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ABSTRACT In recent years, speech recognition technology based on deep learning model has made great
progress, and the accuracy of speech recognition has reached more than 90%. In foreign language learning,
speech evaluation is an important application. Billions of foreign language learners need to practice effective
pronunciation. However, due to the different goals between speech recognition and speech evaluation,
a single speech recognition model cannot be directly applied to pronunciation evaluation. This paper
proposes a DDNN (double-layer deep neural network) model, which includes the speech text alignment
model and speech recognitionmodel. In the first layer of the speech alignmentmodel, a newViterbi algorithm
method is proposed to find the best path for the alignment of speech and text. In the second layer of speech
evaluation and scoring, we are the first to use the CNN (Convolutional Neural Network) and RNN (Recurrent
Neural Network) on the encoding part of Attention. The accuracy of CTC model reaches 76.7%, and that
of attention model is 81.2%. The experimental results show that the speech and text alignment method is
effective, and the speech evaluation results based on the Attention model are better. The FRR (false rejection
rate), FAR (false acceptance rate), and DER (diagnostic rate) in the Attention model were 4.5%, 5.1%, and
17.9%, respectively. At the same time, the evaluation of each sentence of the DDNN model in the online
experiment is within 1 second, so the model can also be applied to the online real-time evaluation of speech
pronunciation.

INDEX TERMS CTC Viterbi, LSTM, attention, pronunciation evaluation, Japanese speech recognition.

I. INTRODUCTION
With the advent of globalization, the number of people are
learning foreign languages are increasing. In learning a for-
eign language, oral practice stands as the most important part.
However, it is very expensive, yet expensive, for most second
language learners to find an application environment or a
foreign language teacher to practice with. With the rapid
development of the internet and mobile internet, almost every
foreign language learner has a smartphone. It’s possible to
train your pronunciation by talking to a smartphone. More
and more researchers begin involved in the study of CALL
(Computer-Aided Language Learning), a research field of
speech recognition. The technology overview in [1] reviewed
the help of language technologies in education. In partic-
ular, computer-aided speech training (CAPT) is applied to
language learning as a special type of speech recognition.
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approving it for publication was Baozhen Yao .

There are many inaccuracies in speech recognition caused
by noise, stress, dialect, and other difficulties. This paper is
targeted at the study of Japanese assisted speaking learning.

In the past few decades, there have been plenty of
researches on speech error detection, which has made great
progress and has been successfully applied to the industry.
A technique that imposes the prosody characteristics of the
native speaker’s utterance in the same sentence to non-native
speaker’s utterance is proposed in [2] to help Korean learner
learn English; the automatic pronunciation correction intro-
duced in [3] helps Chinese learn English; an English prosody
trainingmethod based on speech conversion technology helps
Japanese learn English is studied in [4]; methods for Ital-
ian learner of German is presented in [5]. As a language
widely used in Asia, there are many researches on Japanese
learning. The paper [6] gives an overview of the English
and Japanese CALL systems developed at Kyoto University.
A dialogue-based CALL system is studied in [7] focusing
on the correction of lexical and grammatical errors. the
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research by [8] on Japanese learners of Italian [8] has realized
self-imitation in rhythm training. This paper will focus on the
data set of the Chinese learning Japanese. We have collected
the speech corpus of millions of Japanese words pronounced
by Chinese learners, and the data in our system is growing
by 10,000 sentences every day. Therefore, as far as we know,
this is the largest data set of Japanese pronunciation learning
as a second language.

CAPT technology is mainly about the detection and diag-
nosis of pronunciation errors. The detection focuses on the
finding of pronunciation errors according to learners’ pro-
nunciation, while the diagnosis aims to provide corrective
feedbacks and facilitate learning. Therefore, in a sense, MDD
(mispronunciation detection and diagnosis) is more challeng-
ing than ASR (automatic speech recognition), in that ASR is
only responsible for directly outputting speech recognition
results and can correct some pronunciation errors through
language model or dictionary. MDD, on the other hand, is not
about overlooking or automatically correcting pronunciation,
but about finding out the error and diagnosing the problem.
Traditionally, the implementation of MDD is divided into
the voice segment and supra segment as in [9]. The voice
segment mainly includes the evaluation of sentence, word,
syllable, and other factors; and the evaluation of supra seg-
ment will be quite comprehensive, including word stress.
A model of automatic sentence stress detection is put for-
ward in [10], an automatic syllable stress detection based
on prosody features is proposed in [11] and a multi-release
deep neural network for automatic stress detection is studied
in [12]. In terms of intonation, pitch stress prediction based on
integrated machine learning is proposed in [13] and prosody
event detection using context information in [14], as well
as the method of tone automatic evaluation in [15], voice
rhythm in [16], etc. We believe that the primary goal for
a second language learner is to learn the correct pronunciation
of words and phonetic symbols, so as to achieve the purpose
of proper communication. Therefore, this paper focuses on
the evaluation of word phonetic symbols at the segmental
level.

A review on phonetic pronunciation evaluation is presented
in [17]. Phonetic error detection and phonetic evaluation
started in the 1990s, which can be divided into evaluation
based on mother tongue and L2 pronunciation error detection
based on the non-mother tongue. With reference to [18],
the whole detection and diagnosis of phonetic errors are
classified into three parts; research based on pronunciation
scoring, speech recognition network based on forced align-
ment, and study on acoustic characterization and modeling.

A. SCORING OF PHONETIC FEATURES BASED ON THE
HMM SPEECH EVALUATION MODEL
Automatic pronunciation scoring of specific phone segments
for language instruction of [19] studies the log-likelihood
score, log posterior probability score, segment duration clas-
sification, and compares the speech quality evaluation. It is
concluded that the scoring by the posterior probability score

is closer to that by humans in [20]. In this study, the correct
pronunciation of the mother tongue is regarded as the stan-
dard of comparison, and the result is better than the posteriori
probability score. Based on the log-likelihood score, a famous
way to evaluate the "voice grace" is proposed in [21]. The
standard comes from the scores of native language pro-
nunciation and the rejection statistics of human evaluation.
This method of GOP has been widely used in speech error
detection and diagnosis later. The GOP is further extended
and the wGOP method is proposed in [22]. The wGOP,
combined with multiple LLRs, has achieved better results
than GOP. The above-mentioned methods have made great
achievements in the detection of speech errors, but they fail
to detect the diagnosis errors.

Based on the study of score pronunciation, it is very diffi-
cult to find out errors in a very short pronunciation segment,
no matter whether it is the log-likelihood score, log posterior
probability score, segment duration, or LLR, GOP, wGOP
and other evaluation standards. For us human, it’s also a big
challenge to judge whether we are right or wrong without
the continuity of the whole word or sentence when we just
listen to the pronunciation on a phoneme level, which is the
limitation of voice score as well.

FIGURE 1. Standard recognition network of ‘‘north.’’

FIGURE 2. Extended recognition network of ‘‘north.’’

B. THE EXTENDED RECOGNITION NETWORK (ERN)
ERN includes not only the right pronunciation model
(Figure 1) but also the pronunciation model where language
learners are prone to make mistakes (Figure 2). When the
output path of the speech after forced alignment falls into the
wrong speech model, it will be detected as the wrong pro-
nunciation, so the speech errors can be effectively diagnosed.
On the basis of cross-language (Cantonese and English)
analysis in [23], a set of context-sensitive phonetic rules
are established and verified through the common pronun-
ciation errors in learners’ inter-language. These rules are
represented as finite-state sensors, which can generate an
extended recognition network (ERN) based on any standard
pronunciation. In this study, more than half of the speech
errors are detected. Various patterns of wrong speech have
been studied in [24]–[26]. Correct speech recognition itself
is a big challenge, but the wide variety of error models for
different learners, especially some very rare ones, are very
difficult to build, which is the biggest challenge for ERN.
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In addition, if there are too many definitions of error mode,
the performance of the system will be greatly reduced.

