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ABSTRACT Human eye movements while driving reveal that visual attention largely depends on the
context in which it occurs. Furthermore, an autonomous vehicle which performs this function would
be more reliable if its outputs were understandable. Capsule Networks have been presented as a great
opportunity to explore new horizons in the Computer Vision field, due to their capability to structure
and relate latent information. In this article, we present a hierarchical approach for the prediction of eye
fixations in autonomous driving scenarios. Context-driven visual attention can be modeled by considering
different conditions which, in turn, are represented as combinations of several spatio-temporal features.
With the aim of learning these conditions, we have built an encoder-decoder network which merges visual
features’ information using a global-local definition of capsules. Two types of capsules are distinguished:
representational capsules for features and discriminative capsules for conditions. The latter and the use of
eye fixations recorded with wearable eye tracking glasses allow the model to learn both to predict contextual
conditions and to estimate visual attention, by means of a multi-task loss function. Experiments show how
our approach is able to express either frame-level (global) or pixel-wise (local) relationships between features
and contextual conditions, allowing for interpretability while maintaining or improving the performance of
black-box related systems in the literature. Indeed, our proposal offers an improvement of 29% in terms of
information gain with respect to the best performance reported in the literature.

INDEX TERMS Top-down visual attention, eye fixation prediction, context-based learning, interpretability,
capsule networks, convolutional neural networks, autonomous driving.

I. INTRODUCTION
The way contemporary Computer Vision systems represent
our world seems progressively further from being understood
by humans. Both the performance and the complexity of
feature learning methods, which derives from the applica-
tion of Deep Learning (DL) and Convolutional Neural Net-
works (CNNs) to compelling but challenging vision tasks
such as object recognition [1] and tracking [2], or anomaly
detection in video surveillance scenarios [3], increase at the
same time. These powerful recent techniques lead to an
apparent paradox: Although CNN-based models are inspired
by how visual processing works in living organisms [4],
which should bring us to a closer insight of this function, its
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intricacy, either in humans or automated systems, places us
in an even more distant position.

Here arises one of the reasons why interpretability is a
paramount property for automated applications, especially in
those that involve several cognitive operations of the brain,
as the visual attention task [5]. Humans visually attend to
every situation based on its context, perceiving only relevant
information like a perfect synthesis machine [6]. Contextual
information could be expressed to a greater or lesser extent
attending to several features: size, texture, motion, semantics,
etc. [7]. The relationship between these visual patterns is not
always the same, but depends on each scene as a whole,
so it occurs in a dynamic way. This information framework,
as modeled by humans, can be defined as the combination
of latent representations of high level concepts, which are
characterized by their visual structure [8], [9]. It is also
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noteworthy the role of eye movements in visual percep-
tion [10]. The position and duration of eye fixations highlight
the most relevant elements of the scene when performing
tasks such as cooking or chess-playing, and can even con-
stitute a way to interpret thoughts [11].

Interpretability is also a desirable property for DL systems
when the degree of robustness of the application domain
to errors is low [12]. The cost of making wrong predic-
tions in legal, healthcare or transportation domains can be
very high. Consequently, it is necessary to develop new
methodologies which enable humans to understand, in a
straightforward way, the decisions made by models with a
black-box nature. This would also provide an enhanced con-
trol over unexpected events, at the same time it helps for
efficiently discovering extra useful information to improve
the systems behavior. For that purpose, the possibilities of eye
tracking for assistance in real applications such as industry
control [13] and video surveillance [14] have been assessed,
coming to the conclusion that there is a strong correlation
between fixation sequences of different users carrying out
the same task. Autonomous driving systems could be more
expressive if they were able not to only estimate but also
report about visual attention, providing both the users and
the monitorization system with the most significant spatio-
temporal locations (e.g. pedestrians, traffic signs and lights,
walls, etc.) in safety-critical situations (e.g. pedestrians sud-
denly crossing the street, overtakings, stopped vehicles on the
road or the hard shoulder, etc.) [15]. Drivers would feel safer,
at the same time the system would be more transparent and
reliable [16].

