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ABSTRACT Two-dimensional quaternion principal component analysis (2D-QPCA) is one of the successful
dimensionality reduction methods for color face recognition. However, 2D-QPCA is sensitive to outliers.
For solving this shortcoming, an efficient robust method(F-2D-QPCA) is presented by means of Frobenius
norm(F-norm). The goal of F-2D-QPCA is to find the projection matrix such that the projected data has the
maximum variance based on F-norm, and it is more robust to outliers and has higher recognition accuracy
than other methods, such as 2D-QPCA, R1-2-DPCA, F-norm 2DPCA and 2D-PCA, etc. Also, we study in
detail a quaternion optimization problem, propose a nongreedy iterative algorithm and prove its convergence.
Experiments on several color face databases illustrate the superiority of our proposed method.

INDEX TERMS Color face recognition, quaternion matrix, 2D-QPCA, F-norm 2DPCA, quaternion non-
greedy iterative algorithm.

I. INTRODUCTION
Face recognition has always been a focus in recent years.
Principal component analysis (PCA) and its various vari-
ants have been successfully used for grayscale face recogni-
tion [1]–[7]. Based on the Karhunen-Loeve procedure for the
characterization of human faces [1], Turk and Pentland [2]
presented the eigenface method for face recognition. Early
various PCA methods mainly deal with grayscale images by
using a vector to represent a grayscale image. As a result,
color information and partial spatial information of images
are not fully utilized. In order to make full use of the spatial
information of images, Yang et al. [3] proposed a novel
two-dimensional principal component analysis (2D-PCA) by
using a matrix to represent a grayscale image. All these
methods adopt squared Euclidean norm or squared Frobenius
norm as the distance metric. However, these norms are very
sensitive to outliers. Thus, these methods have great short-
comings when processing data sets with outliers [8], [9].

To improve robustness, `1-norm is adopted because it
can suppress the outliers very well [9], [10]. Ke and
Kanade [10] used `1-norm instead of squared Euclidean norm
to construct the reconstruction error, and then presented the
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robust L1-PCA method by minimizing this error. Based on
L1-norm maximization, Kwak [11] found the projection vec-
tors, and presented the PCA-L1 method for image repre-
sentation. For solving PCA-L1, Nie et al. [12] presented a
nongreedy iterative algorithm. Correspondingly, to exploit
spatial structure, many 2-D PCA methods based on `1-norm
have been proposed. Inspired by 2D-PCA, Li et al. [13] and
Wang et al. [14] extended PCA-L1 to 2-DPCA-L1 and gave
the greedy algorithm and the nongreedy algorithm, respec-
tively. Pang et al. [15] extended PCA-L1 to robust tensor
analysis with `1-norm. By applying sparse constraint on
2-DPCA-L1, Wang and Wang [16] developed 2-DPCAL1-S
for simultaneously robust and sparse modelling. Recently,
Mi et al. presented a novel robust method, called nuclear
norm based on PCA (N-PCA) to take full advantage of the
structure information of error image [17] and a generalized
robust 2-DPCA, which is named as 2-DPCA with l2,p-norm
minimization (l2,p-2- DPCA), for image representation and
recognition [18].

However, it is well known that the image covariance matrix
characterizes the geometric structure of images, but these
methods based on `1-norm do not involve the image covari-
ance matrix [19], [22], [23]. Moreover, although `1-norm
can suppress the role of outliers, but we do not know that
whether `1-norm can enhance the role of small distance.
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Thus, to partially overcome this shortcoming, based on
F-norm, Li et al. [20] proposed a F-norm distance metric
based robust 2DPCA (F-norm 2DPCA) for face recognition,
and based on R1-norm, Ding et al. [22] developed a rotational
invariant `1-norm (R1-norm) PCA (R1-PCA). Motivated by
R1-PCA and 2D-PCA, Gao et al. [24] maximized the image
covariance with R1-norm and proposed R1-2-DPCA method
for grayscale face recognition.

