
Received October 24, 2020, accepted November 25, 2020, date of publication December 2, 2020,
date of current version December 21, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3041928

Data Fusion With Inverse Covariance Intersection
for Prior Covariance Estimation of the
Particle Flow Filter
CHANG HO KANG 1, SUN YOUNG KIM 2, AND JIN WOO SONG 3, (Member, IEEE)
1Department of Mechanical System Engineering, Kumoh National Institute of Technology, Gyeongbuk 39177, South Korea
2School of Mechanical Convergence System Engineering, Kunsan National University, Jeollabuk-do 54150, South Korea
3Department of Intelligent Mechatronics Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, South Korea

Corresponding author: Jin Woo Song (jwsong@sejong.ac.kr)

This work was supported in part by the Unmanned Vehicle and SW platform research program related to Public Procurement for
Innovation funded by Ministry of Land, Infrastructure and Transport (MOLIT) of Korea Government and Korea Agency for Infrastructure
Technology Advancement (KAIA) under Grant 20DPIW-C153340-02, and in part by the Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Education under Grant 2020R1A6A1A03038540.

ABSTRACT The prior covariance estimation method based on inverse covariance intersection (ICI) is
proposed to apply the particle flow filter. The proposed method has better estimate performance and
guarantees consistent estimation results compared with previous works. ICI is the recently developedmethod
of ellipsoidal intersection and is used to get the combined estimate of prior covariance. Thismethod integrates
the sample covariance estimate, which is unbiased but usually with high variance, together with a more
structured but typically a biased target covariance through fusion gains. For verifying the performance of
the proposed algorithm, analysis and simulations are performed. Through the simulations, the results are
given to illustrate the consistency and accuracy of the proposed algorithm’s estimation and target tracking
performance.

INDEX TERMS Particle flow filter, inverse covariance intersection, multiple target tracking, prior covari-
ance estimation.

I. INTRODUCTION
Recent researches in particle flow filters (PFFs) have pro-
vided a solution to avoid degeneracy problems [1]–[3]. The
solution is based on solving partial differential equations
for migrating particles drawn from the prior distribution
to the posterior distribution in the state space. In general,
the bootstrap particle filter (classified as sequential impor-
tance resampling particle filters) draws particles from the
prior distribution. It updates the weight of each particle using
the likelihood of the latest measurement [4], [5]. As the
Monte Carlo approximation of the posterior distribution is
represented by a few particles, the weight degeneracy issue
causes a poor representation of the posterior distribution [5].

There are various approaches to solve degeneracy prob-
lems effectively. However, one of the solutions involves
separating the state space through factorization or partition-
ing [6]–[9]. These techniques are promising but rely on
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identifying a suitable factorization of the conditional pos-
terior, so their applicability is restricted. A more general
solution involves the incorporation of Markov Chain Monte
Carlo (MCMC) methods within the particle filters [10]–[14].
However, MCMC methods are almost always computation-
ally expensive, and their inclusion is difficult to apply as real-
time filtering [5].

An alternative set of methods, called the PFF, can offer
similar performance without the same computational require-
ments, but this comes at the cost of a more limited theoretical
understanding. A framework for performing a progressive
Bayesian update was introduced in [15]. In a series of
papers [16]–[22], authors link the log prior and the log pos-
terior distribution using derived partial differential equations
(PDE) from guiding particles to flow from the prior distribu-
tion to the posterior distribution. Implementations of various
PFFs have been reported in several publications. While con-
ceptually being quite intuitive, PFFs can limit the estimated
performance in practice due to several assumptions, made
both in the theory and the implementation. In the previous
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work [23], the key factors affecting the PFF performance are
classified as pseudo-time discretization, ordinary differential
equation (ODE) numerical solution, prior covariance estima-
tion, and re-generating the particles set.

Among the factors which affect the performance of the
PFF, the availability of the prior covariance estimate is a
key factor related to the performance of the PFF. The prior
covariance estimate is used to calculate the particles’ flow in
the PFF. Thus, several types of research for estimating the
prior covariance have been studied, and shrinkage estimation-
based methods were proposed to obtain the covariance for
dealing with the nonlinear model, non-Gaussian noise, and
ill-condition of the covariance matrix [24]–[26]. Similar
to the previous methods, we propose the prior covariance
estimation method based on inverse covariance intersection
(ICI) [27] which is the recently developed method of ellip-
soidal intersection [27]. In this paper, ICI is used to obtain
a combined estimate of prior covariance. This method inte-
grates the sample covariance estimate, which is unbiased but
usually with high variance, together with a more structured
but typically a biased target covariance through fusion gains.
The proposed method has better estimate performance and
guarantees consistent estimation results comparedwith previ-
ous works of prior covariance estimation [28], [29]. Besides,
extended parameter conditions of fusion gains are verified
through performance analysis. The verification under the
condition is satisfactory to explain that ICI-based covariance
estimation is always better than the covariance shrinkage
estimation.