Capsule Networks [17], [18] have been recently shown
to be a promising technology which allows us to explore
new possibilities in the Computer Vision field. They make
the assumption that the visual world can be modeled by a
parse-tree like structure. This latent representation is dynam-
ically instantiated for each new input stimulus, for example,
at each new frame of a video sequence. The information flows
through the dynamic structure by means of routing elements
called capsules. This mechanism could be used to model
every hierarchical structure designed by the human being
with the aim of understanding the visual world: contexts or
scenarios, as well as intermediate concepts. Dynamic rout-
ing coefficients between capsules would be designed in this
regard to model both global and local spatial relationships.

Contexts could be broken down into multiple intermediate
level concepts called conditions. Conditions, being represen-
tative of the contextual information, could be understood as
the combination of several visual features. Visual attention for
autonomous driving is such an attractive challenge to solve
due to its complexity and diversity of scenarios. A driving
scenario can be defined as the combination of some contex-
tual conditions as follows: a sunny morning in downtown,
a cloudy evening in the countryside or a rainy night on a
highway. We can model these conditions by considering their
global and local relationship with some features, which can
be extracted using CNN-based architectures.

Following the previous statements, we propose a multi-
source encoder-decoder network with a fusion stage based
on Capsule Networks, which aims to estimate visual atten-
tion in autonomous driving scenarios. Our hierarchical sys-
tem, which we have called Global-Local Capsule Network
(GLCapsNet) and is shown in Figure 1, makes use of a
dynamic routing mechanism similar to the one presented
in [19] in order to define contextual conditions as the com-
bination of latent representations of visual features. The use
of a multi-task loss function allows the system to learn either
to model conditions presence, both locally and globally, or
to estimate visual attention, based not only on the previously
determined contextual structure, but also in human fixations,
which are recorded using wearable eye tracking glasses under
different real driving conditions. In summary, this article
makes the following contributions:

1) We introduce for the first time, to the best of our knowl-
edge, a hierarchical framework based on capsules for
context-aware visual attentionmodeling. Its structure is
designed at both concept (global) and pixel (local) lev-
els. This implies a new definition of capsules, as well as
modifying the dynamic routing mechanism and defin-
ing the contextual conditions’ presence.

2) We propose an emphasis function to enhance condi-
tions prediction, which improves the generation of the
internal structure of the model by emphasizing the
difference between local routing coefficients.

3) We carry out an in-depth analysis of our proposal,
comparing it with several methods in the literature for
autonomous driving. In contrast to these approaches,
the global-local definition of capsules enables, for the
first time, the interpretability of the model. For this
reason, we additionally analyze its results discovering,
on the one hand, at global level, the contribution of
visual features to contextual conditions and, on the
other hand, at local level, how features are at the spatial
locations highlighted for a given condition.

The rest of the paper is organized as follows. First, work
related with visual attention, autonomous driving and Cap-
sule Networks is summarized in Section II. Then, the archi-
tecture and formulation of the GLCapsNet model proposed is
described in Section III. Later, results on visual attention esti-
mation, together with the interpretability analysis provided by
our system for autonomous driving scenarios are covered in
Section IV. Finally, conclusions and future lines of research
are exposed in Section V.

II. RELATED WORK
A. VISUAL ATTENTION
Visual attention is an appealing line of research which applies
to many Computer Vision applications [20]: image segmen-
tation, image matching, super-resolution and object detec-
tion, among others. Its main objective can be summarized
as searching space regions in an image or a video sequence
which are useful or relevant to observers.
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FIGURE 1. Global-Local Capsule Network (GLCapsNet) block diagram. It models visual attention based on several contextual conditions of the scene,
which are represented as combinations of several spatio-temporal features (RGB, Optical Flow and Semantic Segmentation). Its hierarchical multi-task
approach routes Feature Capsules to Condition Capsules both globally and locally. On the one hand, the term ‘‘global’’ in Global-Local Capsules is
referred to the conditions’ prediction endpoints as they are defined for the whole scene, as well as their intermediate building blocks (feature-condition
relationships at frame level) and the conditions’ masking applied during training. On the other hand, ‘‘local’’ is referred to pixel-wise relationships
between capsule layers, which could be considered as specialized visual attention maps for each feature-condition pair. Non-capsule transformations are
in orange, capsule types (blocks of vector capsules) are cube-shaped and Condition Capsules are colored based on the legend, pyramids stand for
constrained matrix multiplication (Section III-D), routing coefficients distinguish between conditions’ prediction tasks via different line patterns (dashed,
dotted, etc.), Emphasize is defined in (5), LP stands for LocalPresence (8) and GP for GlobalPresence or conditions’ predictions (9).