None of the above methods use the color information of
the image. In [4], Torres et al. pointed the importance of
color information in face recognition and extended traditional
PCA to color face recognition by using the R, G, B color
channels, respectively. But, this method do not consider the
relationship between three channels. In order to overcome
this shortcoming, Yang and Liu [5] used a set of color compo-
nent combination coefficients to convert three color channels
into one channel D by D = x1R + x2G + x3B and presented
a general discriminant model for color face recognition, but
the optimal coefficients x1, x2 and x3 are difficultly obtained.
Xiang et al. [6] used a row vector to denote a color channel
and then presented a color image as a 3× n matrix. Then by
utilizing both the spatial and color information, they proposed
a color 2D-PCA (C2DPCA) method for color face recogni-
tion. However, all these methods do not directly use color
information.

To directly deal with three channels of color image,
the quaternion with zero real part was used to represent
the color pixel consisting of three components [25]–[34].
Based on quaternion matrix theory, Jia et al. [35] pre-
sented the color two-dimensional principal component anal-
ysis (2D-QPCA) method for color face recognition. With
the aid of two-dimensional quaternion matrices rather than
one-dimensional quaternion vectors, 2D-QPCA utilizes the
color information and the spatial characteristics simultane-
ously and mathematically. Recently, Xiao and Zhou [44]
proposed a novel quaternion ridge regression (QRR) model
for two-dimensional QPCA (QRR-2D-QPCA) and mathe-
matically proved that this QRR model is equivalent to the
QCM model of 2D-QPCA.

In this paper, inspired by F-norm 2DPCA method and
2D-QPCA method, we propose the F-2D-QPCA method,
which maximizes image covariance based on the quaternion
F-norm, and obtains the eigenface subspace by a nongreedy
algorithm. Compared to most existing 2D-PCA methods and
2D-QPCAmethod, our method has the following advantages.
First, our method treats a color image as a quaternion matrix,
which makes full use of the color and spatial information
of the image. Second, our method is more robust to outliers
because F-norm weakens the role of outliers. Third, our
method is based on the image covariance matrix, so it makes
good use of the geometric structure of images.

The paper is organized as follows. In Section II, we review
quaternion matrices and elaborate the principle of 2D-QPCA
method and QSR-2D-QSPCA method for color face recog-
nition. In Section III, we propose a quaternion optimization
problem and develop a nongreedy iterative algorithm. And

then, we propose a new color two-dimensional quaternion
principal component analysis method for color face recog-
nition, which is based F-norm and denoted as F-2D-QPCA
method. In Section IV, experiments verify the efficiency of
our method. Finally, the conclusion is presented in Section V.

II. PRELIMINARY
In this section, we review the relationship between quaternion
matrices and color images, give some properties of quaternion
matrices and elaborate the principle of the 2D-QPCAmethod
for color face recongnition.

A. QUATERNION MATICES AND COLOR IMAGES
In 1843, William Rowan Hamilton found the quaternion:

q = q1 + q2i+ q3j+ q4k,

where q1, q2, q3, q4 are real and i, j, k are three imaginary
units stasfying

i2 = j2 = k2 = ijk = −1.

The set of all quaternions is denoted by Q. The conjugate of
q is defined as q∗ = q1−q2i−q3j−q4k and the modulus |a|

is defined as |a| =
√
aa∗ =

√
a21 + a

2
2 + a

2
3 + a

2
4. If the real

part is zero, we call q = r i+ gj+ bk as the pure quaternion,
which can represent a pixel of the RGB color space, where R,
G, B stand for the values of Red, Green, Blue components,
respectively. So, an m × n color image can be saved as an
m× n pure quaternion matrix A = (aij)m×n = Ri+ Gj+ Bk
with the nonnegative integer matrix R,G and B.

For A = (aij) ∈ Qm×n, a ∈ Qn×1, we list several
quaternion matrix and vector norms which will be used in
this paper [41].