An outline of the paper is as follows. In Section II,
the whole process of the PFF is explained, and the pro-
posed method with ICI based prior covariance estimation
is introduced. Subsequently, in this section, ICI and its role
in the proposed algorithm to improve the performance of
the PFF are discussed. The analysis of the filter conver-
gence is performed in Section III. In particular, the effect
of the characteristics that changed the prior covariance writ-
ten in Section II on the convergence of the filter in the
prediction process of the proposed algorithm is analyzed.
In Section IV, one simulation is performed using a repre-
sentative nonlinear model. In addition, another simulation
considers a multi-target tracking case with measurements
of received signal strength obtained from several sensor
nodes to confirm the actual filter performance compared with
conventional methods. The conclusions are summarized in
Section V.

II. PFF WITH ICI
This section provides a brief review of how deterministic
particle flow can be used to address the nonlinear filtering
problem with the particle filter. Besides, the prior covariance
estimate using ICI, which is one of the important techniques
for improving the performance of the PFF, is explained. The
proposed estimation of prior covariance is used to calculate
the particles’ flow in the PFF, and its performance analysis is
also performed.

A. FLOW TYPES OF PFF
After propagating particles using the dynamic model, a set of
particles

{
xik
}N
i=1 is obtained (

{
xik
}N
i=1 =

{
x1k , x

2
k , · · · , x

N
k

}
),

and it represents the predictive posterior distribution at time
k [5]. Particle flow, which is modeled as a stochastic back-
ground process in a pseudo time interval, λ ∈ [0, 1] is then
used to migrate the particles so that they approximate the
posterior distribution at time k . The stochastic process of i-th
realization is defined as ηiλ to design the particle flow (ηi0 =
xik , i = 1, 2, . . .N ). The zero diffusion PFFs(deterministic
particle flow) [16]–[22] involve no random displacements of
particles, and its flows are deterministic.

The trajectory of ηiλ for i-th realization follows the ODE is
written as

dηiλ
dλ
= ς

(
ηiλ, λ

)
(1)

where ς : Rd
→ Rd is governed by the Fokker-Planck

equation and additional flow constraints [17]. The Fokker-
Planck equation with zero diffusion is defined as

∂p
(
ηiλ, λ

)
dλ

= −p
(
ηiλ, λ

)
div

(
ς
(
ηiλ, λ

))
−
∂p
(
ηiλ, λ

)
dηiλ

ς
(
ηiλ, λ

)
(2)

where p
(
ηiλ, λ

)
is the probability density of ηiλ at the pseudo

time λ of the particle flow. div ( ) refers to the differential
operator (divergence). By imposing different constraints on
the flow, (2) can lead to a variety of particle flow filters [5].

Among the various deterministic flows, the flow trajectory
in the resultant exact Daum and Huang (EDH) [16] and the
localized exact Daum and Huang filter (LEDH) [30] are the
representative flow trajectory used in the PFF. To deal with
nonlinear systems, a linearization of the filtering model is
performed at the ηiλ in the process of LEDH. For the i-th
particle, the flow trajectory of LEDH becomes:

dηiλ
dλ
= ς

(
ηiλ, c

)
= Ai (λ) ηiλ + bi (λ) (3)

where

Ai (λ) = −
1
2
PHi (λ)T

(
λHi (λ)PHi (λ)T + R

)−1
Hi (λ)

(4)

bi (λ) =
(
I + 2λAi (λ)

) [
PHi (λ)T R−1

(
z− ei (λ)

)
+Ai (λ) η̄0

]
(5)

In the above equations, P is the predictive covariance
(also called prior covariance) and R is the measurement
covariance. Hi (λ) refers to the measurement matrix and is
expressed as Hi (λ) =

∂h(η, 0)
∂η

∣∣∣
η=ηiλ

. h (η, 0) refers to the

measurement model at the pseudo time λ = 0 and z is the
measurement. Also, ei (λ) is the linearization error: ei (λ) =
h
(
ηiλ, 0

