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ABSTRACT Recently, spiking neural networks have gained attention owing to their energy efficiency. All-
to-all spike-time dependent plasticity is a popular learning algorithm for spiking neural networks because
it is suitable for nondifferentiable spike event-based learning and requires fewer computations than back-
propagation-based algorithms. However, the hardware implementation of all-to-all spike-time dependent
plasticity is limited by the large storage area required for spike history and large energy consumption
caused by frequent memory access. We propose a time-step scaled spike-time dependent plasticity to reduce
the storage area required for spike history by reducing the area of the spike-time dependent plasticity
learning circuit by 60% and a post-neuron spike-referred spike-time dependent plasticity to reduce the energy
consumption by 99.1% by efficiently accessing the memory while learning. The accuracy of Modified
National Institute of Standards and Technology image classification degraded by less than 2% when
both time-step scaled spike-time dependent plasticity and post-neuron spike-referred spike-time dependent
plasticity were applied. Thus, the proposed hardware-friendly spike-time dependent plasticity algorithms
make all-to-all spike-time dependent plasticity implementable in more compact areas while reducing energy
consumption and experiencing insignificant accuracy degradation.

INDEX TERMS Spike-time dependent plasticity (STDP), time-step scaled STDP (TS-STDP), post-neuron

spike-referred STDP (PR-STDP), spiking neural network (SNN).

I. INTRODUCTION

Artificial intelligence (AI) algorithms have developed rapidly
in the last decade. As the reliability of these algo-
rithms increases, many applications such as the Internet of
Things [1], [2], smart factories [3], [4], and smart mobil-
ity have been presented. Some of these require immediate
processing of data generated by an edge device to extract
meaningful information. Previously, data obtained from an
edge device was sent to the server and processed using a
prelearned Al network [5]. However, a delay existed in the
communication between the device and the server. In addi-
tion, learning using the data generated by the edge devices
could not be performed immediately because only previously
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collected data were used. Therefore, on-chip learning that
enables learning and processing from the data generated by
the edge devices is required. Well-known algorithms such
as convolutional neural networks (CNNs) [6]-[8] and deep
neural networks (DNNs) [9], [10] exhibit excellent perfor-
mance but consume high power owing to the enormous
number of computations. Thus, inspired by the significantly
lower power consumption of the human brain compared to its
computational capability [11], researchers have suggested the
spiking neural network (SNN), a new algorithm that mimics
the behavior of nerve cells.

SNN uses the relative time difference between spikes for
computation; hence, the numerical data is transformed into
the temporal information of the spikes [12]. These spikes
are one-bit data, which reduces the computational workload,
leading to low power consumption [13]. Stimuli, such as
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FIGURE 1. Concept of SNN and its structure.

the pixel data of an image or sound, are inputted into the
encoding neuron, depicted as grey-colored neurons in Fig. 1,
and encoded into a pre-neuron spike train whose rate is pro-
portional to the intensity of the input stimuli [14]. The spike
train is transmitted from the encoding neuron to the learning
neuron through synapses. The product value of the spike train
value and the synaptic weight is accumulated to the learning
neuron potential. When the learning neuron potential exceeds
the threshold, the learning neuron fires the post-neuron
spike.

There are several learning algorithms in SNN [15], among
which spike-time dependent plasticity (STDP) [16], [17] is a
representative learning algorithm. The unsupervised learning
algorithm STDP has drawn attention [18] because it can
learn from data without labels (which is suitable for on-chip
learning with data from the edge node) [19], [20]. STDP is
a biological learning model inspired by the actual synaptic
activity in the brain. It is a simple algorithm that does not
require a multiplier because it considers only the time differ-
ence between pre- and post-spikes. Thus, it is preferred from
the perspective of on-chip implementation. However, a large
storage area is required to store the substantial time infor-
mation, leading to difficulty in hardware implementation.
In addition, STDP operates whenever the pre- or post-spike
is fired as a trigger, which causes frequent memory accesses
for updating the synaptic weight and thus leads to high power
consumption. Thus, the following should be carefully consid-
ered to appropriately implement STDP on a chip: 1) reduction
in the amount of time information of spikes to be stored and
2) reduction in the number of memory accesses required for
updating the synaptic weight.