Different factors, types and applications are considered
when classifying visual attention models. The most com-
mon distinction is Bottom-Up (BU) [21] or stimulus driven
v.s. Top-Down (TD) [22] or goal-driven. Some models are
spatial-based, while others are both spatial and time-based.
We can also differentiate between models oriented to the
search of salient regions [23] or objects [24], [25], consider
different features to model visual attention [26], [27], or even
design models tailored to particular tasks [28].

We can distinguish between classical and modern visual
attention approaches. The former refers to feature engi-
neering models, while the latter usually makes use of DL
architectures. Borji and Itti describe in [20] an extensive
state-of-the-art in classical visual attentionmodeling. By con-
trast, the reader is referred to [29] for references on mod-
ern approaches. There are lots of visual attention models
proposed in the literature, and many of them achieve good
results in eye fixation prediction. However, most of them
are BU approaches without a specific goal, which require

a higher level visual understanding to reach human-level
accuracy. Indeed, they are not able to determine the semantic
meaning of concepts or action cues in rich scenes yet, or even
the relative importance of image regions and objects [30].
Moreover, almost none of them provide interpretability prop-
erties, which would allow us to understand not only how we
predict where people look, but also how visual attention is
deployed in humans [31]. Last but not least, there is still a
lack of task-oriented databases annotated with eye-tracking
data, which would enable to assess the usefulness and per-
formance of existing architectures in potential applications
such as medical imaging or video surveillance. Incorporating
additional ground truth (GT) information to these datasets,
such as image-level labels for classification, pixel-level labels
for segmentation or frame-level labels for action recognition,
would significantly increase their value when pursuing the
design of explainable models.

In an effort to contribute to visual attention understanding
in real settings, we propose a TD system to carry out an
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autonomous driving task, which is able to offer interpreta-
tion about its predictions by means of Capsule Networks
[17], [18]. In addition, since the autonomous driving task
takes place in diverse scenarios, it is required a hierarchical
model that first understands the context in which attention
will be guided. Fernández-Torres et al. present in [32] their
hypothesis about visual attention, similar to the one stated in
this work: when looking at particular contexts, visual atten-
tion may be attracted by different events or elements in the
scene. They try to discover latent sub-tasks that guide the later
processing to the areas where those occur, which are modeled
as a combination of spatio-temporal features.

B. VISUAL ATTENTION FOR AUTONOMOUS VEHICLES
Autonomous driving is a complex taskwhere four subsystems
can be distinguished [33]. First, the sensing field, which
involves several onboard vehicle sensors to monitor the envi-
ronment, such as LIDARs, mono or stereo video cameras,
or even short/long-range RADAR systems and ultrasonic
sensors. In this work, we assume the use of video cameras.
Second, the perception module [34], which processes and
fuses the measurements coming from the sensors in order
to provide the vehicle with relevant information about the
driving context (e.g. velocities, free drivable areas, obstacles’
locations, etc.). Third, the path planning module [35], which
determines the motion and the optimal path that the vehicle
has to follow in order to avoid obstacles and reach a target
location, based on the outputs of the perception module.
Finally, the controlmodule [36], which commands the vehicle
to execute planned actions, such as accelerating, braking and
steering, among others.

Many computer vision algorithms are part of the perception
subsystem [37]: object detection [38] and semantic segmen-
tation [39], 2D [40] and 3D reconstruction [41], [42], optical
flow [43], [44], tracking [45], etc. Specifically, visual atten-
tion can play a relevant role in most of the essential functions
performed by autonomous vehicles since it has the purpose
of filtering the huge amount of data accessing the perception
module, thus guiding the car’s path planning and control
modules. However, there are hardly any autonomous driving
modules dedicated to the prediction of human eye fixations,
what motivates even more our proposal. From the point of
view of the region proposal, Vijay John et al. in [46] propose a
saliency map based on a GPS sensor, which identifies regions
of interest to help a CNN-based traffic signal detector in low
illumination conditions. In addition, center bias is a common
problem in autonomous driving scenarios. Tao Deng et al.
propose in [47] and [48] a TD approach which tries to detect
where the drivers look, guiding the visual attention process
by means of a vanishing point tracker, in order to deal with
the aforementioned bias.

