb renewable energy without affecting power grid
security and ensuring power quality is the key problem to be solved. The rapid development of energy
production, conversion and storage equipment of prosumer makes the operation of micro energy grid
possible. Therefore, according to the energy characteristics of different prosumer, this article divides the
micro energy grid into two types: micro energy grid of electricity selling and micro energy grid of energy
supplying. The constrained nonlinear optimization method is used to solve the optimization problem of this
high-dimensional nonlinear systemwith time delay. In this article, the comparative study of optimal operation
control between the two kinds of micro energy grid is carried out. In order to deal with the uncertainty of
distributed renewable energy output and load forecasting deviation, this article proposes a real time adaptive
dynamic optimization control strategy based on deep learning. The strategy uses deep learning technology
to pretrain the action network, so as to learn the optimal operation behavior of micro energy grid. Finally, the
online simulation of micro energy grid for consecutive days is used to verify the correctness and real-time
performance of the algorithm.

INDEX TERMS Micro energy grid, distributed renewable energy, adaptive dynamic optimization, deep
learning.

I. INTRODUCTION
The energy revolution characterized by the deep integration
of new energy and information technology is promoting the
development of traditional energy system to smart energy
system. As the most critical technologies supporting the
development of smart energy system, artificial intelligence,
big data, blockchain and Internet of things (IOT) have been
widely concerned [1], [2]. How to construct an efficient intel-
ligent energy system to support the coordinated optimization
and complementarity of multiple energy sources, improve the
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energy efficiency management level of smart grid and energy
Internet, and strengthen the application of distributed multi
energy agents in micro grid and regional integrated energy
system is the focus of current research [3], [4].

Long-distance transmission of large-scale intermittent
renewable energy will bring a lot of charging reactive power,
resulting in the rise of falling point voltage. The power grid
also needs to invest a lot of reactive power compensation
equipment which have high cost of investment and opera-
tion [5]. In addition, the power grid also needs to provide
plenty of spinning reserve [6], which greatly increases the
difficulty of power grid operation, and reduces the dynamic
stability of power grid. In this case, if we want to make full
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use of renewable energy, it is necessary to develop various
energy forms coordinated and complementary. That is, the
joint optimization operation of Micro Energy Grid (MEG)
with electric power, gas and heat energy. In addition, for
the remote underdeveloped areas with wind, solar, water
and gas resources, such as Africa, Tibet and Guizhou of
western China, we can build MEG system according to local
conditions, rely on the clean energy complementary system
to solve the energy demand problem in remote areas, and
establish a commercialized energy supply market. However,
the coordination and complementarity of multiple energy
sources increases the complexity of MEG combined sys-
tems. Because of the different models and characteristics of
different energy forms, the traditional reduction method of
analyzing each energy network separately has been difficult
to adapt the coupled integrated energy system [7]–[9].

In recent years, the construction speed of wind and photo-
voltaic plants is extremely fast, and the installed capacity far
exceeds the capacity in use. If only relying on the traditional
power grid to balance, it is difficult to avoid large scale
wind and solar power curtailment. Therefore, it is necessary
to study the integration optimal operation of energy storage
equipment and microgrid, such as electric vehicle charging
and exchange station, combined cooling, heating and power
(CCHP) and so on, and propose the method and algorism
of optimization operation of MEG [10]–[12]. For the intelli-
gent energy systemwith coupledmulti-energy, only electrical
energy can completely replace other energy sources. For
example, the heat demand of users can be provided by air
conditioning or gas boilers. However, the motor of manufac-
turing control, television and other equipment of users can
only use electric energy, which cannot be replaced by other
energy sources. Therefore, it is of great practical significance
to study the power grid as the main energy system of multi-
energy. At the same time, most of the distributed renewable
energy in mountain area and virtual power plants on the user
side are connected to the power grid through the voltage
level of 10kV and below, so the research on the optimal
operation of the integrated energy system should focus on the
distribution network and micro grid level.

There have been some studies on optimal operation of
micro energy grid. In terms of the type of operation equip-
ment, the research has gradually changed from a traditional
Micro Grid (MG) with distributed energy to a multi-energy
microgrid with energy storage equipment, Power to Gas
(P2G) and virtual power plant [13]–[18]. Aiming at the
traditional MG with Distributed Generation (DG), an ana-
lytical target cascading method is proposed to implement
autonomous optimized economic dispatch [13]. On the basis
of traditional MG, the operation of Battery Energy Storage
System (BESS) is included in the optimization in [14], and a
consensus algorithm based distributed optimization method
is proposed. In order to improve the complementary ability
of MGs, fuel cell, micro turbine and boiler are included in
the unified optimization of MG in [15], and a cooperative
game approach is developed to study the benefit distribution

among MG. Considering the limit in the energy form inde-
pendence and operation mode, a dispatching model based on
electric thermal gas coupling microgrid is proposed [16], and
the operation of MG is optimized. Based on the Integrated
Energy System (IES), the Integrated Electrical Natural Gas
System with Microgrid (IENGS-M) is established in [17],
and the multi-objective optimization of the system is carried
out with the minimum cost and pollution as the objective.
In [18], the Integrated Energy Campus Microgrid (IECM) is
optimized, and the time delay of energy transmission in cool-
ing / heating and gas pipelines is studied particularly. From
the perspective of optimization method and algorism, most
of the related research uses distributed optimization methods
to solve the optimization problem among MG. Bi-level opti-
mizations are used to coordinate different optimization objec-
tives, and robust optimization and multi-scenario method
are used to deal with the uncertainty of renewable energy
output [19]–[25]. An effective distributed stochastic optimal
scheduling scheme with minimum information exchange is
proposed to dynamically optimize energy conversion and
storage devices in the multi-energy system [19]. Two dis-
tributed dynamic optimization strategies to respectively study
the Economic Dispatch Problem (EDP) under both cases
without and with generation constraints are proposed in
[20],[21]. In [22], a fully distributed method by using the
exact diffusion strategy which can achieve exact convergence
under sparse communication network is developed, and the
simulation is carried out in multiple scenarios. Reference [23]
propose a bi-level optimal low-carbon economic dispatch
model to solve the integrated energy supply of an industrial
park and optimize the energy conversion efficiency. Bi-level
adjustable robust optimizationmodel is studied and compared
to different strategies for the operation of a multi-energy
system considered as a systemic optimization problem in
[24],[25]. Due to the uncertainty of renewable energy and
the large number of multi-energy equipment with different
operation time scale, the optimization of MEG is usually to
solve a high-dimensional, nonlinear and complex problem.
Therefore, the research onMEG optimization mainly focuses
on the time scale of day-ahead or within-day [26]–[30], and
there is relatively less research on real-time online optimiza-
tion. In order to improve the calculation speed, the second-
order cone relaxation of the branch flow equations method
is use to solve the problem [26]. In order to solve the day-
ahead scheduling problem of integrated energy network with
identifying redundant gas network constraints, [27] devel-
ops a bound tightening strategy combines Weymouth equa-
tion relaxation and an optimality-based bounds tightening
method. Mixed-Integer Second-Order Cone Programming
(MISOCP) method is used by [28] to achieve microgrid day-
ahead operation. In [29] and [30], the operation of MG is
optimized by using the hierarchical genetic algorithm and
multi objective evolution algorithm respectively.