FIGURE 3. Logistic regression classifier based on a Neural network.

C. ACOUSTIC MODEL
With the development of speech recognition technologies,
more and more speech recognition models have been applied
to the detection of speech pronunciation errors, including
the classical hidden Markov model (HMM) and the recently
popular deep neural network (DNN) (Figure 3). The whole
data was set into subsets by its phoneme label. For each
subset, a 2-class logistic regression classifier is trained for
the correct or incorrect classification decisions. Decision tree
and linear discriminant analysis (LDA) are used in [27] to
find different pronunciation errors of Danes while learning
the second language based on some distinguishing features
and define classifiers for different error patterns based on
formant, duration, etc. The results show that the model is
good at recognizing vowel pronunciation errors, but not good
at identifying consonants.

In recent years, deep learning network technology has
made significant progress in various identification tasks. The
ASR automatic speech recognition technology has made
outstanding improvements in replacing the GMM model.
We will introduce the progress in this field in detail later.
In the field of speech evaluation application, it is the first to
apply deep learning neural network to speech error detection
and diagnosis of second language learning in [28], comparing
it with the original ASR that uses annotation data for training
in a supervised way. Experiments show that DBN-HMM
can significantly improve the rate of pronunciation errors.
It can improve system performance by replacing the system
input of MFCC or gaussian posteriori diagrams obtained
in a completely unsupervised way by DBN posteriori dia-
grams as studied in [29]. Some papers like [30] have also
proposed the application of DNN in speech error detection,
trained the multi-layer superposition constrained Boltzmann
machine (RBMs) as a nonlinear basis function to concisely
represent the speech signal, and conducted discriminant train-
ing on the output layer to optimize the posterior probability of
the correct sub-phoneme "senone" state. The research of [31]
is inherited by [32], where a deep neural network based on
logical regression is used to detect pronunciation errors in
L2 language learning and its performance exceeds GOP and
SVM research in isolated words. A deep learning neural
network of GAN is proposed in [32]. By training the spectral
images of short sentences pronounced by native speakers and

non-native speakers, the generator can successfully convert
the input of non-native language spectrum into a spectrum
with self-simulating feedback characteristics. It shows that
periodic confrontation training is also a promising method for
speech correction.

In any case, large number of current studies simply use
the DNN model to represent the HMM model. Based on the
innovative research results of ASR, a lot of work needs to be
done in terms of speech sound pronunciation detection and
diagnosis.

Deep Neural Network (DNN) attempts to model the high-
level abstractions in the data, which significantly improves
the recognition capacity of the acoustic model in speech
recognition as studied in [33]. The research of this paper is
mainly based on automatic speech recognition, so we refer to
some speech models based on the deep neural network. RNN
and CNN improved the performance of HMM and GMMS in
the automatic speech recognition system. A newLSTM struc-
ture based on RNN was proposed in [34], which can train the
acoustic model for large vocabulary speech recognition more
effectively by using model parameters. A large-scale analysis
is conducted on eight LSTM variants of the three representa-
tive tasks of speech recognition, handwriting recognition, and
polyphonic music modeling in [35]. Under the framework
of the neural network hidden Markov model, CNN neural
network is applied to speech recognition in [36]. In order
to achieve higher performance of the multi-speaker speech
recognition, local filtering, and maximum pool are used to
normalize the speaker variance in the spectrum. QCNN is
proposed in [37] for phoneme level speech recognition. For
modular ASR system, which includes acoustic modeling,
pronunciation dictionary and language modeling components
trained separately, the end-to-end model is simpler in concept
and has the potential benefits of training the whole system in
the final task. ASR has two main end-to-end architectures:
one is based on attention, using attention mechanism to per-
form alignment between acoustic framework and recognition
symbols as in [38]–[40]; the other is the connectionist tem-
poral classification (CTC), using Markov hypothesis to solve
sequence problem effectively through dynamic planning as
discussed in [41]–[43]. Although CTC requires several con-
ditional independence hypotheses to obtain the probability of
a tag sequence, the attention-based methods do not use these
hypotheses. This feature is good for sequence modeling, but
we note that the attention mechanism is too flexible, and in its
sense, it allows very discontinuous. Alignment, like machine
translation, is usually monotonous in speech recognition.

Just as the three parts of the speech evaluation we intro-
duced early, for the isolated recognition of the simple speech
morphemes in the first part A, there is the loss of context
information before and after the pronunciation, resulting in
inaccurate recognition. For the recognition network expands
in the second part B, it is very difficult to take all the error
paths into consideration. In the third part C, a deep learning
model of speech depth is applied, which emphasizes more
on the accuracy of speech recognition, and automatically

218646 VOLUME 8, 2020



D. Mu et al.: Japanese Pronunciation Evaluation Based on DDNN

corrects wrong pronunciations. In view of the above prob-
lems, this paper proposes to conduct speech recognition in
units of words, retaining the phonetic context information,
which improves the recognition efficiency of phoneme lev-
els. The alignment method of CTC model results is used
to solve the errors of ERN in the second part Path prob-
lem. Finally, after the word-level alignment in a sentence,
the speech recognition of the Attention model focuses on the
pronunciation of one word. It won’t automatically correct the
pronunciation of a wrong word, which greatly improves the
accuracy of detecting the pronunciation of wrong words.

Based on the different characteristics of CTC and the
Attention mechanism, this paper proposes a two-layer model,
that is, using the CTC speech model for sequence align-
ment. After sequence alignment, using the attention model
for phoneme-level word recognition, giving full play to the
advantages of each model and greatly reducing the error
recognition rate.

FIGURE 4. The system screenshot on mobile phone.

As shown in Figure 4, our system first gives users an exam-
ple sentence and correct pronunciation. After listening to
the correct pronunciation of the announcer, the user imitates
the pronunciation and the sound is recorded by the system
and uploaded to the server for speech evaluation Finally,
the system gives the pronunciation score of each word part for
the Japanese sentence. For users, their input is sound, which

is following the sound of the original sentence, and the voice
file will be uploaded to the server in the format of wav file.

After receiving the sentence text and the user’s audio file
on the server, the system first divides the sentence into words,
and at the same time aligns the sound with the text. Finally,
through the speech recognition technology, the user’s pro-
nunciation phonetic symbol is recognized. The accuracy of
pronunciation can be calculated by calculating the editing dis-
tance between the phonetic symbol of correct pronunciation
and the pronunciation of the user. For example, if the phonetic
of original sentence is and the user’s pronunciation
by speech recognition is , the text editing distance
between them is 1, and the total length of phonetic symbols
is 3, so the correct pronunciation rate of users is 66.7%. The
system will provide users with the pronunciation of each part
of theword for scoring. As shown in the figure, if the accuracy
rate is lower than 50%, the color of the word will be changed
to red; if the accuracy rate is higher than 80%, the text will be
shown in green.

The main contributions of this paper include the following
four aspects: 1. The two-layer deep learning neural network
model based on CTC and Attention is proposed to detect
Japanese pronunciation errors, and the state-to-art effect
is achieved; 2. The Viterbi decoding alignment algorithm
based on CTC is proposed to complete the phoneme-level
alignment results in the aspect of forced alignment; 3. The
word-level phoneme recognition combining CNN with
LSTM and Attention is proposed to detect pronunciation
errors, and compared with the detection results of CTC based
on LSTM, the former is better; 4. Learners of Japanese
as second language in this paper mainly are Chinese users,
providing millions of Japanese speech data, which is open
for future researchers to participate in Japanese pronunciation
error detection. This paper is composed of the following
parts: 1. Introduction on the research status of speech error
detection andASR; 2. The systemmodel architecture; 3. CTC
algorithm and Viterbi alignment; 4. Attention-based point-
to-point speech recognition model; 5. The introduction of
the Japanese speech data set based on theGojūon Ordering;
6. The experiment and result analysis of the speech text align-
ment; 7. The experiment and result analysis of the speech
evaluation; 8. Conclusion and the future works prospects.