)
−Hi (λ) ηiλ. η̄0 is the mean of the η0 [5].
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B. IMPORTANT FACTORS IN PFF
The equations (4) and (5) related to the flow require the
availability of the prior covariance estimate (P). There are
various methods to obtain the prior covariance, and one of the
simplest ways is to estimate the covariance matrix using the
prior particles, which is referred to as the sample covariance
estimate (P̂). The sample covariance estimate is the result
of the maximum likelihood estimate if the process data is
Gaussian distributed and is an unbiased estimator of the true
prior covariance (P̃). However, in the case of the nonlin-
ear models or non-Gaussian noises, the Gaussian assump-
tion may not remain valid and P̂ could progressively get
ill-conditioned [23]. An alternative method suggested by
authors in [16] is to run an EKF/UKF in parallel to the
PFF, and those filters generate the prior covariance matrix.
While this approach is better than using the sample covari-
ance estimate with the raw data, it ties the PFF estimation
accuracy to that of the EKF/UKF [23] and this method
may have limitations when applied to a system with high
nonlinearity or non-Gaussian case because of the Gaussian
assumption used in EKF/UKF structures. In addition, EKF
causes an underestimate or overestimate situation due to error
covariance update with Kalman filter iteration and therefore
risks becoming inconsistent in the statistical sense. In the case
of UKF, it has the limitation that it does not apply to general
non-Gaussian distributions. Besides, prior covariance results
obtained from EKF or UKF could also exhibit a wide spread
of the eigenvalues [23] (this feature does not guarantee tight
boundaries of error covariance).

To deal with those problems, there is another approach
used in the multivariate statistics literature for the estimation
of the covariance matrices, known as the shrinkage estima-
tion. The use of such methods dates back to the work of
Stein [31]. The main idea is to merge the raw estimate of
the sample covariance (P̂), which is close to unbiased but
typically with high variance, together with a more structured
but typically a biased target (P−) through a scale factor (ρ,
also called fusion gain), to get the combined estimate covari-
ance. There are several shrinkage estimators mentioned in
the literature [23], with different target covariance matrices.
Shrinkage estimators are defined through a convex combi-
nation of the matrices P− and P̂. The objective becomes to
find an optimal shrinkage intensity that minimizes the cost
function

min
ρ
E
[∥∥∥P∗ − P̃

∥∥∥2] (6)

where P∗ = ρP− + (1− ρ) P̂
The covariance shrinkage estimation can be categorized

as a kind of covariance intersection (CI) method in terms of
multiple data fusion. CI Algorithm is proposed to combine
two quantities in the presence of unknown correlation, and
to provide an appropriate estimate of the resulting covari-
ance matrix. In addition, the CI algorithm requires ρ to be
optimized at every step by minimizing the cost function (for
example, trace or the determinant of error covariance). Thus,

since the configuration of the CI algorithm is similar to the
shrinkage estimation method described above, it is shown in
this paper as a CI algorithm for convenience of performance
comparison.

CI is introduced in the previouswork [32] and is a represen-
tative fusion rule. There are various researches on CI, and it
has been implemented in applications [27]. According to the
analysis results in the previous work [33], it is shown that CI
tightly bounds the entirety of possible error covariance matri-
ces. It means that if the correlations between two estimation
values to be fused are entirely unknown, CI encompasses the
optimal fusion method in terms of a minimum mean squared
error and also other optimality criteria [27]. However, CI
often provides too conservative fusion results as typical esti-
mation tasks, in general, prevent extremal correlation terms
from occurring [27].

To obtain a less conservative result compared to CI, ellip-
soidal intersection (EI) is proposed [29], and it is applied to
many applications [34], [35]. However, EI does not guarantee
consistent fusion results in the presence of unknown common
information [27]. Thus, in recent years, the novel approach
achieves a conservative fusion result by computing the bound
on the intersection of inverse covariance ellipsoids, which
gives reason to name it inverse covariance intersection [27].

Thus, we propose the prior covariance estimation method
based on inverse covariance intersection. Still, the proposed
method has better estimate performance and guarantees con-
sistent estimation results compared with previous works
based on the covariance shrinkage estimation method.

C. PERFORMANCE ANALYSIS OF ICI COMPARED WITH
FILTER PREDICTED VALUE
A consistent combination of the estimates

(
x−k , P−k

)
obtained

in the filter prediction process and
(
x̂−k , P̂

−

k

)
obtained from

the sample mean and covariance of particles is provided by(
x̄−k , P̄

−

k

)
with ICI as follows [27]:

x̄−k = CPx−k + CS x̂−k (7)(
P̄−k
)−1
=
(
P−k
)−1
+

(
P̂−k
)−1
−

(
ρP−k + (1− ρ) P̂

−

k

)−1
(8)

for any ρ ∈ [0, 1]. The gains in (31) are set as

CP = P̄−k ×
((

P−k
)−1
− ρ

(
ρP−k + (1− ρ) P̂

−

k

)−1)
(9)

CS = P̄−k ×
((

P̂−k
)−1
− (1− ρ)

(
ρP−k + (1− ρ) P̂

−

k

)−1)
(10)

In (7) and (8), the estimates of state variables and its covari-
ance

(
x−k , P−k

)
are obtained by Kalman filter structure as

follows:

x−k = fk
(
x+k−1

)
(11)