In this paper, we propose time-step scaled STDP (TS-
STDP), which reduces the area for storing spike history by
quantizing several time steps and post-neuron spike-referred
STDP (PR-STDP), which reduces the number of memory
accesses by using a post-neuron spike as a trigger for the
learning process to save energy. The remainder of this paper
is organized as follows. Section II describes the conventional

VOLUME 8, 2020

STDP with its challenges. The STDP algorithm is proposed to
address these challenges in Section III. Section IV describes
the circuit implementation of the conventional and proposed
STDP algorithms. Simulation results on energy and accuracy
with the Modified National Institute of Standards and Tech-
nology (MNIST) dataset and the estimated area improve-
ment are discussed in Section V. Section VI provides the
conclusion.

Il. SPIKE-TIME DEPENDENT PLASTICITY

The basic operation of STDP is dependent on the time differ-
ence between pre- and post-neuron spikes. If the pre-neuron
spike arrives at the learning neurons before the post-neuron
spikes fire, then the synapses connecting the encoding neu-
rons and learning neurons are considered to be related to
the firing of the post-neuron spike. Therefore, the synaptic
weights corresponding to the pre-neuron spikes that con-
tribute to firing the post-neuron spikes are increased. How-
ever, if the pre-neuron spike arrives at the learning neurons
after the post-neuron spike firing, then the synapses are not
considered to be related to the firing of the post-neuron
spike. Thus, the synaptic weights of these synapses are
decreased. The increment and decrement in the synaptic
weight is determined by the time difference between the pre-
and post-neuron spikes. When the post-neuron spike is fired,
the time difference between the past pre- and post-neuron
spikes is compared. Accordingly, the increment in the synap-
tic weight is calculated using (1). This weight increasing
process is called long-term potentiation (LTP). The decrease
in the synaptic weight occurs when the pre-neuron spike
arrives. The decrement in the synaptic weights is calculated
using (2), according to the past temporal information of post-
neuron spikes. This process is called long-term depression
(LTD).

t —t

Awrrp = Ay - exp (M) (tpost > tpre) (1)
tpre - tposl

Awrrp = A_ - exp f (tpre > tpost) (2)

tpre and o5 denote the times when the pre- and
post-neuron spikes are fired, respectively. Ay and A_ denote
constants representing the learning rates for LTP and LTD,
respectively. The absolute values of A, and A_ are the
same, but their signs are different. The learning rate and
time constant T can be set empirically according to the input
data pattern. When the pre-neuron spike is fired before the
post-neuron spike (fposr > tpre), the weight change of LTP
(AwrTp) is obtained using (1). Conversely, the weight change
of LTD (Awyrp) is obtained using (2).

For the digital implementation, the STDP functions of LTP
and LTD, described in (1) and (2), must be quantized into
discrete values, as shown in Fig. 2. The quantized STDP can
have several steps. However, a multi-step STDP is not neces-
sary if the learning rate is within a reasonable range because
the performance of the system does not degrade even when
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FIGURE 3. Difference of time referring of (a) nearest-neighbor and
(b) all-to-all STDP.

using a one-step STDP, and furthermore, the complexity of
the computation decreases [21].

The range of At (: thost — tpre) for nonzero Aw can be
defined as the learning window. The time information of
the pre- and post-neuron spikes within the learning window
stored in the spike history is referred to when the other post-
or pre-neuron spikes trigger the LTP or LTD process, respec-
tively. There are two ways of referring the time information
of spikes for the STDP process when calculating Aw using
the stored time information: nearest-neighbor and all-to-all
manners.