It is difficult to build video datasets for autonomous driv-
ing applications, at the same time it is expensive to label
them with human fixations. Andrea Palazzi et al. describe
in [49], [50] the creation of DR(eye)VE, a video dataset
for autonomous driving composed of 74 video sequences

(approx. 6 hours) and fixations from 8 observers. They also
propose a CNN architecture based on 3D convolutions to
predict the driver’s focus of attention using this dataset.
Ye Xia et al. present in [51] an in-lab dataset called Berke-
ley DeepDrive Attention (BDD-A), together with a system
which includes a convolutional LSTM network and a method
to show relevant frames to the model more frequently. Tao
Deng et al. [52] provide a traffic driving video dataset with
fixations, together with a saliency detection model based
on compact convolutional-deconvolutional neural networks
(CDNN). Either BDD-A [51] or CDNN [52] databases have
more diverse fixations than DR(eye)VE [49], but recorded in
a laboratory and not under real driving conditions. Moreover,
DR(eye)VE [49] provides labels for contextual conditions,
which enables us to demonstrate our model’s capabilities.
For these two reasons, we have decided to use the latter in
our experiments. Last but not least, it should be stressed that
none of the solutions found in the literature for the prediction
of eye fixations in autonomous driving scenarios allow for
interpretation, which is the core contribution of our approach
based on capsules.

C. CAPSULE NETWORKS
A notable increase in Capsule Networks proposals has been
observed in the literature during the last two years. A capsule
is a group of neurons, which constitutes a routable item
through a dynamic network. Hinton, Sabour and Frosst pro-
pose in [17] and [18] the first versions of Capsule Networks.
The former routes vectors and the latter routes pose matrices
and activations, both through a CNN. Moreover, they both
define an iterative process to solve the problem of assigning
parts to wholes, assuming that a parse tree like structure is
dynamically carved out of a Neural Network.

In 2018, LaLonde and Bagci propose SegCaps [19], a Cap-
sule Network for image segmentation. It consists in an
encoder-decoder fully capsular architecture, which improves
the computational andmemory efficiency by introducing spa-
tial constraints in vector routing, as well as in shared weights.
Zhang et al. propose in [53] a Capsule Network for multi-
instance multi-label learning, which makes use of attention
mechanisms while routing. Another interesting approach is
shown in [54], where McIntosh et al. use text queries in
order to try to find actors and actions in video sequences.
Both video and text are encoded as capsules, which provide
a more effective representation than convolutional layers,
and there is a mechanism to fuse them. DeepCaps [55]
is proposed in 2019, which uses a 3D convolution-based
dynamic routing algorithm. Attention Routing CapsNet [56]
is also released in 2019, where dynamic routing and squash
activations are replaced by a new routing algorithm and a
convolutional activation function, respectively. In addition,
Tsai et al. recently propose a new routing algorithm for Cap-
sule Networks, which performs at par with ResNet-18 with
4x fewer parameters [57].

We aim to solve visual attention given a context and
to provide interpretability for model predictions. For that
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purpose, Capsule Networks allow to group information in
blocks of capsule types and to build relationships between
them. On the basis of the previously cited work, we design
our own version of Capsule Network, GLCapsNet, where
capsule types constitute visual features and contextual con-
ditions. This enables the modularization of the architecture
of the model, which computes condition’s predictions and
feature-condition relationships at both global and local visual
levels.

III. GLOBAL-LOCAL DYNAMICS OF VISUAL ATTENTION
A. MODEL OVERVIEW
In this work, we propose a hierarchical multi-task approach
which is able to estimate eye fixations based on several
contextual conditions of the scene. Following the assump-
tion made by Fernández-Torres et al. in [32], our system
begins with the following hypothesis: Context-driven visual
attention in video can be modeled by considering several
conditions that define scenarios which, in turn, are repre-
sented as combinations of several spatio-temporal features.
For instance, an autonomous driving context can be defined
as a cloudy morning across downtown, and each of these
conditions can be represented as combinations of features
(e.g. color, motion, semantic categories, etc.).