(a). Euclidean norm: ‖a‖2 = ‖a∗‖2 =
√
a∗a, where (·)∗

denotes conjugate transpose operation;
(b). Frobenius norm: ‖A‖F =

√∑
i,j
|aij|2 =

√
Tr(A∗A),

where Tr(M ) denotes the trace ofM ;
(c). 2-norm or spectral norm: ‖A‖2 = max

x 6=0

‖Ax‖2
‖x‖2

=

√
σ1(A), where σ1(A) is the largest singular value of A.
For any A = A1+A2i+A3j+A4k ∈ Qm×n,Al ∈ Rm×n(l =

1, 2, 3, 4), define

AR ≡


A1 −A2 −A3 −A4
A2 A1 −A4 A3
A3 A4 A1 −A2
A4 −A3 A2 A1

 ∈ R4m×4n.

The real matrix AR is known as real representation of the
quaternion matrix A.

For A,B ∈ Qm×n,C ∈ Qn×s, the following properties are
well known [21].

(a). (A+ B)R = AR + BR, (AC)R = ARCR
;

(b). (A∗)R = (AR)T , where (·)T denotes transpose opera-
tion;

(c). A is a column unitary matrix if and only if AR is a
column orthogonal matrix.
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Inspired by [22], we present a new quaternionmatrix norm.

Definition 1: For A ∈ Qm×n, its R1-norm is

‖A‖R1 =
m∑
i=1

‖A(i, :)‖2,

where A(i, :) denotes the ith row of A.
Let Re(A) denote the real part of A. After the simple

derivation, we can get the following result.
Theorem 1: For A ∈ Qm×n,B ∈ Qn×m,C ∈ Qn×n,

we have
(1). Re(Tr(AB)) = Re(Tr(BA)), Tr(AB) 6= Tr(BA);
(2). Tr(AA∗) = Tr(A∗A) = ‖A‖2F ;
(3). Re(Tr(AB)) ≤ ‖A‖F‖B‖F (Cauchy-Schwarz inequal-

ity);
(4). ‖A‖F ≤ ‖A‖R1 ;
(5). ‖A‖F = 1

2‖A
R
‖F ;

(6). Re(Tr(C)) = 1
4Tr(C

R).

B. 2D-QPCA
Let V = (v1, v2, · · · , vk ) denote an n × k quaternion matrix
with unitary column vectors. Our idea is to projectm×n color
image A onto V [42], [43]:

B = AV , (1)

where m × k projected matrix B is called the projected
feature image of image A. A good projection matrix V can
be determined by the total scatter of the projected samples.
That is, the following function is adopted:

J (V ) = Tr(GV ), (2)

where the covariance matrix GV of the projected feature
images of the training samples can be denoted by

GV = E[(B− EB)(B− EB)∗]

= E[(AV − E(AV ))(AV − E(AV ))∗]

= E[(A− EA)V ((A− EA)V )∗]

= E[(A− EA)VV ∗(A− EA)∗],

and E(·) denotes the mathematical expectation. The physical
significance of maximizing (2) is to find projection directions
v1, v2, · · · , vk such that the total scatter of the resulting pro-
jected samples is maximized.

Because

Tr(GV ) = Tr[V ∗E((A− EA)∗(A− EA))V ],

we can define the color image covariance matrix (QCM)

G = E((A− EA)∗(A− EA)),

which is an m × m nonnegative definite matrix and can be
evaluated directly using the training image samples.

Let {A(j)i ∈ Qm×n
}
lj
i=1 denote the set of the training color

image samples, where class index j = 1, 2, · · · ,M .

We compute the average image Ā and the color image
covariance (scatter) matrix (QCM) G of training samples by

Ā =
1
N

M∑
j=1

lj∑
i=1

A(j)i ∈ Qm×n, (3)

and

G =
1
N

M∑
j=1

lj∑
i=1

(A(j)i − Ā)
∗(A(j)i − Ā) ∈ Qn×n. (4)

The aim of 2D-QPCA is to find a set of unitary projection
basis vectors v1, · · · , vk , where V̂ = Span(v1, · · · , vk ) is
often called the eigenface subspace or the projection matrix,
such that, when projected onto V̂ , the projected sample