Nowadays, the idea and method of machine learning is
developing rapidly, and it is gradually used to solve the prob-
lems in power system. With the development of computing
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ability and algorithm, reinforcement learning and deep learn-
ing technology have been used to solve renewable energy
output forecasting, user side load forecasting and complex
system optimization [31]–[35]. In [31] and [32], deep neu-
ral network and meta-model techniques are used to learn
the behavior of MG and determine the optimal operating
schedules of the heat generation equipment. Furthermore,
a multi-agent deep reinforcement learning approach is used
to optimize the post-disaster control of islanded MG [33].
To execute real-time control of MG, a deep convolution
neural network and cooperative game approach is proposed
in [34]. In [35], reinforcement learning is used to optimized
energy management strategy for a hybrid electric vehicle.

According to the above research, the study onmulti-energy
system including distributed renewable energy, electric or
thermal energy storage device and electric vehicle is rela-
tively scattered, there is little research on how to match dif-
ferent types of MEG with corresponding equipment and user
types, and makes analysis and comparison between them.
At the same time, for MEG operation optimization problems,
robust optimization is mostly used to solve the uncertainty of
variables. However, with the increase of variable dimension
and the nonlinearity of constraints in time-delay systems, the
optimization algorithm is difficult to meet the needs of real
time.

Based on the above challenges and motivations, the main
contributions of this article can be listed as follows:

1) According to the character of users in MEG and the
operation objectives of MEG operators, the integrated energy
systems with multi energy and equipment are classified into
two types of MEG, and their operation models are designed.

2) For these two kinds of MEG, the nonlinear optimization
method is used to achieve the optimal solution, and the com-
parative study of optimal operation between the two kinds of
micro energy grid is carried out. The optimization results of
continuous days are used to train the deep neural network to
learn the optimal operation behavior of MEGs.

3) Combining the deep training neural network with adap-
tive dynamic programming technology, this article proposes a
real time adaptive dynamic optimization algorithm based on
deep learning to solve the uncertainty of renewable energy
sources and users’ demand in MEG. Then, the algorism is
verified by online simulation of MEG for consecutive days.

II. MICRO ENERGY GRID SYSTEM
According to the energy characteristics of prosumer and the
role played by MEG in the distribution network, the MEG
is divided into two types: Micro Energy Grid of Electricity
Selling (MEG-E) and Micro Energy Grid of Energy Supply
(MEG-S).

For the MEG-E, the main goal of this type of prosumer is
to fully absorb renewable energy. While ensuring the energy
demand of users in the grid, they should sell power to the
distribution network as much as possible during the period
of high electricity price to obtain profits. This kind of MEG
mainly includes photovoltaic, wind power, electric vehicle

FIGURE 1. The structure of the MEG-E system.

FIGURE 2. The structure of the MEG-S system.

charging station and electric energy storage equipment. At the
same time, the operator of MEG-E makes the most profit by
choosing to cooperate with industrial users for matching with
the generation characteristics of renewable energy, which is
shown in Fig. 1. For the MEG-S, the main goal of its operator
is to meet the demand of users for various types of energy,
and obtain profits by selling electricity, natural gas and heat
energy to users. This kind of MEG-S mainly includes photo-
voltaic, micro gas turbine, gas boiler, P2G equipment, small
hydropower units and other equipment. In order to obtain
the maximum profit from energy sales, the operator tends to
networking with commercial users, which is shown in Fig. 2.
This article mainly studies on the existing grid structure (the
power or natural gas networks necessary for the operation of
P2G and other devices have been built). Therefore, building a
new power or natural gas network or change the distribution
network structure to achieve better operation effect is not in
the scope of the study.

III. PROBLEM FORMULATION
A. MATHEMATICAL MODEL OF MEG-E
1) OBJECTIVE FUNCTION
The operation cost of MEG-E mainly includes the cost of
purchasing electricity from distribution network (CMEG−E

elec ),
the cost of purchasing ancillary services from the dis-
tribution network (CMEG−E

anc ), Operating cost of energy
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storage device (CMEG−E
bess ). The revenue includes the rev-

enue from selling clean electricity to the distribution net-
work (IMEG−E

grid ), revenue from electricity sales to Elec-
tric Vehicle Charging Stations (EVCS) (IMEG−E

evcs ), revenue
from electricity and heat sales to industrial users (IMEG−E

user−elec,
IMEG−E
user−heat.) Therefore, the objective function is described
by (1).

min CMEG−E

= CMEG−E
elec + CMEG−E

anc + CMEG−E
bess

−IMEG−E
grid − IMEG−E

evcs − IMEG−E
user−elec − IMEG−E

user−heat (1)

CMEG−E
elec

=

T∑
t=1

uMEG-E
buy (t)× τ gridbuy (t)× PMEG−E

elec (2)

CMEG−E
anc

= CMEG−E
anc−ss + CMEG−E

anc−spin (3)

CMEG−E
anc−ss

= Rm × (τ anc−gasss Ngrid
gas−ss + τ

anc−hydro
ss Ngrid

hydro−ss) (4)

CMEG−E
anc−spin

= Rm×


τ
anc−gas
spin

T∑
t=1

J∑
j=1

(
uanc-gasspin (t)