The whole architecture proposed is shown in Figure 1.
As can be appreciated, the model is built by means of a
latent structure, relating some intermediate blocks (routing
Feature Capsules to Condition Capsules) both locally and
globally in the space dimension. This is done dynamically for
each input stimulus, which allows for interpretation. In sub-
sequent sections, we explain what globally and locally mean
in this model. The whole system first encodes the feature
representations into Feature Capsules, to be converted into
Condition Capsules via the routing algorithm, and finally to
be concatenated and decoded into the visual attention map.
In addition, it leverages routing coefficients to predict the
conditions and to provide interpretability capabilities.

Particularly, with the aim to evaluate our system in
autonomous driving scenarios, conditions are based on the
ones provided by the dataset considered for the experiments.
The dataset used is DR(eye)VE [49], which involves the
following groups of conditions:

• Daytime: Morning, Evening, Night.
• Weather: Sunny, Cloudy, Rainy.
• Landscape: Downtown, Countryside, Highway.

The following subsections describe in detail the different
stages of the system proposed.

B. VISUAL FEATURE BRANCHES
Here we describe the feature branches that encode the feature
level capsules. Three features are extracted from each video
frame: color in RGB space; motion estimation, using an
optical flow algorithm; and visual entities, using a semantic
segmentation algorithm.

First, color channels are normalized by subtracting their
mean and dividing by three times their standard deviation
(which covers the∼ 99.7% of the data samples). In addition,
values are clipped to the range [−1, 1]. Second, the optical
flow algorithm used for motion estimation is an efficient
implementation1 of TVL1 [58]. Once motion vectors are
computed, the motion feature is made of 3 channels: hor-
izontal and vertical components, together with the motion
magnitude (calculated using the Euclidean norm). Horizontal
and vertical components are clipped to the range [−20, 20].
Furthermore, motion channels are normalized according to
the procedure described for color channels above. Finally,
the semantic segmentation algorithm used is DeepLabv3+2

pretrained on Cityscapes dataset [39]. Each output pixel is
normalized to sum to 1 along class channels (19 classes
for Cityscapes). Dimensions for each feature described are
112×112×3, 112×112×3 and 112×112×19, respectively.

Figure 2 shows the encoder-decoder structure used for
training each branch. On the one hand, the encoder block
constitutes the branch itself and encodes visual features into
latent Feature Capsules. On the other hand, the decoder block
decodes information into a visual attention map. Once each
branch is trained, the decoder part is removed from the
system. Both encoder and decoder consist of convolutional
structures with several max pooling or bilinear upsampling
layers, respectively, including dropout layers behind these to
avoid overfitting. A ReLU activation function is introduced
behind each convolutional layer, except at the final layer
of the decoder block, which is a 1 × 1 Conv2D layer and
performs a linear combination of the 2D activation maps
at its input, being followed by a linear activation. The lat-
ter is usually done to solve visual attention tasks; other-
wise, the resulting attention map might be distorted. Dashed
and dotted borders in some layers indicate that weights are
obtained from a pre-trained network during a Transfer Learn-
ing phase. These weights are extracted from the first 3 layers
of the VGG-CNN-M model [59] trained on the ImageNet
dataset [60]. Color and optical flow branches use these 3 lay-
ers, while the semantic segmentation branch does not use
the first one (dotted line), due to its number of input maps
is 19 instead of 3. The structure has also shortcut connec-
tions, in an attempt to preserve the spatial resolution of the
down-sampled input features. These connections are removed
once each branch is transferred to the final system. Finally,
we apply a data augmentation technique while training each
feature branch. The augmentation consists of cropping and
mirroring video frames with a certain probability. For ran-
dom cropping, frames and GT fixation maps are first resized
between reasonable bounds (original and double the dimen-
sions of the images, keeping their aspect ratio). Then, a slack
ratio is defined, which determines the crop search space and is
ranged from 0 (crop must be tight to the center of the resized

1Source code taken from https://github.com/feichtenhofer/gpu_flow
2Source code taken from https://github.com/bonlime/keras-deeplab-v3-

plus
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FIGURE 2. Encoder-decoder architecture for branch training. Convolutional layers are defined by their kernel size and number of filters; in max pooling
layers, p refers to padding and s to strides; the rate of units to drop is determined in dropout layers, and the output spatial size is indicated in bilinear
upsampling layers. Dashed and dotted layers are initialized using the pre-trained weights from the first 3 layers of the VGG-CNN-M model [59]. In the case
of the semantic segmentation branch, pre-trained weights are not used in the first dotted layer. Skip connections are incorporated to improve training,
starting at dashed layers and ending at their mirror ones from decoder. Data augmentation stage is defined as the first step, and only applies for training.

image) to 1 (all search space available to locate the crop).
The random crop size is equal to 112× 112 (original dimen-
sions of frames and GT fixation maps).