A. NEAREST-NEIGHBOR STDP (NN-STDP)

Nearest-neighbor STDP refers to only one temporally nearest
spike at that time for updating the synaptic weight when
the trigger spike (pre- or post-neuron spike that triggers
LTP or LTD processes, respectively) occurs, as illustrated
in Fig. 3. (a). NN-STDP requires few hardware for storage
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FIGURE 4. Weight reconfiguration of (a) nearest-neighbor and
(b) all-to-all STDP.

because the information of only the nearest spike in the
learning window is stored instead of all the spikes. However,
NN-STDP is inaccurate because the loss of the temporal
information of spikes is not negligible. NN-STDP does not
consider the information of all the spikes in the learning
window, and hence, it cannot reflect all temporal correlations.
A neuron is more likely to fire when the spikes from different
synapses simultaneously enter the neuron. In this situation,
the synapse with a high firing rate of the pre-neuron spike has
the same number of weight changes as the synapse with a low
firing rate when both spikes are fired right before the trigger
spike. Even though the synapse with a higher firing rate is
more involved in the spike, the difference in contribution
between the two synapses cannot be reflected. Therefore,
the past contribution of the synapse with a higher firing rate
of the pre-neuron spike is ignored when the time information
is referred for the synaptic weight update.

B. ALL-TO-ALL STDP

All-to-all STDP refers to all the spikes in the learning win-
dow, as illustrated in Fig. 3. (b); hence, it accumulates the time
information of all the spikes in the learning window. Thus,
it can avoid the problem of missing temporal correlations that
was observed in NN-STDP. The reconfigured images of the
synaptic weights trained with the NN-STDP algorithm are
ambiguous, as depicted by the simulated results in Fig. 4. (a).
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FIGURE 5. Effect of time-step scaling, timing error, and compression error when M = 5.

Conversely, the shapes of the synaptic weights trained with
all-to-all STDP are clear.

To refer to all the temporal information, all the spike histo-
ries within the learning window must be stored. Furthermore,
the learning window typically covers a wide range of time
steps, and the spike pattern is irregular, which increases the
hardware area for the spike history. Thus, it is far more
difficult to implement all-to-all STDP than NN-STDP in
hardware. Even though NN-STDP requires less storage to
store only the history of the nearest spike, from an algorithm
perspective, the accuracy of NN-STDP is lower than that of
all-to-all STDP, and the reconfigured image shows that the
neurons are not distinctively learned. Therefore, it is neces-
sary to make all-to-all STDP hardware-friendly by reducing
the area and power consumption, with insignificant accuracy
degradation.

lll. PROPOSED STDP ALGORITHM

We focused on two main aspects of hardware implementa-
tion of the STDP algorithm: area and energy. First, the area
is mainly occupied by the storage required for the spike
history. Therefore, we propose the time-step scaled STDP
(TS-STDP) to reduce the area of storage for spike his-
tory. Second, to reduce the energy while learning, which is
dominantly determined by the number of memory accesses,
the post-neuron spike-referred STDP (PR-STDP) is pro-
posed. PR-STDP reduces the number of memory accesses
and simplifies the learning hardware.

A. TIME-STEP SCALED STDP (TS-STDP)

The number of memory elements required to store the spike
history is proportional to the number of time steps of the
learning window. If the learning window consists of N time
steps, then N memory elements representing each time step
are required to store the spike timing information in the
corresponding bits for each neuron. Thus, the number of time
steps of the learning window needs to be reduced to reduce
the storage area. However, the size of the learning window,
which is expressed by N time steps, cannot be modulated
because the original performance of the overall system must
be maintained. Therefore, to reduce the number of time
steps while maintaining the size of the learning window,
we propose TS-STDP. By quantizing M time steps into one
learning time step, the learning window can be represented by
M times fewer flip-flops while maintaining the original size
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of the learning window. Owing to quantization, more than
two spikes in the same learning time step could be treated
as one spike. To prevent several situations in which multiple
spikes are treated as one spike, the temporal distance between
the spikes can be controlled by changing the mapping of the
numerical data to rate conversion. However, the scaled timing
information of spikes could have errors due to quantization.
These errors could affect the STDP function and weight
change. As depicted in Fig. 5, the spikes that occur within
the learning time step are aligned to the edge of the learning
time step when they are stored in the spike history. That is,
spikes that fire between 1 to M time steps after the current
time step are treated as fired in the first learning time step.
Thus, the original timing information of the spike that occurs
immediately before the edge of the past learning time step
has an error of M-1 time steps compared to its original timing
information when stored in a scaled spike history. In Fig. 5,
the last learning time step shows that four time steps of timing
error occur when the spike at the first time step is stored in
the scaled spike history. If the spike arrives near the edge of
the learning time step, the spike information stored in the
scaled spike history is similar to the original information.
This error in timing information can increase or decrease
the weight change. However, owing to the use of one-step
STDP and the stochastic learning property, this error in timing
information does not affect the performance when M is within
a certain range of values. This value is determined by the
empirical method that minimizes performance degradation of
the entire system based on simulation results. Thus, by suit-
ably choosing the value of M, the hardware resources for
storing the spike history can be significantly reduced with
an insignificant accuracy degradation, thereby rendering all-
to-all STDP implementable on a smaller area.