Ps = (As − Ā)V̂ (5)

of As has the maximal scatter. V̂ , which maximizes the trace
of the generalized total scatter criterion V ∗GV , meets this
requirement. In other words, V̂ is the solution of the following
problem:

max
V ∗V=I

Tr
M∑
j=1

lj∑
i=1

V ∗(A(j)i − Ā)
∗(A(j)i − Ā)V

= max
V ∗V=I

Tr
M∑
j=1

lj∑
i=1

V ∗(Â(j)i )∗Â(j)i V

= max
V ∗V=I

M∑
j=1

lj∑
i=1

‖Â(j)i V‖
2
F , (6)

where Â(j)i = A(j)i − Ā.
In the 2D-QPCA method [35], the columns v1, · · · , vk of

V̂ are the eigenvectors (called eigenfaces) ofG corresponding
to the first k largest eigenvalues.
The procedure of 2D-QPCA [35] is given in Table 1.

C. QSR-2D-QSPCA
In this subsection we recall the QSR model for 2D-QSPCA
from [44].

Let {Xi ∈ Qm×n
}
h
i=1 and {Yi ∈ Qk×n

}
h
i=1 be the set

of 2D quaternion samples and the set of projected quaternion
samples, respectively. Here all quaternion samples are mean-
centered, i.e., E(Xi) = 0. As mentioned in the previous
section, the objective of 2D-QPCA is to find an orthonormal
quaternion basis V = (v1, · · · , vk ) so that the projected
quaternion samples have the largest scatter after projection.
What we should note here is that the QCM model for
2D-QPCA in [44] is working in the column direction. That
is Yi = V ∗Xi is defined as the projected sample of Xi. Under
the constraint of least-squares error, maximizing the scatter of
projected quaternion samples is equivalent to minimizing the
reconstruction error between projected quaternion samples
and the input quaternion samples. Hence, the solution of
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TABLE 1. 2D-QPCA algorithm.

QCM model [44] is equals to the solution of the following
problem

B = argmin
B

(
h∑
i=1

‖Xi − BB∗Xi‖2F ), s.t. B∗B = Ik .

Based on this observation, the quaternion ridge regres-
sion (QRR) model has been proposed. Taking the advantages
of sparse regularization, the QSR model for 2D-QSPCA has
been further advanced by regularizing the QRR model with
the l1-norm penalties. Theorem 2 presents the QSRmodel for
2D-QSPCA.
Theorem 2: Let {Xi ∈ Qm×n

}
h
i=1 be a set of 2D quaternion

samples and the columns of Vs = (vs1, · · · , vsk ) be the
quaternion sparse basis vectors of 2D-QSPCA. Vs can be
obtained as follows.

For any λ2 ≥ 0 and λ1,j, j ≥ 0, j = 1, · · · , k , suppose that
A = (a1, · · · , ak ) ∈ Qm×k and B = (b1, · · · , bk ) ∈ Qm×k

satisfy

(A,B) = argmin
A,B

(
h∑
i=1

‖Xi − AB∗Xi‖2F

+ λ2‖B‖2F +
k∑
j=1

λ1,j‖bj‖1

 (7)

s.t. A∗A = Ik

Then, vsj = (bj/‖bj‖2), j = 1, 2, · · · , k .
The penalty term λ2‖B‖2F is used to avoid the potential

colinearity problem when the number of input samples is
much smaller than the dimension of input samples. In the
QSR model, it is obvious that if λ1,j = 0, for j = 1, 2, · · · , k ,

TABLE 2. QSR-2D-QPCA algorithm.

equation (7) reduces to the QRR model [44]:

(A,B) = argmin
A,B

(
h∑
i=1

‖Xi − AB∗Xi‖2F + λ2‖B‖
2
F

)
s.t. A∗A = Ik .

that is, the obtained basis vectors vj = (bj/‖bj‖2), j =
1, 2, · · · , k are not sparse. Xiao et al. still mathematically
prove that the QRR model is equivalent to the QCM model
of 2D-QPCA.