C. GLOBAL-LOCAL CAPSULE NETWORK
Once visual feature branches are pre-trained, their weights
are used in the whole architecture of the visual attention sys-
tem proposed, which we have called Global-Local Capsule
Network (GLCapsNet) and is shown in Figure 1. As can be
seen, the last layers of the encoders or branches constitute the
Feature Capsules, which are fused using a specific routing
mechanism. On the basis of the Feature Capsules, 3 inde-
pendent tasks are built, one for each group of contextual
conditions introduced above (Daytime, Weather and Land-
scape). This is due to conditions belonging to the same group
are mutually exclusive. We define Condition Capsules as the
union of each group of conditions. Each group of conditions
is defined as the union of capsule types (convolutional vol-
umes), being each capsule type a group of vector capsules.
Each of these vector capsules represents a unique condition
defined by the capsule type to which they belong. This is
because we require routing and presence (routing aggrega-
tions as LP and GP in Figure 1) to be both locally and globally
defined, so there is a 2Dmatrix for each pair feature-condition
to relate their capsules, a 2D matrix per condition to express
its LocalPresence, and a single probability value per condi-
tion to define the GlobalPresence. Additionally, we define
representational capsule types as the ones that only represent
latent information (in this particular case, Feature Capsules,
which represent visual information at the input of the system),
and discriminative capsule types as those which allows to
predict the presence of a concept based on aggregated routing
values from the previous stage (in this particular case, Con-
dition Capsules). Finally, all capsule types are concatenated
along the filters dimension and the last stage of the system
is a convolutional decoder, which generates a context-driven

FIGURE 3. Decoder block for the whole architecture, which converts
Concatenated Capsules into the visual attention map. Convolutional
layers are defined by their kernel size and number of filters, and the
output spatial size is indicated in bilinear upsampling layers.

visual attention map for eye fixation prediction based on the
conditions predicted for a given scenario. Figure 3 shows in
detail the structure of this decoder, which is similar to the
one defined above for visual feature branches. Unlike during
visual feature branches pre-training, we do not consider a data
augmentation procedure in the whole architecture. Moreover,
pre-trained weights are not frozen but updated during the
whole system training stage.

D. LOCAL ROUTING DYNAMICS
Here are detailed the GLCapsNet routing equations. Formu-
lation is similar as in [19], despite both approaches have some
critical differences. Leaving the autonomous driving applica-
tion aside, the main difference is the purpose of the capsule
modules. The authors of [19] try to encode better represen-
tations of the convolutional information and to decode it into
capsules, whose modulus are able to perform the main task
(object segmentation), including regularization with masking
(similar to [17]) to improve internal representations. In con-
trast, our goal is to provide an internal concept-level self-
organized structure for each input stimulus or video frame,
incorporating intermediate endpoints which improve internal
representations, at the same time they predict contextual con-
ditions enabling interpretability. If we go into the formulation
details, both approaches impose local spatial constraints to
the original dynamic routing [17], performing an operation
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Algorithm 1 Dynamic Routing Between Capsules in GLCapsNet
1: procedure Routing(ûxy|t li t l+1j

, d, l, kh, kw)

2: for all capsule types t li within a kh × kw kernel centered at position (x, y) (layer l) and capsule xy in capsule type t l+1j
(layer l + 1): bt li t

l+1
j |xy

← 0
3: for d iterations do
4: for all capsule types t li (layer l): rt li t

l+1
j |xy

← softmax(bt li t
l+1
j |xy

)

5: for all capsules xy in t l+1j (layer l + 1): pxy|t l+1j
←
∑

i rt li t
l+1
j |xy

ûxy|t li t
l+1
j

6: for all capsules xy in t l+1j (layer l + 1): vxy|t l+1j
← squash(pxy|t l+1j

)

7: for all capsule types t li (layer l) and capsules xy in t l+1j (layer l + 1):
bt li t

l+1
j |xy

← bt li t
l+1
j |xy

+ cosine(ûxy|t li t
l+1
j
, vxy|t l+1j

)