B. POST-NEURON SPIKE-REFERRED STDP (PR-STDP)

In the conventional STDP approach, both post- and
pre-neuron spikes are used as trigger spikes of the LTP and
LTD, respectively, as illustrated in Fig. 6. (a). If the trigger
spikes in LTP and LTD are different, two problems occur in
terms of hardware implementation. First, the synaptic weights
associated with the pre- and post-neuron spikes are stored in
an orthogonal direction. Thus, the memory access direction
changes depending on the type of trigger spike. To support
this bidirectional memory access, memory cells for the synap-
tic weights must be transposable or accessed row-by-row
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FIGURE 6. Trigger spike and timing correlation of LTP and LTD process. (a) LTP and LTD of conventional STDP. (b) Timing correlation and referencing of

spike history of PR- STDP.

successively. Transposable memory [22] cells and array
structures cause area overhead owing to the additional tran-
sistors and metal lines required. In addition, frequent memory
access causes an increase in energy for learning a single
image. The second problem is caused by the different firing
rates of the pre- and post-neuron spikes. When a pre-neuron
spike is used as a trigger spike, it has a higher firing rate than
the post-neuron spike, causing more LTD operations [14].
This frequent memory access for LTD operations results in
energy overhead. Therefore, it is suitable to use post-neuron
spikes as trigger spikes in both LTP and LTD processes to
achieve energy-saving hardware implementation.

The main concept of LTD is that the pre-neuron spikes
entering after the post-neuron spike are irrelevant to the firing
of the learning neuron. Thus, the weights of the synapses
where the pre-neuron spike has entered are reduced. There-
fore, the LTD process in PR-STDP can be performed by
referring to the pre-neuron spike history accumulated for the
learning window after the post-neuron spike is fired, as illus-
trated in Fig. 6. (b). The last history of post-neuron spike
becomes a new virtual trigger for the LTD process, which
synchronizes the memory access direction to the direction
represented in blue because the synaptic weights associated
with the neuron fired virtual trigger are aligned in that direc-
tion, similar to the LTP process depicted in Fig. 7. In addi-
tion, the post-neuron spikes are fired less frequently than the
pre-neuron spikes, implying that the virtual spike triggers the
LTD process less frequently than the baseline STDP. There-
fore, using post-neuron spike in both LTP and LTD resolves
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the aforementioned problems of memory access direction and
frequent memory access.

In the situation where many neurons fire simultaneously,
multiple cycles are required to update all synaptic weights
associated with these neurons. However, the maximum num-
ber of neurons that fire at the same time step is not fixed. Thus,
redundant cycles are required to find all the neurons that
fire, which increases control logic complexity. In addition,
updating all the neurons that fire increases the number of
memory accesses for weight modifications. The neuron that
has learned a certain number fires dominantly, when the
input is an image of the number that the neuron has learned.
Therefore, it is unusual for many neurons to fire at the same
time. Thus, arbitrarily selecting a neuron to be updated at
the same time step does not interrupt the learning of the
dominant neuron. With arbitrary neuron selection, PR-STDP
can reduce the total number of memory accesses for updating
the synaptic weight by eliminating the redundant learning
processes of the neuron that are less related to the input.