(
Pgridj,gas(t)−αspinS

grid
j,gas

))
+τ

anc−hydro
spin

T∑
t=1

K∑
k=1(

uanc−hydrospin (t)
(
Pgridk,gas(t)− αspinS

grid
k,hydro

))


(5)

Rm

=

T∑
t=1

umsell(t)P
m
elec(t)

M∑
n=1

T∑
t=1

umsell(t)P
m
elec(t)

(6)

CMEG-E
bess

= αs × PMEG−E
bess (t)2 + βs (7)

IMEG−E
grid

=

T∑
t=1

uMEG−E
sell (t)× τMEG−E

elec (t)× PMEG−E
elec (t) (8)

IMEG−E
eves

=

T∑
t=1

τMEG−E
eves (t)× PMEG−E

eves (t) (9)

IMEG−E
user-elec

=

T∑
t=1

τMEG−E
user-elec (t)× PMEG−E

user-elec (t) (10)

IMEG−E
user-leat

=

T∑
t=1

τMEG−E
user-heat (t)× Q

MEG−E
user-heat (t) (11)

MEG-E is connected to Distribution Network (DN)
through distribution transformer. When the Distributed
Renewable Energy (DRE) output in MEG-E is relatively low,
the cost of power purchasing from DN can be expressed
in (2). PMEG−E

elec (t) is the transformer exchange power at
time t. uMEG−Ebuy (t) is the 0-1 variable (uMEG−Ebuy (t) = 1,when

PMEG−E
elec (t) > 0). τ gridelec (t) is the price of purchasing electricity

from DN.
The distribution network provides auxiliary services for the

connectedMEG-E. In order to fully absorb renewable energy,
the distribution network operator need to dispatch the gas
power units and hydropower units to start or stop and keep
a certain proportion of rotating reserve to balance the fluc-
tuation of distributed renewable energy generation. The total
cost of auxiliary services is shared by MEG-Es connected to
DN, and can be represented as (3)-(6). CMEG−E

anc−ss and CMEG−E
anc−spin

are start-stop cost and spinning reserve cost. Rm is the cost
sharing coefficient of ancillary services. umsell (t) is the 0-1
variable (umsell (t) = 1,when PMEG−E

elec (t) < 0). Ngrid
gas−ss and

Ngrid
hydro−ss are start-stop times of gas turbine and hydropower

unit in DN. τ anc−gasss and τ anc−hydross are the cost of each start-
stop of these two units. Pgridj,gas (t) and P

grid
k,hydro (t) are output of

the gas turbine j and the hydropower unit k at time t. Sgridgas and
Sgridhydro are the rated capacity of gas turbine and hydropower

unit. αspin is the spinning reserve factor. ugrid−gasj,spin (t) and

ugrid−hydrok,spin (t) are 0-1 variables indicating whether there is a

spinning reserve at time t. τ anc−gasspin and τ anc−hydrospin are unit
price of spinning reserve for gas and hydropower units.
The BESS in MEG-E plays a role in smoothing the out-

put curve of distributed generation. It can also improve the
power supply quality of user side and provide power support
for the system when the output of distributed generation
decreases greatly in a short time. However, the service life
of BESS decreases with the increase of charging and dis-
charging times, and its operation cost can be represented
as (7). PMEG−E

bess (t) is output of battery energy storage system
at time t. as is penalty factor of fast charging and discharging
and βs is operating cost factor of BESS.
Besides, PMEG−E

evcs (t) is charging power of EVCS at time t.
τMEG−E
evcs (t) is the price of electricity selling by MEG-E to
EVCS at time t. PMEG−E

user−elec (t) and QMEG−E
user−heat(t) are electricity

load and heat load of industrial users at time t. τMEG−Euser−elec(t)
and τMEG−Euser−heat (t) are price of electricity and heat at time t.

2) MODEL CONSTRAINTS
The constraints of MEG-E can be given as below:

PMEG−E
elec (t)+ PMEG−E

bess (t)+ PMEG−E
evcs (t)+ PMEG−E

user-elec (t)

+PMEG−E
elec-boiler (t)− PMEG−E

wind (t)− PMEG−E
pv (t) = 0 (12)

QMEG-E
user-heat (t) = uelec-boiler × PMEG−E

elec-boiler (t) (13)

−S transelec ≤ P
MEG-E
elec (t) ≤ S transelec (14)

uMEG-E
buy (t)+ uMEG−E

sell (t) = 1 (15)
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−Pmax
bess, disc ≤ PMEG−E

bess (t) ≤ Pmax
bess ,c (16)

EMEG−E
bess (t+ 1) = EMEG−E

bess (t)+ PMEG−E
bess (t) (17)

SOCmin ≤ SOC(t) ≤ SOCmax (18)

0 ≤ PMEG−E
wind (t) ≤ Smax

wind (19)

−Pmax
wind ≤ PMEG−E

wind (t+ 1)− PMEG−E
wind (t) ≤ Pmax

wind (20)

0 ≤ PMEG−E
pv (t) ≤ Smax

pv (21)

−Pmax
pv ≤ PMEG−E

pv (t+ 1)− PMEG−E
pv (t) ≤ Pmax

pv (22)

0 ≤ PMEG−E
elec−boiler(t) ≤ Smax

elec−boiler (23)

−Pmax
elec−boiler≤P

MEG−E
elec−boiler(t+1)−P

MEG−E
elec−boiler(t)≤P

max
elec−boiler

(24)

Pmin
evcs ≤ PMEG−E

evcs (t) ≤ Pmax
evcs (25)

tendevcs∑
tstartevcs

tevcs ≥ Tmin
evcs (26)