8: return vxy|t l+1j

that behaves as a convolution (parameter sharing across spa-
tial locations within a capsule type), while keeping routing
operation across all vector capsules. In [19], this convolution
operator is shared by all capsule types in the previous layer,
but there is a different one for each capsule type in the next
layer. Here we remove this sharing property for the previous
layer and build a different convolutional kernel for each pair
of capsule types between consecutive layers, while keeping
parameter sharing across spatial locations. This is necessary
due to GLCapsNet is required first to merge three feature
branches with distinct behaviours, and then to build groups of
capsules that represents quite different contextual conditions.
This is not the same as in the encoder-decoder fully capsular
system in [19], where they merge groups of capsules from the
same layer and without conceptual interpretation, therefore
with similar properties.

First, let us introduce a child capsule layer l, whose output
is a set of n capsule types T l = {t l1, t

l
2, . . . , t

l
n}. Each capsule

type t li ∈ T l consists of a hl × wl grid of zl-dimensional
child capsules C = {c11, . . . , c1wl , . . . chl1, . . . , chlwl }, being
hl × wl the spatial dimensions of the output of layer l − 1.
Parent capsule layer l + 1 outputs a set of m capsule types
T l+1 = {t l+11 , t l+12 , . . . , t l+1m }. Each capsule type t l+1j ∈

T l+1 consists of a hl+1 × wl+1 grid of zl+1-dimensional par-
ent capsules P = {p11, . . . , p1wl+1 , . . . phl+11, . . . , phl+1wl+1},
being hl+1 × wl+1 the spatial dimensions of the output of
layer l.
Given a capsule type t l+1j ∈ T l+1, its associated par-

ent capsules pxy ∈ P receive a set of prediction vectors
{ûxy|t l1t

l+1
j
, ûxy|t l2t

l+1
j
, . . . , ûxy|t lnt l+1j

} from each spatial location

(x, y) in each child capsule type t li ∈ T
l . In order to compute

this set of prediction vectors, a transformation matrixMt li t
l+1
j

of shape kh × kw × zl × zl+1 is learned for each pair t li and
t l+1j , being kh × kw the shape of a user-defined kernel. Thus,
we have |T l | × |T l+1| transformation matrices, where |T l |
and |T l+1| are the number of capsule types in layer l and l +
1, respectively. Our visual attention system for autonomous
driving scenarios considers three Feature Capsules to perform
three prediction tasks. Each task involves three contextual

conditions. Therefore, assuming kh = kw = 3 and being
zl = 512 and zl+1 = 64, we define 3× 3 = 9 transformation
matrices of shape 3 × 3 × 512 × 64 for each task. Each
matrix is applied to a sub-grid of child capsules outputs
Uxy|t li of shape kh × kw × zl , which is centered at location
(x, y) in layer l. Then, the whole set of prediction vectors
is computed as ûxy|t li t

l+1
j
= Mt li t

l+1
j
× Uxy|t li , ∀t

l
i ∈ T l and

∀t l+1j ∈ T l+1. Each Mt li t
l+1
j

does not depend on the spatial
location (x, y), as is shared across all spatial locations given a
pair of capsule types t li and t

l+1
j . Re-defining parent capsules

as pxy|t l+1j
to distinguish between parent capsule types, final

input to each parent capsule is computed as the weighted sum
of the prediction vectors as follows:

pxy|t l+1j
=

∑
i

rt li t
l+1
j |xy

ûxy|t li t
l+1
j

(1)

where rt li t
l+1
j |xy

are the routing coefficients determined by
the dynamic routing procedure summarized in Algorithm 1.
In total, |T l | × hl+1 ×wl+1 × |T l+1| routing coefficients are
computed, which allow to express relationships between each
pair of child and parent capsule types t li and t

l+1
j both locally

(hl+1×wl+1) and globally by applying the following equation
(only for the sake of interpretation):

Rt li t
l+1
j
=

1
hl+1wl+1

∑
xy

rt li t
l+1
j |xy

(2)

Local routing coefficients are computed from the log prior
probabilities bt li t

l+1
j |xy

that prediction vector ûxy|t li t
l+1
j

should
be routed to parent capsule pxy|t l+1j

, then applying a softmax
function along the m parent capsule types:

rt li t
l+1
j |xy

=

exp
(
bt li t

l+1
j |xy

)
∑

j exp
(
bt li t

l+1
j |xy

) (3)