II. THE FRAMEWORK OF DOUBLE-LAYER DNN MODEL
Automatic speech recognition (ASR) is a point-to-point task
based on time series, so the deep model RNN, deep learning
network is quite suitable for processing this type of task.
In the encoding process in our framework, we use a two-layer
LSTM for encoding from the speech signal to the hidden
layer. There are many representations of phonetic features.
Mel frequency cepstrum coefficient (MFCC) is a set of fea-
tures widely used in the automatic speech recognition system
proposed by Davis and Mermelstein in 1980. This model
uses MFCC as the input of speech features. Connectionist
temporal classification (CTC) is used to solve the problem
that the input sequence and the output sequence are difficult
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to correspond one-to-one. In speech recognition and speech
evaluation, our goal is to have a one-to-one correspondence
between speech features and text output features. Therefore,
in the first model, we take CTC results to perform decoding
operation and output the one-to-one text.

From the actual pronunciation of various languages,
whether it is English, Japanese, or Chinese, if it is recog-
nized at the phoneme level, it is easy to overlook individual
phonemes due to some pronunciation habits such as words
connection and stress. Therefore, the phonemes that are miss-
ing due to the habit of language expression should also be
judged to be correct. On the other hand, at the word level,
there are few linguistic expression scenarios that miss a com-
plete word. According to these pronunciation characteristics
of the language, although we have achieved phoneme-level
alignment in the first model, we still output in word units in
order to avoid the inconsistent effect of phonemes and reduce
the accuracy of forced alignment. Another key advantage is
that speech in words does not cause the loss of information
about the phoneme context. We can build a second-deep net-
work neural model within the range of word pronunciation.
This model can use the deep learning neural network of the
LSTM + CTC consistent with the first model, or the model
of the LSTM + Attention mechanism can output text in
phoneme levels. In the experimental part, we have performed
experiments on the above two models, analyzed and com-
pared the experimental results.

A. CTC-BASED SPEECH AND TEXT ALIGNMENT MODEL
The main goal of this model is to enforce phoneme-level
alignment of sentences to be evaluated and to output align-
ment results in word units.

As shown in Figure 5, the MFCC transform is performed
on the input voice signal. The human ear, according to the
study of the hearing mechanism, has different hearing sensi-
tivities to sound waves of different frequencies. The speech
signal from 200Hz to 5000Hz has a great impact on speech
intelligibility. When two sounds of different loudness are
acting on human ear, the presence of frequency components
with higher loudness will affect the perception of frequency
components with lower loudness, making it difficult to per-
ceive. This phenomenon is called the masking effect.

Secondly, a bidirectional BLSTM operation is performed
on the characteristics of the MFCC for each sentence audio
generation. Long short-term memory (LSTM) proposed
by [49] is a special RNN, mainly to solve the problem of
gradient disappearance and gradient explosion during long
sequence training. In simple terms, LSTM can perform better
in longer sequences than ordinary RNNs. Since speech eval-
uation is not real-time speech recognition, BLSTM can be
used for a bidirectional decoding operation. LSTM is mainly
composed of forget gate, input gate, and output gate.

The end of the CTC-based speech text alignment model is
CTC decoding and forced alignment output. For the speech
recognition task, if we now have a clipped speech and cor-
responding text, we don’t know how to map the speech

FIGURE 5. One of the Double-layer DNN models for word-level forced
alignment.

segment to the text, and this make it difficult to train a speech
recognizer. CTC decoding is applied in speech recognition
tasks to solve the alignment problem. The task of speech
recognition CTC is to find the sum of the probabilities of
all output text paths and the best text output path. The goal
of our forced alignment is that in the BLSTM output result,
the output target text is known, and we have to find the path
of the largest possible output to the target text. In order to
solve this problem, this paper is inspired by the decoding
of Viterbi in [46] and combines the CTC decoded output
features to find the output path to the target text and complete
the phoneme-level forced alignment. In the word-level align-
ment result test, a near-perfect alignment is achieved. We will
introduce the decoding method of CTC in detail in section 3
and section 4.

B. ATTENTION-BASED SPEECH RECOGNITION MODEL
Model 2 implements the phoneme speech recognition model
based on the Attention mechanism.

The Encoder-Decoder model can predict any sequence
correspondences, but at the same time, amajor problem is that
the accuracy from encoding to decoding depends heavily on

218648 VOLUME 8, 2020



D. Mu et al.: Japanese Pronunciation Evaluation Based on DDNN

a fixed-length semantic vector. There is a loss of information
during the compression of the input sequence to the semantic
vector. In a longer sequence, the previous input information is
easily covered by the subsequent input information. In order
to solve this problem, an attention mechanism is added to the
Seq2Seq model. The context used in predicting the output
at each moment is the context related to the current output,
rather than the same vector. In this way, when each outputs the
prediction result, the elements in each semantic vector will
have different weights, making the prediction result more tar-
geted. The part ofModel 2 in the encoder is mainly composed
of two modules, CNN and BiLSTM, and the decoding part is
based on the RNN output of Attention. The unit for output
in this paper is word-level, so the length of the sequence
is shorter, and the accuracy will be better than the sentence
model.

In the Attention model, the original audio is first subjected
to MFCC feature vector transformation, and then a standard
CNN convolution and pooling operation is performed. Using
a CNN model similar to [50], our CNN part is not processed
at the full link layer because we want to perform a visual
operation after Attention to record the historical process of
attention. TheMFCC transformed feature vector is an ordered
feature representation. The feature vectors in the same batch
input have the same rows and columns. Each column is
represented from left to right, that is the phoneme order of the
sound. Each column of input in our model is a single vector.
Localized convolution, pooling, activation function opera-
tions, and their transfers keep invariant. Therefore, a series of
rectangular-like vectors generated by the CNN’s convolution
operation are consistent with the MFCC input from left to
right. The receptive field is used to represent the size of
the original image’s perception range of different neurons in
the network, or the size of the area where the pixels on the
feature map output by each layer of the CNN are mapped
on the original image. As shown in Figure 7, each vector is
related to the timing of the phoneme and represents the sound
information in this area.

CNN’s encoder processing is to convert rough speech sig-
nals into regular data. The length and width of the input
vector are consistent, that is, coarse-to-fine. This will be more
conducive to the bidirectional LSTM encoding processing.
The principle for bidirectional LSTM module is the same as
that of model one. The last part and also the most important
one is Attention decoded output; we will introduce it in detail
in section 5.

Both the alignedmodel and theword recognitionmodel use
bidirectional BLSTM for encoder processing. The difference
is that the encoder in Figure 4 is for sentence level, while that
in Figure 6 is for word-level. Therefore, both models need
to be trained separately. In the next two sections, we will
introduce the core algorithms of each model in detail.

III. CTC ALGORITHM AND VITERBI ALIGNMENT
In the speech recognition task, if we now have a clipped
speech and corresponding text, we don’t know how to map

FIGURE 6. Phonetic-level word pronunciation evaluation model based on
attention.

FIGURE 7. CTC forward-backward algorithm for Japanese.

the speech segment to the text, and this will make it difficult
to train a speech recognizer. In order to solve this problem,
we can first formulate a rule, such as "one character cor-
responds to a certain length of language fragment input".
For different people, they speak at different speeds, which
will make the above rules infeasible. Another solution is to
manually align the position of each character in the audio.
This method is extremely effective to train our model, but
there is no deny that this method is very time-consuming.
Connectionist Temporal Classification (CTC) is suitable for
this algorithm used when the input and output are not aligned,
so CTC is suitable for speech recognition. The method of
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CTC focuses on the results of an input sequence to an out-
put sequence, so it only cares whether the predicted output
sequence is close to the real sequence, rather than whether
each result in the predicted output sequence is exactly aligned
with the input sequence at the time point. In a task with high
training accuracy, as its name suggests, CTC is specifically
designed for temporal classification tasks in [44]; that is for
sequence labeling problems where the alignment between the
inputs and the target labels is unknown.