In (III-A2)-(24), Equation (III-A2) and (13) represent
the electrical power and heat balance of the microgrid.
µelec−boiler is the efficiency of electric boiler. Equation (14)
and (15) represent the capacity limitation of transformer
between DN and MEG-E. Stranselec is the maximum power
of transformer. Besides, BESS should satisfy the charge
discharge rate and SOC constraints (16)-(18). Pmax

bess,c and
Pmax
bess,disc are maximum permissible charging and discharging

power. EMEG−E
bess (t) is the amount of electricity stored in the

battery at time t. SOCmax and SOCmin are maximum and
minimum state of charge.
Equation (19) and (20) stand for the wind turbine operation

constraints, and equation (21) and (22) stand for the PV
operation constraints. PMEG−E

wind (t) and PMEG−E
pv (t) are wind

power and photovoltaic output at time t. Smax
wind and Smax

PV are
maximum rated power of wind power and photovoltaic. Pmax

wind
and Pmax

pv are maximum power regulation rate of wind power
and photovoltaic.
Equation (23) and (24) stand for the operation constraints

of electric boiler. Smax
elec−boiler is maximum rated power of

electric boiler and Pmaxelec−boiler is maximum regulation rate of
electric boiler. Electric vehicle can be charged slowly and
quickly, which is limited by the maximum and minimum
charging power limits. At the same time, in order to ensure the
battery life, once the battery is charged, the whole charging
process must be completed. The constraints can be expressed
as (25) and (26). Pev,max and Pev,min are maximum and mini-
mum charging power. Tmin is the minimum charging time.

B. MATHEMATICAL MODEL OF MEG-S
1) OBJECTIVE FUNCTION
In order to meet different types of energy demand of users,
MEG-S also operates gas network and its storage system.
By purchasing the power of distribution network in low elec-
tricity price period, by using energy conversion and storage
equipment, it can sell energy to users at high price when
the energy demand is the highest and obtain the profits.

Therefore, the objective function is described by (27).

min CMEG−S = CMEG−S
elec + CMEG−S

anc + CMEG−S
hydro

+CMEG−S
gt + CMEG−S

caes

+CMEG−S
p2g + CMEG−S

gas−boiler − IMEG−S
user−elec

−IMEG−S
user−heat − IMEG−S

user−gas (27)

CMEG−S
gt =

T∑
t=1

cgas
QLHV

PMEG−S
gt (t)

ηgt
(28)

CMEG-S
hydro =

T∑
t=1

γhydro PMEG-S
hydro (t) (29)

CMEG-S
caes =

T∑
t=1

[
γcaes-c uMEG-S

caes-c (t)PMEG-S
caes-c (t)

+γcaes-g uMEG-S
caes-g (t)PMEG-S

caes-g (t)
]

(30)

CMEG−S
p2 g =

T∑
t=1

γp2 gP
MEG−S
p2 g (t) (31)

IMEG−S
user-gas =

T∑
t=1

τMEG−S
user-gas (t)× Q

MEG−S
user-gas (t) (32)

Different from MEG-E, MEG-S should have more schedu-
lable power units to meet the power balance in order to
make better use of the peak-valley energy price. It also has
energy conversion equipment and large capacity energy stor-
age equipment to meet the energy balance in order to make
better use of the different price of multi-energy. Gas turbine
and hydropower units are started at peak electricity price. The
operating cost of gas turbine (CMEG−S

gt ) is shown in (28). Cgas
is the price of gas. QLHV is the low calorific value of natural
gas. PMEG−S

gt (t) is the output of micro gas turbine at time t and
ηgt is the efficiency of gas turbine.

Hydropower units are connected by 10kV or lower voltage
level, and are generally small capacity units of run-of-river
type which will not affect the ecological flow and irriga-
tion of rivers, so it is not necessary to consider the cost of
abandoned water. The operation cost of hydropower units
(CMEG−S

hydro ) mainly refers to the power consumption cost of
hydropower station, as shown in (29). PMEG−S

hydro is the output of
hydropower unit at time t. γhydro is the generation cost factor
of hydropower.

The air energy storage device in MEG-S adopts Advanced
Adiabatic Compressed Air Energy Storage (AA-CAES)
technology. AA-CAES system is composed of compres-
sor, expander, gas storage chamber, heat accumulator, heat
exchanger and other main components. AA-CAES can store
the heat generated in the compression process in the heat
accumulator, and use the heat stored in the process of power
generation to reheat the air of the expander, which avoids
the use of fossil fuel, improves the cycle efficiency, and
also has the heating capacity. This article does not consider
the investment and installation cost of AA-CAES system,
but only considers the operation cost (CMEG−S

caes ), as shown
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in (30). PMEG−S
caes−c (t) and PMEG−S

caes−g (t) are electric power under
compressed air condition and power generation condition at
time t. uMEG−Scaes−c (t) and u

MEG−S
caes−g (t) are binary variable indi-

cating that AA-CAES system is in compressed air or power
generation condition. γcaes−c and γcaes−g are operating cost
coefficient of compressed air condition and power generation
condition.

The P2G device uses electric energy to produce gas
through the synthesis reaction of electrolytic water and
methane. P2G device can achieve the interconnection of
power grid and natural gas network with gas turbine or fuel
cell equipment. P2G is dispatched by MEG-S operators, so
there is no separate power purchase cost. Therefore, the oper-
ation cost of P2G (CMEG−S

p2g ) only considers the maintenance
cost, as shown in (31). PMEG−S

p2g (t) is the power consumed by
P2G at time t. γp2g is the cost coefficient of operation and
maintenance of P2G.

The revenue from selling gas to customers can be
expressed in (32). QMEG−S

user−gas(t) is gas consumption of users at
time t and τMEG−Suser−gas(t) is the price of gas purchased by users
at time t.

Besides, the operation of MEG-S also produces the cost of
purchasing electricity from distribution network (CMEG−S

elec ),
the cost of purchasing ancillary services from the distribution
network( CMEG−S

anc ) and the revenue from electricity and heat
sales to commercial users ( IMEG−S

user−elec, I
MEG−S
user−heat), which math-

ematical formulas can refer to (2)-(6) and (10)-(11).