The proposed all-to-all PR- and TS-STDP algorithms
reduce the area of the STDP circuit and the power con-
sumption while maintaining the performance of the original
all-to-all STDP algorithm.

IV. HARDWARE IMPLEMENTATION OF THE PROPOSED
STDP

The system architecture of the proposed STDP is presented
in Fig. 8. The synaptic weights are stored in SRAM with
an array size of 1.75 K by 784. Each row of the SRAM is
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connected to the same encoding neuron; thus, 784 rows (each
pixel of the 28 x 28 MNIST image) are required. The number
of neurons is 256, and one synaptic weight is represented with
7 bits; hence, 1.75 K columns are required. The pre-neuron
spikes are used as the word line (WL) signal of the SRAM
array with address event representation [23]. The synaptic
weights of the synapses that pre-neuron spikes have entered
are accumulated to the neurons in parallel. The integrate-
and-fire (IF) neuron model [24] with homeostasis [25] is
used. If the accumulated neuron potential exceeds the thresh-
old, a post-neuron spike is generated.

The STDP block is located at the right side of the SRAM
array and stores the pre-neuron spike that arrives through
the WL. The post-neuron spike history register is located at
the bottom of the neurons to correct the timing information
of each neuron. The learning signal indicates the start of
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the learning mode, and thus, the controller starts the STDP
process when the learning signal is enabled. The STDP block
includes three functional blocks: a spike history register,
Aw calculation block, and synaptic weight update block.
An arbitrary selector is also used to select a neuron to be
updated.

A. SPIKE HISTORY REGISTER

The spike history in the conventional STDP has been imple-
mented in a counter-based manner [26], [27]. The counter-
based approach can implement NN-STDP, but not all-to-all
STDP because of its operation property. When the reference
spike arrives, the counter for the spike history is reset to
“0” and then starts counting. When the trigger spike arrives,
the Aw value is calculated based on the current counter value,
and then, the counter is reset to “0.” This approach can
save the area because the counter can express the learning
window of N time steps with log, N bits [28]. However, it is
not possible to implement all-to-all STDP because the value
of the previous spike history is reset and overwritten with
the nearest spike information. Thus, a shift register-based
approach for the spike history is required to implement all-
to-all STDP.

The spike history register consists of N-bit shift registers,
as illustrated in Fig. 9. The first bit of the spike history register
operates asynchronously with the other bits. The spike is
used as a set signal for the first flip-flop in the spike history
register, and thus, the first bit is set to 1 when the spike
appears. Then, at the falling edge of the learning mode signal,
which indicates the learning time step, the value is shifted to
the second register, and the first register is reset to 0. The
other bits of the shift register operate synchronously at the
falling edge of each learning time step. In the conventional
method, an N-bit shift register implemented the spike history.
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FIGURE 9. Circuit diagram of spike history register. (a) Overall circuit
design of spike history register. (b) Pulse circuit for resetting the first bit
at the falling edge of learning mode signal.

However, in the proposed TS-STDP, it can be implemented
with an N/M bit shift register by scaling M time steps into
one learning time step. With the proposed TS-STDP, the area
required for the spike history register can be reduced by M
times. The area of the spike history register occupies 75%
of the entire learning block; hence, the decrease in the area
of the spike history register significantly affects the entire
area of the STDP learning circuit. When M integration and
fire operations are completed, the inference signal is turned
off and the learning mode signal is activated. The operation
of STDP occurs M times less frequently than the baseline
STDP owing to quantization, which can reduce the power
consumption required for memory accesses and the number
of clock cycles for STDP.