P−k = FkP+k−1F
T
k +Qk (12)
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where fk () is the nonlinear system model of the filter and
x+k−1 refers to the posterior estimation results of the state vari-

ables at time k − 1. Fk =
∂fk (x)
∂x

∣∣∣
x=x−k

is the Jacobian matrix

of the system model, P+k−1 is the posterior error covariance at
time k−1, andQk is the noise covariance of the systemmodel.
The posterior estimation results

(
x+k−1, P+k−1

)
are calculated

by after weight update and resampling process of the particles
in the PFF as follows:

x+k−1 =
N∑
i=1

ωik−1x
i
k−1 (13)

P+k−1 =
N∑
i=1

ωik−1

(
xik−1 − x+k−1

) (
xik−1 − x+k−1

)T
(14)

where xik refers to i−th particle of the state variables xk . ω
i
k−1

indicates the weights of the i−th particle at time k − 1. The
update process of weights is similar to that of the PF and
is written at line 20 of Table 1. After passing through the
resampling process, each weight value becomes 1/N shown
at line 28 of Table 1.

In the case of the sample mean and covariance of particles
are calculated as

x̂−k =
N∑
i=1

ωik fk
(
xik−1

)
=

N∑
i=1

ωikx
i
k (15)

P̂−k =
N∑
i=1

ωik

(
xik − x̂−k

) (
xik − x̂−k

)T
(16)

Finally, the result of prior covariance P̄−k written in (8) is
substituted into the P in (4) and (5).
According to lemma 9 in the previous work [27], it is

verified that the ICI approach provides more accurate fusion
results than CI under the specific condition: ρICI = 1− ρCI .
ρICI , ρCI refer to the scale parameters in ICI and CI, respec-
tively. In this particular condition, ICI based covariance esti-
mation method can have better estimation performance than
the covariance shrinkage estimation (CI-based covariance
estimation method). The verification under the condition is
unsatisfactory to explain that ICI-based covariance estimation
is always better than the covariance shrinkage estimation.
Therefore, in this paper, we have found extended parameter
conditions related to ρICI , ρCI satisfying the verification
result through additional performance analysis.

A simple analysis is performed to verify that using ICI
based covariance estimation method is better than using the
covariance shrinkage estimation.

If there is a parameter ρICI ∈ [0, 1] for each ρCI ∈ [0, 1],
comparison of the two covariances is explained as(

P̄−k
)−1
ICI −

(
P̄−k
)−1
CI =

(
P−k
)−1
+

(
P̂−k
)−1

−

(
ρICIP−k + (1− ρICI ) P̂

−

k

)−1
−

(
ρCI

(
P−k
)−1
+ (1− ρCI )

(
P̂−k
)−1)

= (1− ρCI )
(
P−k
)−1
+ ρCI

(
P̂−k
)−1

−

(
ρICIP−k + (1− ρICI ) P̂

−

k

)−1
(17)

Equation (17) is converted into a diagonal matrix form for
ease of analysis. Multiply the transformation matrix Tk on
both sides of components in (17) to convert into a diagonal
matrix as follows:

D̄k = Tk
((
P̄−k
)−1
ICI −

(
P̄−k
)−1
CI

)
TTk

= (1− ρCI )
(
D−k
)−1
+ ρCI

(
D̂−k
)−1

−

(
ρICID−k + (1− ρICI ) D̂

−

k

)−1
(18)

where D̄k = Tk P̄−k T
T
k , D

−

k = TkP−k T
T
k , D̂

−

k = Tk P̂−k T
T
k are

the diagonal matrices. Tk is a transformation matrix which
can be computed with the aid of an eigenvalue decomposition
as in [27]. If an i-th diagonal component of Dk is expressed
as (dk)i = (Dk)ii, the diagonal entries are(
D̄k
)
jj = (1− ρCI )

1(
d−k
)
j

+ ρCI
1(
d̂−k
)
j

−
1

ρICI
(
d−k
)
j + (1− ρICI )

(
d̂−k
)
j

(19)

If the equation (19) is rearranged by the last term
(1/ρICI

(
d−k
)
j+ (1− ρICI )

(
d̂−k
)
j
, always positive), (19) can

be written as follows:(
D̄k
)
jj =

1

ρICI
(
d−k
)
j + (1− ρICI )

(
d̂−k
)
j

×

(1− ρCI )
ρICI + (1− ρICI )

(
d̂−k
)
j(

d−k
)
j


+ρCI

ρICI
(
d−k
)
j(

d̂−k
)
j

+ (1− ρICI )

− 1


=

1

ρICI
(
d−k
)
j + (1− ρICI )

(
d̂−k
)
j

×


−1+(1−ρCI ) ρICI+ρCI (1−ρICI)+

(
d̂−k

)
j(

d−k
)
j

− (ρICI+ρCI )