A. CTC ALGORITHM
The CTC algorithm can assign a probability for any
[y1, y2, y3, . . . yu] given an [x1, x2, x3, . . . xt]. The key to
computing this probability is how CTC processes alignments
between inputs and outputs. We’ll start by looking at these
alignments and then show how to use them to compute the
loss function and perform inference.

To identify the specific form of the CTC alignments,
we should first consider a simple approach. Let’s use
an example. Assume the input has length of 10 and
Y = , in Japanese phonetic. One way to align
XXXX and YYYY is to assign an output character to each
input step and collapse repeats (Table 1).

TABLE 1. One simple example of CTC alignment.

There are two problems for this approach. Firstly, it doesn’t
make sense to force every input step to align with some out-
puts. In speech recognition, for example, the input can have
stretches of silence with no corresponding output. Secondly,
we cannot generate outputs with multiple characters in a row.
Considering the alignment [ ,], collaps-
ing repeats will produce ‘‘ ’’ instead of ‘‘ .’’

To address these problems, CTC introduces a new token
to the set of allowed outputs. This new token is sometimes
called the blank token. We’ll refer to it here as ε. The ε token
doesn’t correspond to anything and is simply removed from
the output.

The alignment length allowed by CTC are the same as the
input. We allow any alignment which maps to YYY after
merging repeats and removing ε tokens, as shown in Table 2:
If Y has two same characters in one row, a valid alignment

must have an ε between them. With this rule in place, we can
differentiate the alignments which collapse to ‘‘hello’’ from
those collapse to ‘‘helo.’’

Both CTC and attention are training and decoding pro-
cesses based on LSTM. The greatest advantage of LSTM is
that it can remember the input at each step. Therefore, in the
speech model, although and have same pronunciation,

TABLE 2. One example of CTC alignment with blank token.

the model can calculate which one should be the correct
output according to the content of the pronunciation before
and after.

Let’s go back to the output [ ] with an input
length of 10. Here are a few more examples of valid and
invalid alignments. Table 3 is a valid alignment of CTC
output, and Table 4 is an invalid alignment of CTC output.

TABLE 3. Valid alignments of CTC.

TABLE 4. Invalid alignments of CTC.

CTC alignments have a few prominent features. First,
the allowed alignments between X and Y are mono-
tonic. If we advance to the next input, we can keep the
corresponding output the same or advance to the next one.
The second feature is that the alignment of X to Y is many-to-
one. One or more input elements can align to a single output
element but not vice-versa. This implies a third feature: the
length of Y cannot be greater than the length of X.

As shown in Figure 7, Black circles represent blanks,
and white circles represent labels. Arrows signify allowed
transitions. Forward variables are updated in the direction of
the arrows, and backward variables are updated against them.

B. VITERBI ALIGNMENT BASED ON CTC RESULTS
The result of CTC algorithm calculates the sum of all possible
output paths. The purpose of speech and text alignment is to
find the output path with the highest probability among all
output target text paths. In this section, we use
as an example to perform dynamic decoding output on CTC
results. After BiLSTM+CTC calculation, output weights are
available at any time and at any node. We perform a softmax
operation on the output weights, as shown in Figure 8:

First, the alignment operation also follows the calcula-
tion rules of CTC. For example, our Japanese output label
‘‘ ’’ is added to the initial transformation of CTC,
so an output sequence of length 9 can be obtained, Which
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FIGURE 8. CTC Decode Result with the weights.

is [x1,x2, x4, x5, x5, x5, x6, x6, x6, x7, x7, x8, x9], as well as
[space, , space, , space, , space, , space]. The cal-
culation of its maximum possible path is completed by the
following six steps:

1) At T = 1, only the empty string or the first character of
labels can be outputted.

2) At T = 2, the CTC algorithm rule is that if T = 1
is a space, then the space x1 or the first string x2 is
output at T = 2; If T = 1 is x2, then T = 2 can
be x2, spaces x3, x4. On the same path to x2, there
are two paths: path(x2, x2) with an output probabil-
ity of 0.27, and path(x1, x2) with the output probabil-
ity of 0.03. According to the dynamic programming
algorithm based on Viterbi, the output probability of
path(x2, x2) is bigger than path(x1, x2), so path(x1, x2)
will be deleted, path (x2, x2) is reserved.

3) At T = 3, there are two paths to the x2 point at
the same time: path(x1, x1, x2) and path(x1, x2, x2).
The corresponding output probabilities are 0.054 and
0.081. Output path (x1, x2, x2) is reserved; at the sec-
ond space x3 has two paths path(x1, x2, x3) and
path(x2, x3, x3). The output probability is 0.027 and
0.004, so the former output path (x1, x2, x3) is reserved.
There are three paths to the x4 point, path(x1, x2, x4),
path(x2, x3, x4), path(x2, x4, x4), and the corresponding
probabilities are: 0.0405, 0.006, 0.0015, so the largest
Path path(x1,x2, x4) is reserved.

4) At step T-2, the output we consider does not have the
limitation of applying the CTC inverse algorithm. The
reason is that, in the actual voice evaluation process,
there may be situations where the user does not finish
reading. Therefore, we keep the output probabilities of
all x values.

At step T-1, according to the rules of CTC forward algo-
rithm, continue to calculate the probability value of each
output point at the 14th time point. If there are multiple paths

output at the same point, according to the Viterbi rule with
only one maximum path, the path with less weight will be
deleted, which is showed by the dotted line in Figure 8.

TABLE 5. Max probabilities to each path in the CTC results.

5) At step T, we got the final output, and calculated the
top output path, as shown in Table 5:

Path(x1,x2, x4, x5, x5, x5, x6, x6, x6, x7, x7, x8, x8, x9, x9) =
0.001. Therefore, a complete one-to-one correspondence
between the audio and target text is also achieved, and the
task of aligning speech with text is completed.

TABLE 6. Viterbi algorithm on CTC output.

As shown in Table 6, this is the pseudocode, which finished
to find the max probability path on the CTC output results.
The core algorithm is consistent with that of CTC. If the
output meets ‘‘blank’’, the next step can have two results:
one is still blank itself; the other is the next character. When
the output is the label, the next output has three results:
one is still the character itself; the other two are the next
character or ‘‘blank.’’ Based on Viterbi algorithm, the path
with the highest probability passes a certain point of the fence
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network, then the sub-path from the starting point to this point
must also be themost probable path from the beginning to this
point. We can delete the path that has a smaller probability
on the same point, to improve the time complexity. This
algorithm can be calculated in a real-time environment. In the
last part of the pseudocode, we export the one path with
probability.

Viterbi algorithm in [45] is a dynamic programming algo-
rithm used to find the Viterbi path, the hidden state sequence
that is most likely to produce the sequence of observation
events, especially applied in the context of Markov sources
and hidden Markov models. Through the combination of
CTC and Viterbi algorithms, the optimal path that is consis-
tent with the target text is found. Because second language
learners cannot complete the target sentence in the evaluation
task, we have not added the constraint function of the CTC
reverse algorithm. In the above example, the path probability
is relatively ideal. Even the probably multiplied value can be
calculated. In practical applications, some concepts will be
very small. If they are multiplied consecutively, the values
will be out of bounds, so we can take the Log value and
change the multiplication to the addition, which can effec-
tively solve the problem of multiplication of small values.

Because speech alignment and speech recognition targets
are different, the largest possible path of our alignment model
output is inconsistent with the beam search results of speech
recognition. Our model calculates the path that is most likely
to be consistent with the target text when the target text
is known. The beam search result of speech recognition is
the most likely text to be obtained when the target text is
unknown. In the next section, we will perform speech error
detection based on the alignment results, and also verify the
accuracy of our speech evaluation results.

IV. END-TO-END SPEECH RECOGNITION MODEL BASED
ON ATTENTION
Our attention model combines several standard neural com-
ponents from vision and natural language processing. Unlike
most visual attention models, our model uses a full grid
encoder over the input wav files, so that it not only makes the
data from Coarse to Fine but also supports the left-to-right
order.