B. Aw CALCULATION BLOCK

The Aw calculation block calculates the Aw value according
to the timing information stored in the spike history regis-
ters. For a simple calculation, the up/down counter is used.
When the learning mode ends, if the first bit of pre-neuron
spike history is “1,” the counter increases by ““1.” This
operation implies that the spike is in the learning window,
which increases the Aw value by *“1.”” The spike is absent
from the spike history after the learning window time has
elapsed; hence, the current Aw value should be reduced by
“1.” This can be carried out by checking the last bit of
the spike history. When the last bit of the spike history is
“1,” the counter decreases by “1.” Thus, the first and last
bit values of the pre-neuron spike history are used as the
UP and DOWN signals, respectively. According to these UP
and DOWN signals, the counter value increases or decreases,
as illustrated in Fig. 10. A w is updated at the falling edge
of the learning signal and is added to the original synaptic
weight.
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value.

C. SYNAPTIC WEIGHT UPDATE BLOCK

The synaptic weight update block operates when the learning
mode is activated. This block operates in register form and
update form. When the learning mode begins, the original
7-bit weight is read from the SRAM array sequentially.
In this mode, the synaptic weight update block (register
form) operates as a shift register, and therefore, the out-
put of the sense amplifier is sequentially stored in the
synaptic weight update block. Subsequently, according to
the LTP and LTD enable signals generated at the arbitrary
neuron selector, Aw is added (or subtracted) to (or from)
the original weight (update form). Subsequently, the modi-
fied synaptic weights are written to the SRAM array again
sequentially.

D. ARBITRARY NEURON SELECTOR

The neuron to be updated is randomly selected by an arbitrary
neuron selector that includes two stages of domino NOR
16 circuits, as presented in Fig 11. One of the 16 groups
of neurons is selected in the first stage of the domino NOR
16 circuit, and in the second stage of the domino NOR 16 cir-
cuit, one of the 16 neurons in the selected group at the first
stage is selected. The two 4-bit counters generate an address
for groups and neurons, respectively. When group detection
is performed, all enable signals for all neurons are high;
therefore, the output of each group is high if the fired neuron
exists. After group detection, the 4-bit counter for group
detection holds its value to select the group to be searched.
Then, a 4-bit counter for neuron detection searches one of
the neurons in the selected group. If the neuron is found,
then the 4-bit counter for neuron detection holds its value.
The neuron selection process is conducted with two-stage
dynamic NOR gates utilizing the first and last bits of the 256-
output spike history. The first and last bits of the post-neuron
spike history represent whether a post-neuron spike fired at
the current learning time step exists and whether the virtual
spike for LTD exists, respectively. Therefore, the neuron
searching process results for the first and last bits of the

VOLUME 8, 2020



G. Kim et al.: Area- and Energy-Efficient STDP Learning Algorithm for SNN SoC

IEEE Access

256 neuron

Current Post-neuron spike

: ]
HiStoryIO]:.E.. - e . .
‘ :
E | E Arbitrary Neuron Selector LTP_en
H T
N )
History[1] :
e
History[2] ¢ ;
e
Vom
: [ ] ]
: :
HiStorY[N-1]:|::| i I::' I::' I::' e I::' I::'
==
:
:| i Arbitrary Neuron Selector LTD_en
Sk
History[N] | A
L :
Spike
history
register
(a)
16 Groups of Neurons
e e ?
h
E Post: Post- Post: { E ! H
" '
[ oo || vewon | | newon | ticroup ofi g g {Group of
Histol Histor! Histol nw 16 « 16
' ry y ry | '
: ‘ ‘ ‘ ::Neurons: :Neurons:
L] . .
vDD —21_‘ L_E L_‘E L*E E: ‘o E E
. " ] .
' '
Precharde r‘ r‘ ﬁ " E H H
| Sel2<0>  Sel2<1>  Sel2<7> |ito---- ' '""T":
'
9 ]
VDD —H 1 Po— LTP_en/
: Group of 16 Neurons HE LE Log LTD_en

Sel1<0>  Sel1<1> Sel1<15>

(b)

FIGURE 11. (a) Location of arbitrary neuron selector; LTP/LTD enable is
detected by OR operation of first/last bit of post-neuron spike histories,
respectively. (b) Circuit diagram of arbitrary neuron selector.
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FIGURE 12. Signal flow of three blocks of STDP and memory peripheral
circuits.

post-neuron spike history are used as the enable signal for
the LTP and LTD processes, respectively, as demonstrated in
Fig. 12.