(
d̂−k

)
j(

d−k
)
j
+ρCIρICI

( (
d−k
)
j(

d̂−k

)
j

+

(
d̂−k

)
j(

d−k
)
j

)

(20)

By using inequality a2 + b2 ≥ 2 |ab|, it follows:(
d−k
)
j(

d̂−k
)
j

+

(
d̂−k
)
j(

d−k
)
j

≥ 2 (21)
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The expression in braces in (20) can be expressed as

(
D̃k

)
jj
= −1+ (1− ρCI ) ρICI + ρCI (1− ρICI )+

(
d̂−k
)
j(

d−k
)
j

− (ρICI + ρCI )

(
d̂−k
)
j(

d−k
)
j

+ρCIρICI

 (
d−k
)
j(

d̂−k
)
j

+

(
d̂−k
)
j(

d−k
)
j


≥−1+ ρICI+ ρCI +

(
d̂−k
)
j(

d−k
)
j

− (ρICI + ρCI )

(
d̂−k
)
j(

d−k
)
j

= (−1+ ρICI + ρCI )

1−

(
d̂−k
)
j(

d−k
)
j

 (22)

Finally, the diagonal entries of the two covariances’ differ-
ence are written as

(
D̄k
)
jj ≥

−1+ ρICI + ρCI

ρICI
(
d−k
)
j + (1− ρICI )

(
d̂−k
)
j

1−

(
d̂−k
)
j(

d−k
)
j


(23)

If the system we’re dealing with is nonlinear and non-
Gaussian, then the inequality

(
d̂−k
)
j
≥
(
d−k
)
j is likely to be

valid. Thus, if 0 ≤ ρICI +ρCI ≤ 1, the diagonal entries of the
two covariances’ differences are always positive (

(
D̄k
)
jj ≥

0). This means that ICI-based covariance estimation is always
more accurate than CI-based covariance estimation.

Table 1 shows the overall structure of the PFF proposed,
including ICI-based covariance estimation. In this paper, the
particle resampling process is performed by the systematic
method [36] as an option as in Algorithm 1. The resam-
pling process is written in Table 1 is performed when the
effective number of particles (Neff ) [37] obtained by the
equation of line 26 in Table 1 is less than the maximum
number of particles (Nmax = N /2). The user may use
the resampling technique that has been studied to improve
computational efficiency. An adaptive resampling method
called KLD-resampling [38], [39] is proposed that deter-
mines the number of particles to resample based on the
Kullback–Leibler measure of the fit of the posterior distri-
bution represented by weighted particles for increasing effi-
ciency of the algorithm.

In this paper, the performance analysis of the proposed
covariance estimation technique is given priority, and the
performance improvement by the resampling technique is not
analyzed. However, in order to efficiently apply the proposed
algorithm to real systems, it is necessary to study the optimal
resampling technique of the PFF in the future.

TABLE 1. Pseudocode of the PFF with ICI.

III. CONVERGENCE OF THE PFF
In the previous works [40], [41], it is possible to find bounds
for the mean square error of the SMC-PHD filter at each
state of the algorithm. These depend on some considerations
related to the designed parameters of the target system’s
model. Besides, the analysis of the filter convergence is based
on the fact that the sum of two sequences converges weakly to
the sum of the limits of those sequences, which follows from
a basic result of real analysis on the convergence of sequences
of real numbers [40]–[43]. In this paper, those analysis results
are extended and applied to the proposed algorithm to verify
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the convergence of the proposed algorithm. In particular, the
effect of the characteristic that changed the prior covariance
written in Section II on the convergence of the filter in the
prediction process of the proposed algorithm is analyzed.
Before proving the convergence of the proposed filter, some
explanation and consideration are given as follows.

If θN is a sequence of measures that depend on the num-
ber of particles, N , then θN converges to θ when ∀ϕ ∈
B
(
Rd
)
[41].

lim
N→∞

E
[(〈

θN , ϕ
〉
− 〈θ, ϕ〉

)2]
= 0 (24)

whereB
(
Rd
)
is the set of bounded Borel measurable function

on Rd . d is the dimension of the space. When the measure in
the inner product 〈 . , . 〉 is discrete, it defines the summa-
tion inner product,〈

DNk|k , ϕ
〉
=

N∑
i=1

ωik ϕ
(
xik
)

(25)

In (24), DNk|k is the density of the PFF and refers to

DNk|k (dxt) =
N∑
i=1
ωikδxik

(dxk). To prove convergence of the

proposed algorithm, D′k|k−1 is defined as the density propa-
gated from the previous time step (the prediction process of
the filter), and the boundary of

∣∣∣〈DNk|k, ϕ〉− 〈D′k|k−1, ϕ〉∣∣∣ is
analyzed. By the triangle inequality,∣∣∣〈DNk|k−1, ϕ〉− 〈D′k|k−1, ϕ〉∣∣∣