In [44], an alternating minimization algorithm was devel-
oped to iteratively compute the solution of QSR model
in the equivalent complex domain. The procedure is given
in Table 2.

III. F-2D-QPCA
In this section we propose a new color two-dimensional
quaternion principal component analysis method for color
face recognition, which is based F-norm and denoted as
F-2D-QPCA method. For this, we need to solve a quaternion
optimization problem.

A. A QUATERNION OPTIMIZATION PROBLEM
In this subsection, we propose a quaternion optimization
problem and develop a nongreedy iterative algorithm, which
has not only a closed-form solution in each iteration but also
a good convergence.

Given Xi ∈ Qm×n(i = 1, 2, · · · ,N ), we discuss the
optimization problem

max
W∈Qn×d
W∗W=I

N∑
i=1

‖XiW‖F . (8)
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Theorem 3: Suppose that H ∈ Qd×n(d ≤ n) and its
singular value decomposition (SVD) isH = U∧V ∗ withU ∈
Qd×d ,U∗U = UU∗ = Id ,V ∈ Qn×n,V ∗V = VV ∗ = In
and ∧ = [diag(σ1, · · · , σd ), 0d×(n−d)] ∈ Rd×n, where I and
diag(σ1, · · · , σd ) denote the identity matrix and the diagonal
matrix with σ1, · · · , σd as diagonal elements, respectively.
Then W = VIn×dU∗ is the solution of the optimization
problem

max
W∈Qn×d
W∗W=Id

Re(Tr(HW )), (9)

with

In×d =
(
Id
0(n−d)×d

)
.

Proof: First, we have

Re(Tr(HW ))

= Re(Tr(U ∧ V ∗W )) = Re(Tr(∧V ∗WU ))

= Re(Tr(∧Q)) = Re(
d∑
k=1

σkQ(k, k))

=

d∑
k=1

σkRe(Q(k, k)),

where Q = V ∗WU ∈ Qn×d ,Q∗Q = Id .
Since Q is column unitary orthogonal, we can obtain that

d∑
k=1

σkRe(Q(k, k)) ≤
d∑
k=1

σk

and the equality holds only and only if Q(k, k) = 1 for all
k = 1, 2, · · · , d , that is, Q = In×d and W = VIn×dU∗. �
Now we consider how to find the optimal solution of (8).

First, we have

N∑
i=1

‖XiW‖F =
N∑
i=1

‖XiW‖2F
‖XiW‖F

=

N∑
i=1

Tr
(
(XiW )∗XiW
‖XiW‖F

)
= Tr(HW )

Tr(HW ) is real
HHHHHHHHH Re(Tr(HW )), (10)

where

H =
N∑
i=1

β∗i Xi, (11)

βik =


XiW
‖XiW‖F

, ‖XiW‖F 6= 0;

0, ‖XiW‖F = 0.
(12)

In summary, the optimization problem (8) finally becomes
the optimization problem

max
W∈Qn×d
W∗W=Id

Re(Tr(HW )), (13)

where H is the function of W . To solve this problem,
we present a nongreedy iterative algorithm(See Table 3).

For QPCA-F algorithm, we have the following results.
Theorem 4: For the sequence {W (t)

}
∞

t=1 obtained by
QPCA-F algorithm, we have

N∑
i=1

‖XiW (t+1)
‖F ≥

N∑
i=1

‖XiW (t)
‖F .

That is, the sequence {
N∑
i=1
‖XiW (t)

‖F }
∞

t=1 monotonically

increases.
Proof: From Theorem 3, we have

Re(Tr(H (t)W (t+1))) ≥ Re(Tr(H (t)W (t))). (14)

Then from (10)-(12), (14) is equivalent to

Re

(
Tr

(
N∑
i=1

(β(t)i )∗XiW (t+1)

))

≥ Re

(
Tr

(
N∑
i=1

(β(t)i )∗XiW (t)

))
. (15)

According to Cauchy-Schwarz inequality, we have

‖XiW (t)
‖F‖XiW (t+1)