The overall operation of PR-STDP with TS-STDP pro-
ceeds in the following order. When the learning mode is
enabled, as shown in Fig. 13, in mode_s1, a group of neurons
that have a fired neuron is searched for 16 cycles, and then,
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FIGURE 13. Waveform of control signals for the STDP circuit.

in mode_s2, the neurons in the group selected in mode_s1
are searched to find the neuron fired during 16 cycles. If the
neuron is detected, the LTP and LTD enable signals are
transferred to the STDP block. Then, the original synaptic
weights associated with the neuron are read from the SRAM
for 7 cycles. Subsequently, Aw is added to the original weight
for one cycle if the LTP enable signal is high. After the LTP
operation, Aw is subtracted from the original weight at the
next cycle if the LTD enable signal is high. The modulated
weight is written to the SRAM again for 7 cycles. Then,
the learning mode is disabled, and the spike history register is
shifted. Subsequently, a new Aw value is calculated accord-
ing to the spike history.

V. SIMULATION RESULT

The proposed STDP could improve the efficiency of hard-
ware implementation in terms of area and energy. The simula-
tion system was based on the assumption that 784 pixels of the
MNIST image were encoded into 784 pre-neuron spike trains
using Poisson encoding. The 256 learning neurons produced
post-neuron spikes. The performance of the overall system
using the proposed STDP was evaluated according to the
classification accuracy and reconfigured weight view through
a MATLAB simulation. A 28-nm technology was used for
circuit design to estimate the area and power.

A. PERFORMANCE

The system performance could be degraded with TS-STDP
owing to the timing error. As the scaling number
(M) increased, the accuracy of the MNIST classification
degraded, as shown in Fig. 14. After 10 epochs of training,
the system accuracy was degraded by 2.2% when M = 6 and
by 2.8% when M = 7, compared to that when M = 3. To main-
tain the system performance while taking advantage of scal-
ing, we set M = 5. PR-STDP with arbitrary neuron selection
also does not affect the overall system performance. Previous
research [12] exhibited an accuracy of 85%, the same as
that exhibited by PR-STDP. When PR-STDP with arbitrary
neuron selection and TS-STDP were applied, the control was
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FIGURE 14. (a) Accuracy trend as scaling number M of TS-STDP increases.
(b) System performance measured over 20 epochs trained with baseline
and proposed STDPs.

significantly simplified, and the number of memory accesses
for weight update was decreased by reducing the redundant
part of STDP with an insignificant accuracy reduction of
1.5%.

1) AREA

The area of the proposed STDP block was estimated and com-
pared to the original STDP block. With TS-STDP, the storage
for the spike history was reduced by M times. Thus, the area
of TS-STDP with M = 5 was decreased by 54% compared
to that of the original STDP, at an insignificant accuracy
degradation of 1%.

PR-STDP did not contribute to the decrease in the area
of STDP block as substantially as TS-STDP did. PR-STDP
reduced the STDP’s Aw calculation block and synaptic
weight update block at the bottom of the SRAM array, com-
pared to the baseline STDP. However, this reduction did not
significantly reduce the overall area because the spike history
block that occupied most of the area of STDP had to be
retained for the virtual trigger. Thus, PR-STDP achieved only
an 8% smaller area than the baseline STDP.
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FIGURE 15. Estimated area of STDP. Proposed STDP reduced its area by
62% compared to baseline STDP when M = 5 and both TS+PR-STDP are
applied.

TABLE 1. Area comparison including M = 3,4,5 cases.

Spike Other Total Normalized

History Blocks* Area
Baseline 331730.7  157846.9  489577.6  1.00
PR-STDP 331730.7  118992.3  450723.0 0.92
TS-STDP (M=3) 1105769 1578469  268423.8  0.55
TS-STDP (M=4) 82932.7 157846.9  240779.5 0.49
TS-STDP (M=5) 66346. 157846.9  224193.0 0.46
fﬁ:;s-smp 66346.1 1189923 1853384 038
Unit: pm?