2) MODEL CONSTRAINTS
The constraints of MEG-S can be given as below:

PMEG−S
elec (t)+ uMEG-S

case-c PMEG−S
case−c (t)+PMEG−S

p2g (t)+PMEG−S
user−elec(t)

−PMEG−S
hydro (t)− PMEG−S

gt (t)− PMEG−S
pv (t)

−uMEG-S
case−gP

MEG-S
case−g (t) = 0 (33)

QMEG-S
user-heat (t) =

1
µgas-boiler

PMEG−S
gas-boiler (t)+ µcaes PMEG-S

caes −c (t)

(34)

GMEG-S
user-gas (t)+ GMIEG−S

gas-boiler (t)+ GMEG−S
gt (t)

−ηp2 gP
MEG−S
p2 g (t)− GMEG−S

gas−net (t) = 0 (35)

PMEG−S
gt,min ≤ PMEG−S

gt (t) ≤ PMEG−S
gt,max (36)

−Pmax
gt ≤ PMEG−S

gt (t+ 1)− PMEG−S
gt (t) ≤ Pmax

gt (37)

PMEG-S
hydro ,min ≤ PMEG-S

hydro (t) ≤ PMEG-S
hydro, max (38)

−Pmax
hydro ≤ PMEG-S

hydro (t + 1)− PMEG-S
hydro (t) ≤ Pmax

hydro (39)

PMEG−S
caes−c,min ≤ PMEG−S

caes−c (t) ≤ PMEG−S
caes−c,max (40)

−Pmax
caes−c ≤ PMEG−S

caes−c (t+ 1)− PMEG−S
caes−c (t) ≤ Pmax

caes−c (41)

PMEG−S
caes−g,min ≤ PMEG−S

caes−g (t) ≤ PMEG−S
caes−g,max (42)

−Pmax
caes−g ≤ PMEG−S

caes−g (t+ 1)− PMEG−S
caes−g (t) ≤ Pmax

caes−g (43)

uMEG−S
caes−c (t)+ uMEG−S

caes−g (t) = 1 (44)

Eair
caes(t)+ ηcaes−airP

MEG−S
caes−air(t) ≤ Eair−max

caes (45)

Eheat
caes(t)+ ηcaes−heatP

MEG−S
caes−heat(t) ≤ Eheat−max

caes (46)

GMEG−S
p2g (t) = ηp2gP

MEG−S
p2g (t) (47)

PMEG−S
p2g,min ≤ PMEG−S

p2g (t) ≤ PMEG−S
p2g,max (48)

−Pmax
p2g ≤ PMEG−S

p2g (t+ 1)− PMEG−S
p2g (t) ≤ Pmax

p2g (49)

GMEG−S
gas−boiler(t) =

1
µgas−boiler

PMEG−S
gas−boiler(t) (50)

PMEG−S
gas−boiler,min ≤ PMEG−S

gas−boiler(t) ≤ PMEG−S
gas−boiler,max (51)

−Pmax
gas−boiler ≤ PMEG−S

gas−boiler(t+1)−P
MEG−S
gas−boiler(t)≤P

max
gas−boiler

(52)

InMEG-S, real time balance of electric energy, heat energy
and natural gas are shown in (III-B2)-(III-B2). µgas−boiler
and µcaes are heat production efficiency of gas boiler and
CAES. ηp2g is gas conversion efficiency of P2G. G

MEG−S
gas−net (t),

GMEG−S
gas−boiler (t) and GMEG−S

gt (t) are gas consumed from gas
network and gas consumed of gas boiler and gas turbine.
Equation (36) and (37) represent output limit and climbing

constraint of gas-turbine generator. PMEG−S
gt,max and PMEG−S

gt,min are
upper and lower output limits of micro gas turbine. Pmax

gt is the
maximum power regulation rate of gas turbine. Equation (38)
and (39) represent output limit and climbing constraint of
hydropower generator. PMEG−S

hydro,max and P
MEG−S
hydro,min are upper and

lower output limits of hydropower. Pmax
hydro is the maximum

power regulation rate of hydropower.
During air compressed stage, AA-CAES consumes elec-

tricity and generates heat energy to heat storage tank.
In power generation stage, compressed air expands and gen-
erates electricity. In this process, there is an electric power
constraint, shown in (40)-(43). PMEG−S

caes−c,max and PMEG−S
caes−c,min

are upper and lower power limits of air compressed stage.
PMEG−S
caes−g,max and PMEG−S

caes−g,min are upper and lower power lim-
its of power generation stage. Pmax

caes−c and Pmax
caes−g are the

maximum power regulation rate of different states. At the
same time, the CAES can only operate in either compressed
air or power generation conditions, and the constraint is
shown in (44). In addition, the energy storage constraint
of AA-CAES are shown in (45)-(46) (the energy storage
value has been converted into electric energy from vol-
ume). Eair

caes(t) and Eheat
caes(t) are energy storage value of com-

pressed air storage device and heat tank at time t. And the
maximum value of them can represented as Eair−max

caes and
Eheat−max
caes . ηcaes−air and ηcaes−heat are the power conver-

sion efficiency in the compressed air and the heat storage
tank.

Operation power limit and maximum regulation rate con-
straint of P2G and gas-boiler are shown in (47)-(52). PMEG−S

p2g,max

and PMEG−S
p2g,min aremaximum andminimum power of P2G. Pmax

p2g

is the maximum power regulation rate of P2G. PMEG−Sgas−boiler,max

and PMEG−S
gas−boiler,min are upper and lower output limits of gas

boiler.
Besides, the constraints of photovoltaic generation and

transformer operation are the same as those inMEG-E, which
can be referred to (14)-(15) and (21)-(22).
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IV. REAL TIME ADAPTIVE DYNAMIC OPTIMIZATION
STRATEGY BASED ON DEEP LEARNING
A. NONLINEAR OPTIMIZATION WITH
MULTI-DIMENSIONAL CONSTRAINTS
According to the MEG mathematical model, we need to
solve a multi-dimensional constrained nonlinear optimiza-
tion problem. For constrained optimization, the general aim
is to transform the problem into an easier subproblem that
can be solved and used as the basis of an iterative pro-
cess. The Karush-Kuhn-Tucker (KKT) equations are neces-
sary conditions for optimality. If the problem is a convex
optimizing problem, the KKT equations are both necessary
and sufficient for a global solution point. The solution of
the KKT equations forms the basis to many nonlinear pro-
gramming algorithms. These algorithms attempt to compute
the Lagrange multipliers directly. Constrained quasi-Newton
methods guarantee super-linear convergence by accumulat-
ing second-order information regarding the KKT equations
using a Quasi-Newton updating procedure. These methods
are commonly referred to as Sequential Quadratic Program-
ming (SQP) methods. At each major iteration, an approxima-
tion is made of the Hessian matrix of the Lagrange function
using a Quasi-Newton updating method. And the matrix is
used to generate a Quadratic Programming (QP) subprob-
lem whose solution is used to form a search direction for a
line search procedure [36]–[38]. The QP subproblem can be
shown in (53).

min
d∈Rn

1
2
dTHkd+∇f (xk )Td

∇ gi(xk )d + gi(xk )d = 0, i = 1, . . . ,me
∇ gi(xk )d + gi(xk )d ≤ 0, i = me + 1, . . . ,m (53)

And the method to updating the Hessian matrix can be shown
in (54).