≤

∣∣∣〈DNk|k−1, ϕ〉− 〈DNk−1|k−1, ηkϕ〉∣∣∣
+

∣∣∣〈DNk−1|k−1, ηk ϕ〉− 〈Dk−1|k−1, ηk ϕ〉∣∣∣ (26)

where ηk refers to the stochastic process of realization (prop-
agated particles’ density) at the pseudo time, λ = 1. Let ςk−1
be the σ -algebra generated by the particles

{
x ik−1

}Np
i=1. Then,

the first term of the right side of (26) is expected as

E
[(〈

DNk|k−1, ϕ
〉
−

〈
DNk−1|k−1, ηkϕ

〉)2
|ςk−1

]
= E

[〈
DNk|k−1, ϕ

〉2]
−

〈
DNk−1|k−1, ηkϕ

〉2
(27)

The above equation is expressed in sum using the indepen-
dence of each particle as follows:

E
[〈
DNk|k−1, ϕ

〉2]
−

〈
DNk−1|k−1, ηkϕ

〉2
=

(
1
N

)2 N∑
i=1

(
E
[(
ϕ
(
x̃ik
))2
|ςk−1

]
−
(
ηkϕ

) (
xik−1

)2)
(28)

According to (28), the boundary of the equation is expressed
as [40], [41]∣∣∣∣E [〈DNk|k−1, ϕ〉2]− 〈DNk−1|k−1, ηkϕ〉2∣∣∣∣

≤
1
N
‖ϕ‖2

(
1+

∥∥ηk∥∥2) (29)

Using Minkowski’s inequality, (26) is rearranged as

E
[(〈

DNk|k−1, ϕ
〉
−

〈
D′k|k−1, ϕ

〉)2]1/2
≤ E

[(〈
DNk|k−1, ϕ

〉
−

〈
DNk−1|k−1, ηkϕ

〉)2]1/2
+E

[(〈
DNk−1|k−1, ηkϕ

〉
−
〈
Dk−1|k−1, ηkϕ

〉)2]1/2
(30)

If there are no newly created targets at time k , the boundary
of the (30) is finally expressed as

E
[(〈

DNk|k−1, ϕ
〉
−

〈
D′k|k−1, ϕ

〉)2]1/2
≤

1
√
N
‖ϕ‖

(
1+

∥∥ηk∥∥2)1/2 +√ck−1|k−1 (31)

In (31), ck−1|k−1 refers to the boundary of the mean square
error at the previous time step k − 1 and is obtained from the
assumption that [42]

E
[(〈

DNk−1|k−1, ϕ
〉
−
〈
Dk−1|k−1, ϕ

〉)2]
≤ ck−1|k−1

‖ϕ‖2

N
(32)

In addition, some assumptions are held for verifying the
boundedness of ‖ηk‖ written in (29). There exist real con-
stants which are related to the system model, measurement
model, and the following bounds on matrices of filter models
are satisfied for every time index, k as follows:

pmax, hmax, qmax , rmax , emax, ηmax > 0 (33)

‖P‖ ≤ pmax , ‖H (λ)‖ ≤ hmax , ‖R‖ ≤ rmax ,

‖z− e (λ)‖ ≤ emax ,
∥∥η̄0∥∥ ≤ ηmax (34)

The boundary of
∥∥ηk∥∥ is expressed as∥∥ηk∥∥ = ∥∥η1 +1λ (A (1) η1 + b (1)

)∥∥
=
∥∥(I+1λA (1)) η1 +1λb (1)∥∥

≤
∥∥(1+1λA (1)) η1∥∥+ ‖1λb (1)‖ (35)

When
∥∥η1∥∥ ≤ ηmax , the boundaries of

∥∥(I+1λA (1)) η1∥∥
and ‖1λb (1)‖ are written as (36) and (37), as shown at the
bottom of the next page, Thus, the boundary of

∥∥ηk∥∥ is related
to the bounds on matrices of filter models. In the case of the
proposed algorithm, it is confirmed that the convergence of
the mean square error depends on N , the boundary of

∥∥ηk∥∥
and ck−1k−1.

IV. SIMULATIONS
Two simulations are performed to analyze the performance of
the proposed algorithm. In the first simulation, a representa-
tive nonlinear model is used, and in the second simulation,
multiple nonlinear measurements are considered in multi-
target tracking.
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A. UNIVARIATE NONSTATIONARY GROWTH MODEL
A nonlinear model called univariate nonstationary growth
model (UNGM) is mainly used as a benchmark in the previ-
ous works [44], [45]. The reason why this model is widely
used is highly nonlinear and bimodal properties, so it is
challenging for conventional filtering methods.