The model first changes wav file into image features by
MFCC, then extracts image features using a convolutional
neural network (CNN) and arranges the features in a grid.
Each row is then encoded, using a special recurrent neural
network: Long short-term memory (LSTM). These encoded
features are then used by an RNN decoder with a visual
attention mechanism. The decoder implements a conditional
language model over the Japanese pronunciation. The whole
process is as follows.

A. CONVOLUTIONAL NETWORK
The visual features of a wav MFCC results are extracted
with a multi-layer convolutional neural network inter-
leaved with max-pooling layers. This network architecture

is now standard; we model it specifically after the network
used by [47] for visual images (the specification is given
in Table 6.) Unlike some recent CNN works, we do not use
fully connected layers, since we want to preserve the locality
of CNN features in order to use visual attention.

B. ROW ENCODER
In attention-based visual captioning, the image feature grid
can be directly fed into the decoder [48]. For MFCC features,
the visual features fed in the decoder contain significant
relative sequential order information. Therefore, we use an
additional RNN encoder module that re-encodes each row of
the grid. The reasons are as following: (1) the MFCC features
are in a left-to-right order, which can be easily learned by
the encoder, (2) RNN can utilize the surrounding context
to refine the hidden representation. Formally, a recurrent
neural network (RNN) is a parameterized function RNN that
recursively maps an input vector and a hidden state to a new
hidden state.

C. DECODER
As shown in Figure 9, h1, h2, h3, h4 are the encoded input
which are from LSTM results. Attention is actually a match
between the current input and output. In Figure 9, the first
attention is the match between h1 and z0. h1 is output vector
for the hidden layer of RNN at the current moment, and z0 is
initialization vector, such as initial memory in RNN. Match
is a module that calculates the similarity of two vectors;
α01 is the similarity calculated by match.

FIGURE 9. Attention-based model for Japanese recognition.

There are many methods for the calculation of the similar-
ity between two vectors: cosine similarity, a Simple Neural
Network, or Matrix transformation. After knowing how to
compute the similarity, we can get all inputs similarity to each
output. Then, we use SoftMax function to normalization, and
let the sum of all weights at the output be 1. When we get c0,
as the input of decoding RNN, thenwewill get the first timing
output z1, which is decided by c0 and z0. After we get the
value of z1, then instead of z0 computing the similarity with
the encoder vector, this cycle lasts until the end.

218652 VOLUME 8, 2020



D. Mu et al.: Japanese Pronunciation Evaluation Based on DDNN

The calculation formula is as follows:

uit = vT tanh (W1hi +W2Zt) (1)

αti = softmax
(
uit
)

(2)

ct =
∑T

i=1
aithi (3)

The vector v and matrices W′1,W
′

2 are learnable parame-
ters of the model. The vector ut has length T and its i-th item
contains a score of how much attention should be put on the
i-th hidden encoder state hi. These scores are normalized by
SoftMax to create the attention mask at over encoder hidden
states.

D. ATTENTION MECHANISM AND TRAINING
In this paper, a deep neural network is implemented as
encoder and attention-based sequence-to-sequence model as
decoder. This model is similar to that in [48], using LSTM
or GRU as encoder. In the model of normalization, it uses
sampled SoftMax in [49] to output. These scores are normal-
ized by SoftMax to create the attention mask αt over encoder
hidden states.

In all our experiments, we use the same hidden dimension-
ality (256) at the encoder and the decoder, sov is a vector
and W′1,W

′

2 are square matrices. Lastly, we concatenatect,
which becomes the new hidden state from which we make
predictions, and then fed it to the next time step in our
recurrent model.

In the Attention model, z0 stands for the<start> identifier,
zt is the <end> identifier, so they are not involved in the
calculation of the correct rate in the formal output results.
After the speech recognition task is completed, the phonetic
symbols recognized by each word are outputted through the
attention model. We calculate the edit distance of the char-
acters between the output phonetic symbol and the reference
phonetic symbol to get the correct rate of the pronunciation
of the word. The experimental data and results will be intro-
duced in detail in next sections.

V. INTRODUCTION OF JAPANESE SPEECH DATASETS
The data set in this paper consists of two parts: one is the
correct pronunciation of the announcer (a native speaker) and
the correct pronunciation of its example sentence; the second
is the pronunciation of words and sentences that users read
every day, and about 20,000 sentences of Japanese pronun-
ciation are generated every day. The user’s pronunciation is
either correct or wrong, so we use the correct part data, which
is scored by the HMM model. The data set will have a very
large impact on the model’s results. The experimental results
will prove that it will have a very good effect on training our
first model to perform the alignment, using the user’s data
set. The reason should be the same as the training of speech
recognition. The more extensive the pronunciation data from
various spoken languages is, the wider the coverage, and the
better the effect will be.

The data is from the wordbooks for the Japanese Language
Proficiency Test (JLPT). It includes ten thousand words and
their example sentences. And there are six classic standard
Japanese textbooks, which include words with sentences and
sentences in lessons. A total number of 26,950 words and
19,398 sentences. All words and sentences are pronounced in
standard Japanese. We use Japanese word segmentation sys-
tem in [50] for each sentence, which can complete the word
segmentation of Japanese sentences and the pronunciation of
hiragana, as shown in Table 7.

TABLE 7. Sample japanese sentence composition.

In the Japanese fifty phonetic diagrams, each kana repre-
sents a phone, so it belongs to syllabic letters. Japanese kana
include voiceless, voiced, half-voiced, and dialed sounds.
Among them, there are 5 basic vowels, 41 consonants, and
4 non-spell able vowels. A total of 80 phone kana are used in
this paper.

VI. EXPERIMENT FOR SPEECH TEXT ALIGNMENT
The most important step in speech pronunciation evaluation
is to align speech and text. Our first model is basic. Only
when the speech and text are aligned correctly, the recogni-
tion evaluation of the second model will be correct. In this
experiment, we applied 10,000 sentences for pre-training to
output in words. The experimental method uses the Viterbi
text alignment based on the results of the CTC algorithm
proposed in section 4.1 to obtain the largest similar speech-
to-text path.

As input features, we use 80 Mel-scale filter bank coef-
ficients with pitch features as suggested in [51], [52] for the
BLSTM encoder, and add their delta and delta features for the
BLSTM encoder [53]. The encoder is a 2-layer BLSTM with
256 cells in each layer and direction, and the linear projection
layer is followed by each BLSTM layer. The 2nd and 3rd

bottom layers of the encoder are reading every second hidden
state in the underlying network, reducing the utterance length
by the factor of 4 (subsampling).

The AdaDelta algorithm with gradient clipping is used for
the optimization. The beam width is set to 10 in decoding
under all conditions. The joint CTC ASR is implemented by
using the Chainer deep learning toolkit [54].

As Table 8 shows: the sentence column represents the
number of sentences tested; the percent column represents
the proportion of the number of sentences. We divide the
sentence-level speech recognition results into 1-6 Levels
according to the correct speech recognition rate of each sen-
tence. The accuracy rate of sentence speech recognition is
about 81.6%.

During the speech recognition of sentences, we also output
the results of speech and text alignment. The system will save
the voice of each word as a wav file after alignment. For wav
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TABLE 8. The Japanese speech recognition result for sentence.

file of each word, we use the same model for word-level
speech recognition training and testing. The results are shown
as follows in Table 9:

TABLE 9. The Japanese speech reorganization result for words.

In Table 9, the levels are the same as in Table 8, scoring
level of the corresponding sentence. The values in the table
represent the number of words in different segments. For
example, the 233 words means the word speech recognition
for a number of 233 words after segmentation in a sentence
of level 1 (100 points for speech recognition) is completely
correct. We have noticed that 90-99 words are segmented and
the number of words is 0. This is because a word does not
reach 10 phonemes in a sentence, so once a phoneme speech
recognition error occurs, it will cause the entire word speech
recognition accuracy rate to be less than 90%. Word-level
scoring accuracy is based on the character editing distance.