‖F

≥ Re
(
Tr
(
(XiW (t))∗XiW (t+1)

))
, (16)

i.e.,

‖Xi(k, :)W (t+1)
‖F

≥ Re
(
Tr
(
(XiW (t))∗XiW (t+1)

‖XiW (t)‖F

))
= Re

(
Tr
(
(β(t)i )∗XiW (t+1)

))
. (17)

From (15),(17) and (10), we have

N∑
i=1

‖XiW (t+1)
‖F ≥

N∑
i=1

Re
(
Tr
(
(β(t)i )∗XiW (t+1)

))
≥ Re

(
Tr

(
N∑
i=1

(β(t)i )∗XiW (t)

))

=

N∑
i=1

‖XiW (t)
‖F .�

Theorem 5: The sequence {
N∑
i=1
‖XiW (t)

‖F }
∞

t=1 is upper

bounded.
Proof: For all t , because (W (t))∗W (t)

= Id , we have
‖W (t)

‖F =
√
d and

N∑
i=1

‖XiW (t)
‖F ≤

N∑
i=1

‖Xi‖F‖W (t)
‖F =

√
d

N∑
i=1

‖Xi‖F .�

Because a monotone bounded sequence must have the

limit, we can know that the sequence {
N∑
i=1
‖XiW (t)

‖F }
∞

t=1 has
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TABLE 3. QPCA-F algorithm.

the limitation
N∑
i=1
‖XiŴ‖F . But is Ŵ the solution of (8)?

Due to the imperfect theory of quaternion matrix calculus,
we cannot discuss this problem on the quaternion ring. Next,
we transform this problem into a problem in the real field
through the real representation of the quaternion matrix.

Because

Re(Tr(HW )) =
1
4
Tr(HRWR) = Tr(ĤŴ ),

where Ĥ ∈ Rd×4n is the first d rows of HR and Ŵ ∈ R4n×d

is the first d columns of WR, the optimization problem (13)
finally becomes the optimization problem

max
Ŵ∈R4n×d
Ŵ∗Ŵ=Id

Tr(ĤŴ ). (18)

N∑
i=1

‖XiW‖F =
1
2

N∑
i=1

‖XR
i WR

‖F =

N∑
i=1

‖XR
i Ŵ‖F

tells us that the optimization problem (8) is equivalent to the
optimization problem

max
Ŵ∈R4n×d
Ŵ∗Ŵ=I

N∑
i=1

‖XR
i Ŵ‖F . (19)

From (18), (19) and Theorem 2 of [23], we can obtain the
following result.

Theorem 6: The sequence {
N∑
i=1
‖XiW (t)

‖F }
∞

t=1 has the lim-

itation
N∑
i=1
‖XiŴ‖F , where Ŵ is a local solution of (8).

B. F-2D-QPCA
In this subsection, based on QPCA-F algorithm pro-
posed in the previous subsection, we propose a new color
two-dimensional quaternion principal component analysis
method for color face recognition.

F-norm is the unitary invariant norm and can retain tradi-
tional 2D-QPCA’s nice properties such as geometric structure
and rotational invariance. Moreover, compared to squared

TABLE 4. F-2D-QPCA algorithm.

F-norm and R1- norm, F-norm weakens the large distance,
and compared to squared Frobenius norm, F-norm enhances
the role of small distance. Thus, to improve robustness of
the 2D-QPCA method and the accuracy of the R1-2-DPCA
method, we employ F-norm instead of squared Euclidean
distance and R1- norm as the distance metric in the model (6)
and obtain the following objective function:

max
V ∗V=I

M∑
j=1

lj∑
i=1

‖Â(j)i V‖F . (20)

Then, we can get the following the F-2D-QPCA algo-
rithm(See Table 4).

IV. EXPERIMENTS
In this section, we test F-2D-QPCA method by the famous
Georgia Tech face(GT) database1 and the color Face
Recognition Technology database (FT),2 and compare with
2D-QPCA method, R1-2D-PCA method, F-norm 2DPCA
method, 2D-PCA method and QRR-2D-QPCA method.