Thus, to illustrate some of the advantages of the proposed
algorithm, this model is used in the first simulation for veri-
fying the performance of the proposed algorithm.

The dynamic system and measurement model for UNGM
can be written as

xk = 0.5xk−1 + 25
xk−1

1+ x2k−1
+ 8 cos (1.2 (k − 1))+ vk

(38)

zk =
x2k
20
+ wk (39)

where vk is system noise and its distribution is zero mean
and one variance of Gaussian distribution N (0, 1). Also, wk
refers to the measurement model with Gaussian distribution
N (0, 1).

Some previous works are used for comparing and eval-
uating the performance of the proposed algorithm through
this simulation case as follows: the PF with the different
number of particles (1000, 10K), the EDH PFF [5], [16] and
LEDH PFF [5], [30] with the sample covariance estimation,
LEDH PFF with EKF for estimating the predictive covari-
ance, LEDH PFF with CI which combines the sample covari-
ance using PF and the predicted covariance using EKF, and
LEDH PFF with ICI which combines the sample covariance
obtained by PF and the predicted covariance obtained by EKF
(proposed algorithm). The number of particles in all Monte
Carlo based algorithms is set to 1000 (N = 1000).
In Fig. 1, the absolute errors and 3σ confidence intervals of
each filteringmethods result in the case of the first simulation.
In this case, it seems to be very crucial, as the model is highly
nonlinear and multi-modal. It can be shown that conventional
methods are overoptimistic in many cases. While the pro-
posed algorithm has better estimation performance when its
estimation results are unreliable (when 3σ values increase).
In addition, the lower estimation error of the proposed algo-
rithm can be seen from Fig. 1. Lastly, the root mean square
errors (RMSE) of each simulated method of 1000 Monte
Carlo runs are calculated in Table 2. Likewise, the pro-
posed algorithm is superior over all other simulated methods

TABLE 2. Comparison results of the filter performance (average MAT and
computation time).

because of multiple covariance value fusion based on ICI
even though estimation results are unreliable.

B. MULTI-TARGET TRACKING
A multi-target tracking case is considered with a relatively
large state space and highly informative measurement based
on the previous paper [5] for evaluating the performance of
the proposed algorithm and comparison with the previous
works. The simulation setup is the same as the previous
study [5], and only the measurement model is changed to the
received signal strength. In the simulations, the number of
targets is set to 4 (c = 4), and targets independently move
in the simulation region [5]. State variables of the tracking
system are set

[
xck y

c
k ẋ

c
k ẏ

c
k

]
(2D position and velocity of the

c-th target) and a system model of the multi-target tracking
case is modeled as

xck = Fxck + vck (40)

where the system model is the constant velocity model and
the matrix of the system model can be expressed as

F =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 (41)

In equation (38), vck is the c-th target’s system white noise
of which the probability density function (pdf) is assumed
to be the Gaussian pdf with zero means and pre-designed
covariance matrices Q. At each time step, all targets receive

∥∥(I+1λA (1)) η1∥∥ = ∥∥∥∥(I− 1λ2 PHT
(
HPHT

+ R
)−1

H
)
η1

∥∥∥∥ ≤ ∣∣∣∣1− 1λ2 pmaxh2max

pmaxh2max + rmax

∣∣∣∣ ηmax (36)

‖1λb (1)‖ =
∥∥∥1λ (I+ 2A (1))

[
PHTR−1 (z− e (1))+ A (1) η̄0

]∥∥∥
≤ 1λ

∣∣∣∣∣
(
pmaxh2max + rmax

)
(pmaxhmaxemax)− ηmaxpmaxh2maxrmax(
pmaxh2max + rmax

)2
∣∣∣∣∣ (37)

VOLUME 8, 2020 221209



C. H. Kang et al.: Data Fusion With ICI for Prior Covariance Estimation of the PFF

FIGURE 1. Estimation errors of the proposed algorithm and other filters.

the signal sent from the sensors and theirs transmit signal
power Pc0. Attenuated signal’s powers are measured by the
c-th target’s system. Thus, the measurement model for the
c-th target located at

(
xck , y

c
k

)
with the s-th sensor located at

(xs, ys) is designed as [46]

zs (xk) =
Pc0λ

2
c(

4π
∥∥(xck , yck)− (xs, ys)∥∥)2 (42)

Equation (42) is based on the free space model between
transmitter and receiver in the radio frequency communi-
cation system [46], [47]. This model is generally used to
explain free space loss with some conditions: the isotropic
transmit antenna of sensors, which radiates signal equally in
all directions. The isotropic receive antenna captures power
equal to the density times the area of the antenna when the
ideal area of the antenna is set to λc

4π (λ
2
c is the wavelength of

the signal’s carrier ) [47]. In assumption, the power density
of the effective area is set to [47]. Where ‖‖ is the Euclidean
norm, and the number of sensors (Ns) is set to 25 located
at grid intersection within the simulation region, as shown
in Fig. 2. Finally, the received power of the signal came from

the sensor is obtained by multiplying the ideal area of the
antenna, and the power density of the effective area, as shown
in (42). In addition, the measurements are perturbed by the
white noise of which the probability density function (pdf) is
assumed to be the Gaussian pdf with zs (xk) and variance σ 2

s .
The filters used in this simulation for performance compari-
son are the same as those used in the first simulation.