We sample the words in Table 9 to manually check the
alignment results. After manual inspection, it is confirmed
that in the speech and text alignment results with a word score
of more than 60 points, all the speech and text consistency
is 100%, even if the speech recognition is inaccurate. It is
because the speech recognition rate cannot reach 100%. For
the points below 60, we conduct a sample survey of the
alignment of speech and text from level 1 to level 6. The
statistical results are shown in Table 10:

As shown in Table 10, there are 17,027 words in the word
score of 60-100, all of which have the same pronunciation and
text alignment. In the word evaluation test results of speech
less than 60, about 465 words will have misalignment. Most
of these alignment deviations come from intercepting some
syllables of the previous word together. In this case, we also
treat them as alignment errors. Overall, the speech-to-word
alignment results reachmore than 97%. Therefore, the experi-
mental results verify the effectiveness of the alignment output

TABLE 10. Speech and text alignment results.

FIGURE 10. hierarchy tree of mispronunciation in pronunciation
segments.

based on CTC speech recognition results. This provides basis
for our next word-level morpheme speech recognition and
evaluation.

VII. SPEECH EVALUATION EXPERIMENTS AND RESULTS
In this section we will introduce our speech evaluation exper-
iments and results. Experiments are performed on two speech
models: CTC and Attention, and the experimental results are
compared and analyzed.

There are many evaluation methods for computer-aided
pronunciation training technologies (CAPT). For example,
the correlation coefficient is commonly used when the scores
given by the evaluators are continuously valued and when the
discrete or class-wise prediction is given by the evaluators,
however, confusion matrix-based metrics such as Cohen’s
Kappa value. The false acceptance rate (FAR)/false rejection
rate (FRR) or precision/recall are often used. Some adopt
modified or weighted versions of these basic metrics. User
studies are another popular approach for evaluating the effec-
tiveness of a CAPT system.

In our experiments in this section, we basically follow the
previously defined hierarchy of mispronunciation detection.
As shown in Figure 10:

In Figure 10, correct pronunciation includes true accep-
tance (TA) and false rejection (FR). The wrong pronunciation
can be divided into correct rejection (TR) and wrong accep-
tance (FA). In the case of true rejection, it can be divided into
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correct diagnosis (CD) and diagnosis error (DE).

FRR = FR/(TA+ FR) (4)

FAR = FA/(FA+ TR) (5)

DER = DE/(CD+ DE) (6)

Among them, FR is the number that identifies the correct
phoneme as the wrong one; TA is the number of phonemes
that identify the correct phoneme as the wrong phoneme;
FA is the number of correct phonemes diagnosed as wrong.
TRmeans correctly diagnosis errors. CD is based on the diag-
nosis of the wrong phoneme, which means the wrong pronun-
ciations can be diagnosed successfully; While, DE stands for
the number of phonemes diagnosed incorrectly.

The experiment is based on the Attention speech recogni-
tion model. The words in MP3 audio file are preprocessed
and converted into a 16,000 Hz wav file. Then the input data
is transformed into vector data by MFCC processing. The
vector length is 13. On this basis, convolution and maximum
pooling of vector data are performed. The parameters are
shown in Table 11.

TABLE 11. CNN definition for speech reorganization.

Our experiment runs on TensorFlow, and themax input size
is 780∗32, and the output phone number is 60. The gradient
optimization algorithm is Adadelta.

Our Attention model has a total of 7,901,254 training
learning parameters. The first phonetic alignment model was
trained using about 17,776 Japanese sentences, which is
about the total data volume generated by second language
users in one month. After sentence training was completed,
the first model was used to perform word-level segmentation
of the sentence, and 109,716 Japanese word audios were gen-
erated. Based on this data set, we applied a GPU G 2080Ti to
train about 40 epoch CTC models and Attention models. The
experimental results were compared with the direct output of
the first model as follows in Table 12:

TABLE 12. Result for Japanese speech assessment.

The Result column represents the speech recognition accu-
racy rate of each model. TA, FR, FA, TR, CD, and DE
of Table 12 correspond to the number of results for each
leaf shown in Figure 10. As shown in the test results data
set, although the first model can achieve a high accuracy of
speech recognition, it is easy to overlook incorrect pronun-
ciations because sentence-level recognition contains infor-
mation between word contexts. FA is the highest value of
False Accept, reaching 40. The models of CTC and Atten-
tion in Model 2 are completely independent of the context
information training in the sentence, so they do not con-
tain any word context information to better recognize the
pronunciation of independent words. From the experimen-
tal results, in the comparison with the second model, the
Attention model is significantly better than the CTC model,
and its phoneme-level speech recognition accuracy rate has
reached 83.3%. It works very well in phoneme recognition
of independent words. At the same time, the value of FA,
False Accept, is much lower than the value of the first
model, because the second model is word-level training, and
it will not automatically accept wrong pronunciations through
context. Its TR, True Rejection, reaches 223, which is also
significantly higher than the values of model 1 CTC and
model 2 CTC. More importantly, the CD value reachess 183,
which can better identify the wrong pronunciation, that is,
the correct diagnosis.

According to the statistical results in Table 13, we can get
the error recognition rate of each dimension as follows:

TABLE 13. Error result for Japanese speech assessment.

The experimental results of Tables 13 show that although
Attention’s model is 0.4 percentage points slightly higher
in FRR, both FAR and DER are significantly better than
CTC-based model 1 and model 2. Japanese speech recog-
nition based on the two-layer model is more effective
for Japanese speech pronunciation recognition and correct
diagnosis.

As the saying goes, one coin has two sides. Since the dual
model mechanism is enabled, the efficiency of the whole
calculation time is slower than that of the single model.
If the purpose of speech evaluation is to judge whether the
words are correct or not at the speech recognition level, then
Model 1 is more suitable for applications. If the goal is to
require correct diagnostic results, then the dual model’s first
word-level segmentation and then independent recognition
and diagnosis of the Attention model are a better choice.
With the continuous improvement of hardware computing
performance, the score for each sentence will be completed in
0.1 seconds for each model. Therefore, for the whole system,
whether it is a single model or two models, it can be called a
real-time speech evaluation and diagnosis system.
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VIII. CONCLUSION AND FUTURE WORKS
This paper presents a Japanese speech evaluation system
based on a two-layer deep learning model. The first CTC
model is used to segment and align speech and text, and the
input sentence is divided into speech files in words. The sec-
ond Attentions model trains word-level speech recognition
models and performs recognition and evaluation. The exper-
imental results show that the two-layer model can achieve
solid results in speech evaluation and diagnosis. The results of
the second Attention test model show that FRR can identify
the correct phoneme as the wrong phoneme with an error rate
as low as 4.5%, and FAR, the recognition rate of identifying
the wrong phoneme as the correct phoneme is as low as
5.1%. DER means that after identifying the wrong phoneme,
the diagnostic recognition error rate is as low as 17.9%. It is
very effective in providing correct feedback results for the
learning of Japanese as a second language.

Another contribution of this paper is that all speech data
comes from Japanese learners. Our system can collect the
pronunciation of more than 3,000 sentences and about 15,000
words every day. There is no doubt that a model trained on
a user-level pronunciation data set has a significantly higher
speech recognition performance than a speech recognition
model based on a standard announcer’s pronunciation train-
ing. Therefore, the model trained with the Japanese learn-
ers’ data set can perform speech segmentation and word
text alignment accurately. In the first model experiment, our
speech and text alignment accuracy can reach 97.5%.

The user’s voice is a one-to-one sentence corresponding
to the original text, so the entire data set does not need
to be manually labeled. In the future, with more and more
speech data contributed by users, the accuracy of our model
will be further improved. In addition, the data set in this
paper is from effective and complete user-followed sentences,
so in the future, sentences that are not completely read by
users can be further analyzed to improve the robustness of
the model. Furthermore, with the future optimization of our
model, we can analyze words that are easy to be pronounced
incorrectly in different regions, and even the Japanese pho-
netic pronunciations that are easy to be pronounced incor-
rectly. The collection of big voice data can further diagnose
the Japanese voices of people in different regions and allow
the artificial intelligence speech test model to help people
better learn language pronunciation.