All experiments in this section are performed on a per-
sonal computer with 3.2 GHz Intel Core i5-6500 and 16 GB
2400 MHz DDR4 using MATLAB-R2018b and Quaternion
toolbox for Matlab(QTFM 2.6) [45]. It is worth pointing
out that Jia et al. [37]–[39] have developed a quaternion
calculation toolbox based on the real number field, which has
achieved higher accuracy and calculation efficiency.

The GT database are composed of color images of 50 indi-
viduals with 15 views per individual, and with no specific
order in their viewing direction.

All images in the Georgia Tech face database are manu-
ally cropped, and then resized to 44 × 33 pixels. There are
50 persons to be used.

1The Georgia Tech face database. http://www.anefian.com/research/
facereco.htm

2The color FERET database. https://www.nist.gov/itl/iad/image-
group/color-feret-database.
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FIGURE 1. First row is some images in the GT database. The second row
is the corresponding noised images.

FIGURE 2. Sample images for three persons of the color FT face database.

We randomly select 4 images per person and then place
salt and pepper noise. The noise is random distribution
and accounted for 0.0172 to 0.1550 of the image area (see
Figure 1). Thus, we get a new gallery for the experiments,
recorded as GT-noise. In this new dataset, The first x
face images per individual person are chosen for training
and the remaining five face images are used for testing.
The number of chosen eigenfaces or projection vectors
is recorded as r . Our approach and the aforementioned
three approaches are employed to extract low-dimensional
representations, respectively. This process is repeated
5 times.

Also, we randomly select 3 images per person, place salt
and pepper noise to the entire area, and get a new gallery for
the experiments, recorded as GT-noise1.

The FT database contains 14126 color face images
of 1199 individuals. The minimal number of face images for
one person is 6, and the maximal one is 44. The size of each
cropped color face image is 192 × 128 pixels. We choose
219 persons with 10 views per individual as samples. Some
samples are shown in Figure 2.

To further validate the robustness of R1-2-DPCA, we ran-
domly choose three images from each class (person) in the
GT database and add a 22 × 16 pixels object image (out-
lier) in the chosen images. Combining the remaining images,
we get a new gallery for the experiments, recorded as
GT-outlier. Figure 3 shows some images of this new gallery.
Also, we randomly choose two images from each class (per-
son) in the FT database and add a 48 × 32 pixels object
image (outlier) in the chosen images. Combining the remain-
ing images, we get a new gallery for the experiments,
recorded as FT-outlier. In the experiments, 21 images per
person, which include 16 noise-free images and five noised
images, are randomly chosen for training, and the remaining
images are used as probe images.We employ four approaches

FIGURE 3. First row is some face images in the GT database. The second
row is the corresponding face images + object image (outliers).

TABLE 5. Average classification accuracy on the GT, GT-noise, GT-outlier,
FT, and FT-outlier databases.

FIGURE 4. Accuracy versus number of projection vectors on the GT-outlier
database with x = 10.

to extract low-dimensional representations of images, respec-
tively. We do it five times to evaluate performance of each
method.

Table 4 shows the average recognition accuracy of each
approach on the the GT, GT-noise, GT-outlier, FT, and
FT-outlier databases.

Figure 4 plots the average classification curve versus the
number projection vectors on the GT-outlier database. For
these four methods, a large number of experiments on the
above five databases show that the best recognition accuracy
generally appears in r ≤ 6. Figure 5 plots the average
classification curve versus the number projection vectors on
the GT-noise1 database.

Figure 6 plots the convergence curve of our method on
the GT and FT databases, respectively, which shows that
our algorithm has good convergence. For the computational
complexity, compared with 2D-QPCA, F-2D-QPCA has one
more singular value decomposition of quaternion matrix
and the product of two quaternion matrices, and compared
with F-norm 2DPCA, the computation of F-2D-QPCA is
not more than four times higher because F-2D-QPCA pro-
cesses color images, and F-norm 2DPCA processes grayscale
images.
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FIGURE 5. Accuracy versus number of projection vectors on the
GT-noise1 database with x = 8.