Hk+1 = Hk +
qkqTk
qTk sk

−
HksksTk H

T
k

sTk Hksk
where : sk = xk+1 − xk

qk =

(
∇f (xk+1)+

m∑
i=1

λi·∇gi(xk+1)

)

−

(
∇f (xk )+

m∑
i=1

λi·∇gi(xk )

)
(54)

In addition, the improved particle swarm optimization algo-
rithm and genetic algorithm can also be used to solve the
optimal operation point of MEG. However, the above algo-
rithms usually take a long time to calculate and can’t deal
with the power fluctuation and forecast deviation of genera-
tion side and demand side online. In the real time Adaptive
Dynamic Optimization algorithm base on Deep Learning
(ADO-DL) proposed in this article, the day ahead optimiza-
tion of MEG operation is only the first step, so we can use the
mature global optimization toolbox in MATLAB to solve the
problem.

B. DEEP LEARNING OF MEG OPTIMAL OPERATION
Deep learning is a machine learning technology using deep
neural network. Deep neural network is a multi-layer neural
network with more than two hidden layers. The multi-layer
neural network can be used to predict the input-output rela-
tionship of a complex nonlinear dynamic system through
certain training. The MEG system proposed in this article
is a dynamic nonlinear system with multiple energy sources.
Although the traditional optimization algorithm can solve the
problem, the traditional algorithm takes a relatively long time
for calculation and can’t meet the needs of real-time. This
real-time output fluctuation is the inherent characteristics of
small mountain distributed energy and small users.

If the deep neural network is trained directly by using
massive historical operation data tomake the network directly
replace the input-output characteristics of MEG, a high-
dimensional nonlinear system, there will be two problems:
the storage and dynamic update of the massive historical
optimal operation data, and the over fitting problem of train-
ing. Therefore, in this article, we consider only using the
continuous recent historical optimal data to train the deep
neural network, so that it can quickly get the initial point
nearest to the optimal operation point in the subsequent
online dynamic algorithm, so as to speed up the calculation
convergence speed. In the pretraining process, we need to
construct a multi-hidden layers deep neural network with
multi input and output. Secondly, the historical operation data
(obtained from the global optimization in advance) of the
previous consecutive days are taken as the training data, and
the training set and test set are divided, and the appropriate
training algorithm is selected. Finally, the network training is
implemented by using MATLAB deep learning toolbox. The
pre-training process of action network using MEG optimal
operation data is shown in Fig. 3.

C. REAL TIME ADAPTIVE DYNAMIC OPTIMIZATION
STRATEGY
With the iterative Adaptive Dynamic Programming (ADP)
algorithm of continuous system proposed by
Murray et al. [39], the dynamic programming theory has
made a great breakthrough. Then, the adaptive dynamic
programming under constrained conditions is discussed. And
the adaptive dynamic programming algorithms based on
continuous time and discrete time are discussed, and proved
the convergence of performance critic function in [40]-[41].
Furthermore, Cheng proved the convergence condition of
neural network for implementing dynamic programming
algorithm [42] and Liu proposed an improved Action Depen-
dent Heuristic Dynamic Programming (ADHDP) [43].

ADP consists of three parts: dynamic system, action func-
tion and critic function. Each part can be replaced by neural
network, in which the dynamic system can be modeled by
neural network, the action network is used to approximate
the optimal control strategy, and the critic network is used to
approximate the optimal performance index function. After
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FIGURE 3. Pre-training process of action network using optimal
operation date of MEG.

action acts on the dynamic system, the reward / penalty
generated by the environment in different stages will affect
the critic function. Then the function approximation structure
or neural network is used to realize the approximation of
action function and critic function. The parameter updating
of critic function is based on the Bellman Optimal Principle,
which can not only reduce the forward calculation time, but
also respond to the dynamic changes of the unknown system
online, so that it can automatically adjust some parameters
in the network structure. However, ADHDP does not need
model network, only contains action network and critic net-
work. State variables and control variables are the input of
critic network. Its structure is shown in Fig. 4.

The principle of ADHDP is to use the function approxi-
mate structure (neural network) to approach the performance
indicator function and control strategy in the dynamic pro-
gramming equation, so as to satisfy the principle of the high-
est priority, and obtain the optimal control and the optimal
performance indicator function J, which can be expressed
as (55).

J[x(k), k] =
∞∑
i=k

γ i−kU[x(k),u(i), i] (55)

where, U is utility function, γ is discounted factor. The output
of critic network (Ĵ), which is shown in (56), is the estimation
of function J.Wc is the parameters of critic network.

Ĵ(k) = Ĵ [[x(k),u(k), k,Wc]] (56)

FIGURE 4. Structure of ADHDP.

By minimizing the error Ec, which is shown in (57), a
trained critic network can be obtained.

‖Ec‖ =
∑
k

Ec(k)

=
1
2

∑
k

[Ĵ(k)− U(k)− γ J(k+ 1)] (57)

The training of the action network is carried out by using
the control signal u (k)= u[x (k) , k,Wa] with the goal of
minimizing Ĵ(k), which Wa is the parameters of action net-
work. Once the action network is trained by minimizing
the output of the critic network, a trained network will be
obtained, which will produce the optimal or suboptimal con-
trol strategy.

For real time optimization of MEG operation, this article
establishes a deep neural network as the critic network based
on the ADHDP method, and uses the previously trained deep
neural network to construct the action network and controlled
object. Because the deep neural network has learned the
optimal operation behavior of MEG, when the real-time dis-
tributed renewable energy output and user load are different
from the predicted value, the deep neural network can imme-
diately generate a system operation point which is close to
the optimal operation point of the system, that is, the control
strategy. At the same time, we can get an estimated value of
performance indicator function after the control strategy is
input into the critic network. Then, the performance indicator
function J can converge rapidly by on-line iteration and train-
ing as shown in (55)-(57), and the optimal operation strategy
of the system is obtained. The structure of proposed ADO-DL
strategy is shown in Fig. 5.