Our dual model evaluation system has achieved good
results in Japanese language learning, and it can also be
applied to English and Chinese phonetic evaluation, to help
people learn a second language such as English and Chi-
nese. The different performances of various languages on
the two-layer model are also worthy of future research. Due
to limited time and the capacity of our research team,
we also look forward to and welcome more researchers or
teams to join the deep learning-based speech recognition and
evaluation in the future. We would love to provide all our
experimental user data and possible help.

REFERENCES

[1] M. Eskenazi, ‘‘An overview of spoken language technology for education,’’
Speech Commun., vol. 51, no. 10, pp. 832–844, Oct. 2009.

[2] K. Yoon, ‘‘Imposing native speakers’ prosody on non-native speakers’
utterances: The technique of cloning prosody,’’ J. Mod. Brit. Amer. Lang.
Literature, vol. 25, no. 4, pp. 197–215, 2007.

[3] M. Peabody and S. Seneff, ‘‘Towards automatic tone correction in non-
native mandarin,’’ in Proc. Int. Conf. Spoken Lang. Process, 2006,
pp. 602–613.

[4] K. Nagano and K. Ozawa, ‘‘English speech training using voice conver-
sion,’’ in Proc. 1st Internat. Conf. Spoken Lang. Process., Kobe, Japan,
1990, pp. 1169–1172.

[5] M. P. Bissiri, H. R. Pfitzinger, and H. G. Tillmann, ‘‘Lexical stress training
of german compounds for Italian speakers by means of resynthesis and
emphasis,’’ inProc. 11th Austral. Int. Conf. Speech Sci. Technol.Auckland,
New Zealand: Univ. Auckland, 2006, pp. 24–29.

[6] T. Kawahara, H. Wang, Y. Tsubota, and M. Dantsuji, ‘‘English and
Japanese CALL systems developed at Kyoto University,’’ in Proc. APSIPA
ASC, 2010, pp. 804–810.

[7] O.-P. Kweon, A. Ito, M. Suzuki, and S. Makino, ‘‘A grammatical error
detection method for dialogue-based CALL system,’’ J. Natural Lang.
Process., vol. 12, no. 4, pp. 137–156, 2005.

[8] E. Pellegrino and V. Debora, ‘‘Self-imitation in prosody training: A study
on Japanese learners of Italian,’’ in Proc. SLaTE, Leipzig, Germany, vol. 5,
2015, pp. 53–57.

[9] H.Meng, C.-Y. Tseng,M. Kondo, A. Harrison, and T. Viscelgia, ‘‘Studying
L2 suprasegmental features in Asian Englishes: A position paper,’’ in Proc.
Interspeech, 2009, pp. 1715–1718.

[10] K. Imoto, Y. Tsubota, A. Raux, T. Kawahara, and M. Dantsuji, ‘‘Modeling
and automatic detection of English sentence stress for computer-assisted
English prosody learning system,’’ in Proc. 7th Int. Conf. Spoken Lang.
Process., 2002, pp. 749–752.

[11] J. Tepperman and S. Narayanan, ‘‘Automatic syllable stress detection
using prosodic features for pronunciation evaluation of language learners,’’
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Mar. 2005,
pp. 937–940.

[12] K. Li and H.Meng, ‘‘Automatic lexical stress and pitch accent detection for
L2 English speech using multi-distribution deep neural networks,’’ Speech
Commun., vol. 96, pp. 28–36, Feb. 2018.

[13] X.-J. Sun, ‘‘Pitch accent prediction using ensemble machine learning,’’ in
Proc. Int. Conf. Spoken Lang. Process., 2002, pp. 953–956.

[14] J. Zhao, W.-Q. Zhang, H. Yuan, M. T. Johnson, J. Liu, and S. Xia,
‘‘Exploiting contextual information for prosodic event detection using
auto-context,’’ EURASIP J. Audio, Speech, Music Process., vol. 2013,
no. 1, p. 30, Dec. 2013.

[15] J. P. Arias, N. B. Yoma, and H. Vivanco, ‘‘Automatic intonation assessment
for computer aided language learning,’’ Speech Commun., vol. 52, no. 3,
pp. 254–267, Mar. 2010.

[16] K. Kyriakopoulos, K. M. Knill, and M. J. F. Gales, ‘‘A deep learning
approach to automatic characterisation of rhythm in non-native English
speech,’’ in Proc. Interspeech, Graz, Austria, Sep. 2019, pp. 1836–1840.

[17] S. M. Witt, ‘‘Automatic error detection in pronunciation training: Where
we are and where we need to go,’’ in Proc. Int. Symp. Autom. Detection
Errors Pronunciation Training, vol. 1, 2012, p. 133.

[18] K. Li, X. Qian, and H. Meng, ‘‘Mispronunciation detection and diagno-
sis in l2 English speech using multidistribution deep neural networks,’’
IEEE/ACM Trans. Audio, Speech, Language Process., vol. 25, no. 1,
pp. 193–207, Jan. 2017.

[19] H. Franco, L. Neumeyer, Y. Kim, and O. Ronen, ‘‘Automatic pronunciation
scoring for language instruction,’’ inProc. IEEE Int. Conf. Acoust., Speech,
Signal Process., Apr. 1997, pp. 645–648.

[20] H. Franco, L. Neumeyer, M. Ramos, and H. Bratt, ‘‘Automatic detec-
tion of phone-level mispronunciation for language learning,’’ in Proc.
Eurospeech, Budapest, Hungary, 1999, pp. 851–854.

[21] S. M. Witt and S. J. Young, ‘‘Phone-level pronunciation scoring and
assessment for interactive language learning,’’ Speech Commun., vol. 30,
nos. 2–3, pp. 95–108, Feb. 2000.

[22] J. van Doremalen, C. Cucchiarini, and H. Strik, ‘‘Using non-native error
patterns to improve pronunciation verification,’’ in Proc. Interspeech,
2010, pp. 590–593.

[23] A. M. Harrison, W.-K. Lo, X.-J. Qian, and H. Meng, ‘‘Implementation
of an extended recognition network for mispronunciation detection and
diagnosis in computer-assisted pronunciation training,’’ inProc. 2ndWork-
shop Speech Lang. Technol. Educ. (SLaTE). Warwickshire, U.K.: ISCA,
Sep. 2009.

218656 VOLUME 8, 2020



D. Mu et al.: Japanese Pronunciation Evaluation Based on DDNN

[24] G. Kawai and K. Hirose, ‘‘A method for measuring the intelligibility
and nonnativeness of phone quality in foreign language pronunciation
training,’’ in Proc. Int. Conf. Spoken Lang. Process. (DBLP), Jan. 1998,
pp. 782–785.

[25] Y.-B. Wang and L.-S. Lee, ‘‘Improved approaches of modeling and detect-
ing error patterns with empirical analysis for computer-aided pronuncia-
tion training,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), Mar. 2012, pp. 5049–5052.

[26] Y.-B. Wang and L.-S. Lee, ‘‘Supervised detection and unsupervised dis-
covery of pronunciation error patterns for computer-assisted language
learning,’’ IEEE/ACM Trans. Audio, Speech, Language Process., vol. 23,
no. 3, pp. 564–579, Mar. 2015.

[27] K. Truong, A. Neri, C. Cucchiarini, and H. Strik, ‘‘Automatic pronun-
ciation error detection: An acoustic-phonetic approach,’’ in Proc. In-
STIL/ICALL, 2004, pp. 3040–3051.

[28] X.-J. Qian, H. Meng, and F. Soong, ‘‘The use of DBN-HMMs for mis-
pronunciation detection and diagnosis in L2 English to support computer-
aided pronunciation training,’’ in Proc. Interspeech, 2012, pp. 755–758.