The optimal mass transfer (OMAT) [48] is selected as the
comparisonmetric in this simulation casewith a fixed number
of target tracking situation. The OMAT metric dp

(
X , X̂

)
between two arbitrary sets X = {x1, x2, . . . , xc} and X̂ ={
x̂1, x̂2, . . . , x̂c

}
is defined as

dp
(
X , X̂

)
=

(
1
C

min
π∈5

C∑
c=1

d
(
xc, x̂c

)p)1/p

(43)

where the scalar p is set to 1, so the OMAT metric assigns
targets using the permutation that minimizes the Euclidean
distance d to the true target positions. 5 is the set of pos-
sible permutations of {1, 2, · · · , C}, and d

(
xc, x̂c

)
is the

Euclidean distance between xc and x̂c.
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FIGURE 2. Targets’ trajectories and locations of sensors in the
simulations.

FIGURE 3. Average OMAT errors at each time step in the simulations.

FIGURE 4. Estimation errors of each filter in the case of Target 1.

Figure 3 shows the results of the average OMAT metric at
each time step for the proposed algorithm and the comparison

TABLE 3. Comparison results of the filter performance (average OMAT
and computation time).

FIGURE 5. Estimation errors of each filter in the case of Target 2.

FIGURE 6. Estimation errors of each filter in the case of Target 3.

algorithm. The algorithms used in the comparative analysis
are as follows: EKF, PF (particle filter) [37], EDH PFF [5],
[16], LEDH PFF [5], [17], LEDH PFF with CI, and LEDH
PFF with ICI (proposed).

According to Fig. 3, the EDH PFF is less accurate than
the LEDH PFF because the proposal distribution constructed
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FIGURE 7. Estimation errors of each filter in the case of Target 4.

using the EDH flow does not provide an excellent match to
the posterior distribution of the nonlinear model. In addition,
the LEDH PFF has the operational advantage brought by the
importance sampling step in the filter. There is a performance
difference of the PFF algorithm depending on the presence
of a prior covariance estimation algorithm in the PFF. Espe-
cially, using the ICI based algorithm shows a more accurate
estimation performance than the case of using the CI based
algorithm. Thus, the proposed algorithm (LEDH PFF with
ICI) has the smallest tracking error and reduced the average
OMAT below 1 meter with a few time steps.

However, even though the ICI based covariance estimation
scheme is applied to the LEDHPFF for improving the estima-
tion performance, the efficiency of the proposed algorithm is
lowered because of the increased amount of computation by
the additional algorithm. Table 3 shows the average OMAT
and the computation time of each algorithm. In order to apply
the proposed algorithm efficiently to the nonlinear system
model, it is necessary to study a technique that can reduce
the amount of computation. Although the tracking perfor-
mance of multi-targets is compared using OMAT parameters,
the target tracking errors of each simulated filter are shown in
Figs. 4, 5, 6, and 7. By comparing the estimation error results
of the position for each target trajectory, it is shown that the
proposed algorithm tracks dynamic objects well.

V. CONCLUSION
In this paper, the data fusion method between sample covari-
ance and estimated covariance obtained from the EKF using
ICI is proposed to apply the particle flow filter. The proposed
method has better estimate performance and guarantees con-
sistent estimation results compared with conventional algo-
rithms such as the covariance intersection based method and
EKF. To verify the performance of the proposed algorithm,
analysis and simulations are performed. According to anal-
ysis in Section III, the analysis of the filter convergence is
based on the fact that the sum of two sequences converges
weakly to the sum of the limits of those sequences. It is con-
firmed that the convergence of the mean square error depends

on the number of particles and the boundary of particle flows.
Besides, through the simulations in the case of multiple target
tracking using received signal strength from the multiple sen-
sors, the simulation results are given to illustrate the accuracy
of the proposed algorithm’s estimate performance compared
to other conventional algorithms. However, even though the
ICI based covariance estimation scheme is applied to the PFF
for improving the estimation performance, the efficiency of
the proposed algorithm is lowered because of the increased
amount of computation by the additional algorithm. To apply
the proposed algorithm efficiently to the nonlinear system
model, it is necessary to study a technique that can reduce
the amount of computation.
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