* Including Aw update block and synaptic weight update block

The combination of PR- and TS-STDP reduced the total
area by 62%, as shown in Fig. 15. This was mainly owing
to the decrease in the area of the spike history block by
TS-STDP.

In addition, PR-STDP used a pseudo-transposable 8T
SRAM cell instead of a transposable 8T SRAM cell. The area
of the pseudo-transposable 8T cell is 23% smaller than that of
the transposable 8T cell. Therefore, synaptic weight memory
that occupied approximately 62% of the total chip area could
be reduced by using a pseudo-transposable 8T SRAM cell.
This area reduction in both the STDP block and SRAM array
helped to implement the hardware in a compact area.

B. ENERGY

A single baseline STDP consumes 0.314 pJ per operation.
When the time-step scaling was applied, a single STDP block
consumed 0.281 pJ. The energy reduction was approximately
10% and was from the spike history block. Because the
energy consumed by memory access was more than 28 times
higher than the single STDP operation energy, the reduction
in the number of memory accesses was important. Table 2
shows the SRAM read and write energy for single mem-
ory access, and Fig. 16. shows the total energy consump-
tion for learning one image including both memory access
and STDP operation of the baseline and proposed STDPs.
Because the energy consumption of the entire learning oper-
ation was dominantly determined by the number of memory
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TABLE 2. Energy of single operation.

Baseline* 0314
STDP
TS-STDP 0.281
READ 0.666 0.475%*
Transposable 8T
WRITE 0.769 0.574**
SRAM
Pseudo- READ 0.621
transposable 8T  WRITE 0.705
Unit: pJ
* PR-STDP uses identical baseline STDP block
** Orthogonal direction to that of pseudo-transposable 8T
30134 Baseline
30000 S5783
25000
S 20000 ——
= o= 99.5%
& 1500 —
g
5 1000 ——
280
500 159
Baseline TS-STDP PR-STDP TS+PR-STDP

FIGURE 16. Average energy consumption for learning an image. Average
energy consumption of each STDP. TS+PR-STDP shows 99.5%
improvement over the baseline STDP.

accesses, reducing the memory access was important for
energy-efficient learning. In this respect, the LTD process
of the baseline STDP was triggered by a pre-neuron spike,
which induced frequent memory access for LTD, resulting
in high energy consumption. However, PR-STDP changed
the trigger of the LTD process from pre-neuron spike to
virtual spike (past post-neuron spike), which were less fre-
quent, reducing the energy consumption by memory access.
In addition, arbitrary neuron selection decreased energy by
selecting a neuron to be updated. The MATLAB simulation
result, which reflected the energy for memory access and
STDP operation, showed an improvement in the average
energy consumption for learning one image when the pro-
posed STDP was used. Fig. 16. shows the decrease in the
average energy consumption for learning one image. The
energy consumption decreased by 11.1% or 99.1% when
TS-STDP or PR-STDP was applied, respectively. When both
schemes were applied, the energy consumption reduced by
99.5% owing to the reduction of energy from the STDP block.

Therefore, the proposed STDP reduced the area of the
learning circuit by 62% and energy consumption by 99.5%
with insignificant performance degradation compared to that
by the baseline STDP.

VI. CONCLUSION

In this paper, we proposed two hardware-aware STDP algo-
rithms to reduce the area and power of STDP hardware for
on-chip learning. TS-STDP reduced the spike history storage
by quantizing multiple steps into one learning time step.
PR-STDP with arbitrary neuron selection enabled efficient
memory access by synchronizing the triggers of LTP and LTD
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to a post-neuron spike and eliminated redundant memory
accesses. With TS- and PR-STDP, the area of the STDP block
was reduced by 62% and power consumption was reduced by
99.5%. Despite the significant reduction in hardware costs,
system performance exhibited insignificant accuracy degra-
dation within 1%.
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