[29] A. Lee, Y. Zhang, and J. Glass, ‘‘Mispronunciation detection via dynamic
timewarping on deep belief network-based posteriorgrams,’’ inProc. IEEE
Int. Conf. Acoust., Speech Signal Process., May 2013, pp. 8227–8231.

[30] W. Hu, Y. Qian, and F. Soong, ‘‘A new DNN-based high quality pro-
nunciation evaluation for computer-aided language learning (CALL),’’ in
Proc. Annu. Conf. Int. Speech Commun. Assoc. (Interspeech), Jan. 2013,
pp. 1886–1890.

[31] W. Hu, Y. Qian, and F. K. Soong, ‘‘A new neural network based logis-
tic regression classifier for improving mispronunciation detection of l2
language learners,’’ in Proc. 9th Int. Symp. Chin. Spoken Lang. Process.,
Sep. 2014, pp. 245–249.

[32] S. H. Yang and M. Chung, ‘‘Self-imitating feedback generation using
GAN for computer-assisted pronunciation training,’’ in Proc. Interspeech,
Sep. 2019, pp. 1881–1885.

[33] A.-R. Mohamed, G. E. Dahl, and G. Hinton, ‘‘Acoustic modeling using
deep belief networks,’’ IEEE Trans. Audio, Speech, Language Process.,
vol. 20, no. 1, pp. 14–22, Jan. 2012.

[34] H. Sak, A. Senior, and F. Beaufays, ‘‘Long short-termmemory based recur-
rent neural network architectures for large vocabulary speech recognition,’’
Comput. Sci., pp. 338–242, Feb. 2014.

[35] K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmidhu-
ber, ‘‘LSTM: A search space odyssey,’’ IEEE Trans. Neural Netw. Learn.
Syst., vol. 28, no. 10, pp. 2222–2232, Oct. 2017.

[36] O. Abdel-Hamid, A.-R. Mohamed, H. Jiang, and G. Penn, ‘‘Applying
convolutional neural networks concepts to hybrid NN-HMM model for
speech recognition,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), Mar. 2012, pp. 4277–4280.

[37] T. Parcollet, Y. Zhang, M. Morchid, C. Trabelsi, G. Linares, R. de Mori,
and Y. Bengio, ‘‘Quaternion convolutional neural networks for end-to-
end automatic speech recognition,’’ in Proc. Interspeech, Sep. 2018,
pp. 1–5.

[38] J. Chorowski, D. Bahdanau, K. Cho, and Y. Bengio, ‘‘End-to-end con-
tinuous speech recognition using attention-based recurrent NN: First
results,’’ arXiv:1412.1602, 2014. [Online]. Available: https://arxiv.org/
abs/1412.1602

[39] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, ‘‘Listen, attend and spell:
A neural network for large vocabulary conversational speech recogni-
tion,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
Mar. 2016, pp. 4960–4964.

[40] L. Lu, X. Zhang, and S. Renais, ‘‘On training the recurrent neural net-
work encoder-decoder for large vocabulary end-to-end speech recogni-
tion,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
Mar. 2016, pp. 5060–5064.

[41] A. Graves and N. Jaitly, ‘‘Towards end-to-end speech recognition with
recurrent neural networks,’’ inProc. Int. Conf. Mach. Learn. (ICML), 2014,
pp. 1764–1772.

[42] Y. Miao, M. Gowayyed, and F. Metze, ‘‘EESEN: End-to-end speech
recognition using deep RNNmodels andWFST-based decoding,’’ in Proc.
IEEEWorkshop Autom. Speech Recognit. Understand. (ASRU), Dec. 2015,
pp. 167–174.

[43] D. Amodei et al., ‘‘Deep speech 2: End-to-end speech recognition in
English and Mandarin,’’ in Proc. ICML, 2015.

[44] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, ‘‘Connectionist
temporal classification: Labelling unsegmented sequence data with recur-
rent neural networks,’’ inProc. 23rd Int. Conf. Mach. Learn. (ICML), 2006,
pp. 369–376.

[45] A. Viterbi, ‘‘Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm,’’ IEEE Trans. Inf. Theory, vol. IT-13, no. 2,
pp. 260–269, Apr. 1967.

[46] B. Shi, X. Bai, and C. Yao, ‘‘An end-to-end trainable neural network
for image-based sequence recognition and its application to scene text
recognition,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 11,
pp. 2298–2304, Nov. 2017.

[47] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel,
and Y. Bengio, ‘‘Show, attend and tell: Neural image caption generation
with visual attention,’’ Comput. Sci., vol. 1409, pp. 2048–2057, Feb. 2015.

[48] O. Vinyals, L. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. Hinton,
‘‘Grammar as a foreign language,’’ vol. 7449, Dec. 2014, arXiv:1412.7449.
[Online]. Available: https://arxiv.org/abs/1412.7449

[49] D. Bahdanau, K. Cho, and Y. Bengio, ‘‘Neural machine translation
by jointly learning to align and translate,’’ vol. 1409, Sep. 2014,
arXiv:1409.0703. [Online]. Available: https://arxiv.org/abs/1409.0473

[50] T. Kudo. (2005). Mecab: Yet Another Part-of-Speech and Morphological
Analyzer. [Online]. Available: http://mecab.sourceforge.net/

[51] P. Ghahremani, B. BabaAli, D. Povey, K. Riedhammer, J. Trmal, and
S. Khudanpur, ‘‘A pitch extraction algorithm tuned for automatic speech
recognition,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), May 2014, pp. 2494–2498.

[52] Y. Miao, M. Gowayyed, X. Na, T. Ko, F. Metze, and A. Waibel,
‘‘An empirical exploration of CTC acoustic models,’’ in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process. (ICASSP), Mar. 2016,
pp. 2623–2627.

[53] Y. Zhang, W. Chan, and N. Jaitly, ‘‘Very deep convolutional networks for
end-to-end speech recognition,’’ in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), Mar. 2017, pp. 4845–4849.

[54] S. Tokui, K. Oono, S. Hido, and J. Clayton, ‘‘Chainer: A next-generation
open source framework for deep learning,’’ in Proc. Workshop Mach.
Learn. Syst. (LearningSys) 29th Annu. Conf. Neural Inf. Process. Syst.,
2015, pp. 1–6.

DEGUO MU (Member, IEEE)was born in Rizhao,
Shandong, China, in 1980. He received the M.S.
degree in software engineering from the Soft-
ware College, Beihang University, where he is
currently pursuing the Ph.D. degree in computer
science and artificial intelligence with the School
of Computer.

Since 2011, he has been working as an Assistant
Professor with the Software College, BeihangUni-
versity, and the Director of iYuba Lab. He had led

the iYuba team to create more than 50s apps for learning language. In China,
there have been about 50 million users learning English by iYuba apps until
now. His research interests include deep learning on language education, the
mobile Internet, and social networks. His awards and honors include the First
prize of innovation and Entrepreneurship of MIIT, in 2018, and ten years
outstanding graduates of Beihang Software College, in 2012.

WEI SUN (Senior Member, IEEE) was born in
Sichuan, China, in 1961. He received the M.S.
degree in computer science from Beihang Univer-
sity, and the Ph.D. degree from the University of
Illinois, Chicago.

Since May 2003, he has been the Dean and
a Professor with the Software College, Beihang
University, training tens of thousands of software
engineering masters in more than ten years. He has
published and edited nine books, and more than

70 academic articles. He has served as the Chairman for the conference or
a program committee for the four major international conferences of ACM
and IEEE. He has also served as a member for more than 30 international
conference program committees. He is also the Executive Chairman of the
Beijing Software Industry Association, and a Professor with the FIU School
of Computer Science, Florida State University, Miami, FL, USA.

GUOLIANG XU, photograph and biography not available at the time of
publication.

WEI LI, photograph and biography not available at the time of publication.

VOLUME 8, 2020 218657