In the optimization process of MEG, this article takes
Pwind, Ppv, Puser−elec, Quser−heat, Guser−gas, as state variables
and Pelec, Pevcs, Pbess, Pcaes, Phydro, Pgt, Pgas−boiler, Pp2g as
control variables into ADO-DL strategy, a flow chart of
implementing ADO-DL strategy is shown in Fig. 6.

V. CASE STUDIES
A. SYSTEM DATA
In Guizhou power grid, distributed renewable energy and dif-
ferent types of users and equipment are integrated into the dis-
tribution network through 10kV transformers, and the limits
of power exchange are defined as -1MW, 1MW. The energy
demand data of users and the output data of renewable energy
power plants are obtained from the actual participants actu-
ally connected to the power grid. To validate the effective-
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FIGURE 5. Structure of ADO-DL.

FIGURE 6. Procedures of proposed ADO-DL Strategy.

ness of the proposed models and method, two micro energy
grids are studied, which constructed on the basis of operation

TABLE 1. Parameters of equipment in MEG-E.

characteristics of distributed wind power and photovoltaic
power plants in northwest plateau mountainous areas of
Guizhou and the actual microgrid. Besides, the simulations
are implemented on a PC with Intel(R) Core (TM) i7 with
two processors at 3.0GHZ.

B. COMPARATIVE STUDY BETWEEN MEG-E AND MEG-S
When different energy forms matching with a variety of
energy conversion equipment and prosumer, MEG can have
quite different operating characteristics. If the spatiotemporal
characteristics of output and user load can be well matched,
the system economywill be greatly improved and the solution
space will be expanded. In order to verify that the coupling
of multiple energy sources can make MEG operating more
flexible and economic, it is necessary to compare the oper-
ation characteristics of MEG-E with relatively few energy
types and MEG-S with more energy types and conversion
equipment under the same scale system.At the same time, it is
necessary to compare the operation characteristics of MEG-E
and MEG-S with those under traditional power grid mode,
so as to prove that MEG operation mode will bring higher
security and economy.

This article constructs two systems ofMEG-E andMEG-S,
and makes the simulation according to the optimization
model proposed in this article using 96 points data of one
day. The parameters of equipment in MEG-E andMEG-S are
shown in Table 1 and Table 2.

In this article, the data with 15 minutes timescale of wind
power, photovoltaic, industrial users and commercial users in
typical working days in winter are used for simulation. At the
same time, the price of electricity purchased by MEG from
the DN is set as 0.7 U/kWh, the price of auxiliary services
purchased from the DN is 0.02 U/kW, the price of electricity
sold to the DN is set as 0.6 U/kWh, the price of electricity
sold to users is 0.7U/kWh, and the price of heat sold to users
(converted into electricity) is 1.5 U/kWh. It is assumed that
the power of transformer from DN to MEG is in positive
direction. When equipment in MEG charging, the power is
positive. In order to show the operation ability of MEG-S
as prosumer, the public gas network is connected with users
but only providing emergency reserve. The capacity of P2G
device is adequate to achieve the self-sufficient of gas in
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TABLE 2. Parameters of equipment in MEG-S.

FIGURE 7. Optimization results of MEG-E.

MEG-S. The optimization results of MEG-E and MEG-S are
shown in Fig. 7 and Fig. 8.

Through the optimization results of MEG-E, when the
wind power and PV output reached the peak, it can be seen
that under the same load level (in the traditional power grid
operation mode, the thermal load of industrial users has been
converted into electrical load), the transformer has a high
probability of overload, leading to the difficulty of dispatch-
ing at traditional power grid mode without BESS, EVCS
and other equipment. If active control is carried out, it will
inevitably lead to wind or PV curtailment, which does not
meet the policy of the government to fully absorb renewable
energy. At the same time, it is also the practical dilemma faced
by the power grid dispatching. If MEG-E mode is adopted,
BESS and EVCS can be charged in the period when the
renewable energy output is high, so as to ensure the safety
of equipment and avoid static instability. At the same time,
BESS can also release energywhen the renewable energy out-
put is low, reduce electricity purchased fromDN, and improve
system economy. In addition, according to the optimization

FIGURE 8. Optimization results of MEG-S.

results, it can be seen that in MEG-E, industrial users and a
high proportion of wind power are coordinated, EVCS and
BESS are jointly operated, which has better complementary
characteristics. Through optimization, the daily minimum
operating cost of MEG-E converges to U16604.

For the power grid integrated with PV, as the commer-
cial users have demand for electric, heat and gas (for the
traditional power grid, because there is no P2G, gas power
generation and other equipment, the thermal load and gas
load have been converted into electrical load), the distribution
transformer may be overloaded in the period of load peak,
resulting in the PV curtailment. MEG-S, which is connected
with multi energy, has more flexible operation mode because
of P2G, Gas- boiler, CAES and other energy coupling and
storage equipment in the network. Through the conversion of
different energy, MEG-S can operate economically, meet the
demand of commercial users for different energy types, and
greatly improve user satisfaction.

Comparing MEG-S with MEG-E, the two MEG operation
modes are suitable for different users and energy forms.
CAES and BESS play an important role in energy transfer
and storage in bothMEGs. MEG-S has the energy conversion
equipment P2G, which makes the operation mode more flex-
ible than MEG-E. At the same time, because there are more
kinds of energy that can be sold to users, the operation econ-
omy of MEG-S is also better than MEG-E. In the simulation,
one day operation of MEG-S can obtain a profit of U1549.

By optimizing the same scale MEG-E and MEG-S, we can
get the conclusions. For the traditional power grid, due to the
power equality constraint, when the renewable energy output
is large and the load is small, the transformer will inevitably
exceed the limit. At this time, in order to ensure the static
stability of the power grid, wind or solar will be abandoned.
Both MEG-E and MEG-S operation modes have enough
adjustment measures to ensure system security and fully
absorb renewable energy, which proves that MEG operation
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FIGURE 9. Training data set for deep learning of MEG optimal behavior.