FIGURE 6. Convergence curve of our method on two databases.

From the above experimental results, we can obtain the
following conclusions.

1) F-2D-QPCA and 2D-QPCA are superior to and
R1-2-DPCA and 2D-PCA. Because the first two methods use
the color information of the image, the last two methods only
deal with the grayscale image.

2) F-2D-QPCA is slightly superior to 2D-QPCA on four
databases and better than 2D-QPCA on GT-noise1 and
GT-outlier database. This is probably because that 2D-QPCA
is sensitive to the small variation due to the illumination, pose
and occlusion. It results in unstable representation for face
images.

Compared with 2D-QPCA, our approach is slightly more
accurate. But in [20], for grayscale images, F-norm 2DPCA
is superior to 2D-PCA on the modified Extended Yale B,
AR and CMU PIE databases.

At the end of this section, we test QRR-2D-QPCA [44]
and F-2D-QPCA on AR face database,3 which contains color
face images of 126 individuals recorded in two sessions.
In each session, a neutral color face image is recorded sequen-
tially by images with different expressions and illumination,
and images occluded by sunglasses and scarf (three images

3A. M. Martinez, ‘‘The AR face database,’’ CVC, New Delhi, India,
Tech. Rep. 24, 1998.

FIGURE 7. Sample images of one person from AR face database.

FIGURE 8. Accuracy versus number of projection vectors on AR face
database.

per condition). We use a popular subset of AR containing
100 individuals with 26 views per individual. Some samples
are shown in Figure 7. We use seven nonoccluded color face
images in session one for training and the corresponding
seven nonoccluded images in session two for testing. All face
images are resized to 32× 32 pixels.
In our experiments, we compare the performance of

F-2D-QPCA with QSR-2D-QSPCA. We refer to [44] and
specify the parameter setting in the QSR model. Firstly, λ2 is
set to 0.001. As is shown in Table 2, the sparsity of the basis
of QSR model is controlled via the parameter λ1.j. According
to [44], we do not explicitly preassign the value of λ1,j.
Instead, we specify the cardinality (the number of nonzero
elements, denoted by card) of the basis. Card is set to 4 and
32 in our test. Obviously, QSR model reduces to the QRR
model when card = 32.
The number of the chosen eigenfaces are from 1 to 32. The

face recognition rates of two methods are shown in Figure 8.
For the three methods, the projected testing samples are
all classified based on the nearest-neighbor classifier using
F-norm distance. It is obvious that the difference between
F-2D-QPCA and QSR-2D-QSPCA is that the methods of
computing the eigenface subspace V . Table 6 presents the
recognition rates and time of calculating the eigenfaces for
cases that the number of features are chosen as 10, 20 and
30. From the results we can see that F-2D-QPCA reaches
the highest face recognition rate, and costs less time than
QSR and QRR models. The reason is that the QSR model
needs to be solved iteratively, which will take a lot of
time.

F-2D-QPCA has the higher recognition rate than
QRR-2D-QPCA.Moreover, due to the determination ofmany

217444 VOLUME 8, 2020



M. Wang et al.: F-2D-QPCA: A QPCA Method for Color Face Recognition

TABLE 6. Face recognition rate(RR) and time(second) for computing the
eigenfaces.

parameters, the complexity of the latter is much higher than
that of the former.

V. CONCLUSION
In this paper, a robust quaternion-matrix-based subspace
learning method is presented. F-2D-QPCA employs F-norm
as the distance metric to measure image covariance matrix.
Compared to F-norm 2DPCA method and most existing
2D-PCA methods, F-2D-QPCA method is more accurate.
Also, compared to 2D-QPCA method, F-2D-QPCA method
is slightly more robust to outliers. Moreover, our method
retains 2D-QPCA’s desirable properties such as rotational
invariance and geometric structure. To solve F-2D-QPCA,
we propose a nongreedy iterative algorithm which has good
convergence. Experimental results on several color face
image databases show the effectiveness of F-2D-QPCA
method.
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