FIGURE 10. Deep training process of action network.

mode is better than traditional power grid mode. At the same
time, compared withMEG-E,MEG-S has more energy forms
and energy conversion equipment, and its operation flexibil-
ity is higher. It can guarantee operation constraints through
energy conversion and space-time transfer, and obtain higher
profit by using price difference. However, whether MEG-E
or MEG-S is selected, it is necessary to assess the resource
characteristics of renewable energy and the property of users
in MEG, and the reasonable choice of operation mode can
make MEG operating more economical.

C. VALIDATION OF PROPOSED ADO-DL STRATEGY
In order to learn the optimal operation behavior of MEG,
we build a deep neural network with three hidden layers
and 30 neurons in each layer in the MATLAB deep learning

FIGURE 11. Optimization results comparison of transformer power.

FIGURE 12. Optimization results comparison of BESS.

toolbox. The input layer of the neural network has 4 input
variables and the output layer has 3 output variables. This
article takes MEG-E as an example to achieve the training
process of the deep neural network and verify the effective-
ness of the ADO-DL strategy.

Firstly, the curves of PV, wind power, power load and heat
load of users for 7 consecutive days are extracted from the real
system, and theMEGmodel proposed in this article is used to
solve the optimization problem, then we can obtain the opti-
mal operation plan of MEG for each day. The data of the first
four days are used for the pre-training of the action network
(deep neural network). In the process of training, Pwind, Ppv,
Puser−elec and Quser−heat, are taken as input variables, when
Pelec, Pevcs and Pbess, are taken as output variables to form the
training data set. The training data set is shown in Fig. 9. And
Levenberg-Marquardt backpropagation algorithm is adopted
for the training, the deep training result is shown in Fig. 10.

According to the training results, the action network has
been trainedwell, and the deep neural network has learned the
historical optimal operation behavior of MEG-E. Although
the deep neural network at current training status can’t fully
explain the causal relationship between the input variables
and output variables of MEG-E model, the pre-trained action
network can provide an initial iteration point which is close
to the optimal operation point for the subsequent online adap-
tive dynamic optimization and improve the computational
efficiency.

After training the action network and initializing the crit-
ical network, the online optimization stage is in progress.
In order to verify the correctness and reliability of the online
optimization algorithm, the input data of the last three days
of 8 days are input into MEG-E optimization model for
global optimization, and the optimization results are used as
the standard data to judge whether the calculation results of
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FIGURE 13. Optimization results comparison of EVCS.

FIGURE 14. Training epochs and error.

online optimization algorithm are correct. If the data of the
next four days are input one by one online, and the optimizing
result of decision variables is the same as that of global
optimization, we can confirm that the online optimization
algorithm is reliable. After online optimization simulation
of three consecutive days, the online optimization results of
MEG-E are compared with the global optimization results
calculated before. The results are shown in Fig. 11- Fig. 13.

Through the comparison of the optimization results, the
online optimization operation plan of each time obtained by
using ADO-DL is almost consistent with the global optimal
operation plan. At the same time, when the ADO-DL algo-
rithm is used to optimize and train 384 consecutive running
points for 4 days on line, the longest convergence time is
9.219328s, the shortest is 0.242512s, and the mean squared
error reaches theminimumvalue of 5.4625×10−20 at the 19th
epoch, as shown in Fig. 14. Therefore, the effectiveness and
real-time performance of ADO-DL strategy can be verified
by the above optimization results. Meanwhile, the slightly
different operation points between ADO-DL and global opti-
mization results are also feasible suboptimal solutions under
system constraints, which can also meet the needs of system
operation security.

The power output of distributed wind power and photo-
voltaic units in plateau mountainous areas is greatly affected
by local climate and has strong uncertainty. Considering the
investment cost, MEG operators has no willingness to invest
in complex and expensive wind and PV power prediction
system for distributed and small capacity installed units.

Although the energy users will not change energy consump-
tion habit in a short time, they have different energy supply
forms and the change of different energy price will lead
to the converting demand between different energy forms.
Therefore, the research of online optimization algorithm with
real-time control performance is the key to solve the uncer-
tainty in MEG operation. The process of online optimization
in this article, the wind power, photovoltaic and user load data
in the last four days are input into the ADO-DL algorithm
as a series of unknown data. The action network and critical
network in ADO-DL are not trained by these data. There-
fore, it is verified that the ADO-DL algorithm proposed in
this article can deal with the uncertainty of MEG operation
online.

Distributed renewable energy and industrial or commer-
cial users together constitute MEG. This kind of prosumer
consumes energy to create value while producing energy.
While seeking maximum profit, MEG operators also bear
social responsibility and government pressure, that is, they
must fully absorb renewable energy. The ADO-DL strat-
egy proposed in this article can achieve this goal well, and
improve the operation efficiency of multi energy coupling
system.

VI. CONCLUSION
According to the characteristics of energy production and
consumption of different prosumer, this article constructs the
optimization model of MEG-E and MEG-S, then carries out
optimization simulation and comparative study. Furthermore,
in order to fully absorb renewable energy and solve the uncer-
tainty of distributed energy output, a real-time dynamic opti-
mization strategy of MEG based on deep learning (ADO-DL)
is proposed, the correctness and performance of the algorithm
are verified by consecutive days online optimization. Some
conclusions can be drawn from the study of this article.

1) The reasonable matching of different distributed renew-
able energy, different users and equipment can improve the
operation economy of MEG. That is, by matching energy
storage equipment and energy conversion equipment reason-
ably, the feasible operating range of MEG can be expanded
and the optimal operation point can be found more quickly.

2) In ADO-DL, the pretraining of action network can make
the iteration of online optimization approach the optimal
operation point quickly, so as to improve the real time per-
formance of the algorithm.

3) The operation problem of MEG is an optimization prob-
lem of high-dimensional nonlinear systems with time-delay.
The relationship between input variables and optimal output
can be quickly found by learning massive historical operation
data through deep learning technology.

In this article, the model of internal operation process of
energy conversion equipment in MEG is simplified. At the
same time, the flexibility of MEG operation will be improved
if the user’s real-time load response and real-time price are
considered in the follow-up study.
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