This means that given a fixed spatial location (x, y), a child
capsule is weighted before being sent to each parent cap-
sule, with sum equal to 1 along parents. First, as in [19],
the creation of prediction vectors is locally constrained and,
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second, routed child capsules are only those within the user-
defined kernel, due to prediction vectors creation constraints.
Activation applied to each vector capsule during routing is
the non-linear squashing function proposed in [17]:

vxy|t l+1j
=

∥∥∥pxy|t l+1j

∥∥∥2
1+

∥∥∥pxy|t l+1j

∥∥∥2
pxy|t l+1j∥∥∥pxy|t l+1j

∥∥∥ (4)

This activation is also applied to the output of both rep-
resentational and discriminative capsule types. An agree-
ment function is used to update log prior probabilities while
routing, and here we propose to use the cosine similarity

axy|t li t
l+1
j
= cosine(vxy|t l+1j

, ûxy|t li t
l+1
j

) =
v
xy|tl+1j

·û
xy|tli t

l+1
j∥∥∥∥vxy|tl+1j

∥∥∥∥·∥∥∥∥ûxy|tli tl+1j

∥∥∥∥
as opposed to the scalar product defined in previous works
[17], [19]. We assume d = 3 routing iterations to update log
prior probabilities.

E. MULTI-TASK LEARNING
Global-Local Capsule Network proposed constitutes a multi-
task learning framework, where four different tasks are per-
formed: three contextual conditions prediction tasks and a
visual attention estimation task. Discriminative capsule types
are required to predict contextual conditions. During the
training phase, objective labels for these first classification
tasks are encoded in one-hot. The function that provides this
functionality is called Presence and has 2 main requirements:
1) To express both local and global presence of the conditions
at the scenario, which allows for visual attention interpreta-
tion, and 2) To improve the final visual attention estimation.
For that purpose, Presence is a probability distribution com-
puted over local routing coefficients rt li t

l+1
j |xy

, which range
from 0 to 1 (see softmax function in (3)), for each of the three
conditions prediction tasks separately. These coefficients are
first preprocessed by the Emphasize function. This function
emphasizes the difference between local routing coefficients:

et li t
l+1
j |xy

= sigmoid

(
β ′ ·

(
rα
t li t

l+1
j |xy

− 0.5
))

(5)

α =

ln

(
ln

(
1

|T l+1|

1− 1
|T l+1|

)
·

1
β ′
+ 0.5

)
ln
(

1
|T l+1|

) (6)

β ′ = 10 · (β + 0.5) , where 0 ≤ β ≤ 1 (7)

Emphasize is designed as a configurable sigmoid function
which is also in the range [0, 1], and it is applied only dur-
ing the training stage. Parameter α controls the node point,
which is the intersection between this function and a linear
function between 0 and 1. Routing values below this point
are decreased while routing values above it are increased.
β ′ is the strength of the sigmoid and is linearly projected to
a space where β values from 0 (weak) to 1 (strong) offer
reasonable emphasis without distortion. Variable α is thus
a constant defined by β ′ and |T l+1|, which depends on the

system architecture. Therefore, β is a hyper-parameter which
requires validation during the experiments. This formulation
enforces the node point to be 1

|T l+1|
, which is the equiproba-

bility point for all parent capsule types’ Presence.
Once routing coefficients are emphasized, Presence func-

tion is applied, first locally as LocalPresence (LP), by com-
puting the average of the routing coefficients at each spatial
location over the number of input capsules (feature capsules),
and then globally as GlobalPresence (GP), by computing
the average of LP over all spatial locations. Only the global
endpoint is controlled by a loss function, since condition
labels are provided at frame level. The formulation is as
follows:

LPt l+1j |xy
=

1
|T l |

∑
i

et li t
l+1
j |xy

(8)

GPt l+1j
=

1
hl+1wl+1

∑
xy

LPt l+1j |xy
(9)

The global function enforces routing coefficients to make
the best effort at driving child capsules information to the
direction of the discriminative capsule type associated to the
condition which is present at the scene. In addition, during
the training phase, capsule types associated to conditions
which are not present in the scene, according to GT labels,
are masked with 0’s, which constitutes a learning guide.
Finally, below is detailed the multi-task loss function, which
is comprised of a Kullback-Leibler Divergence (KL) for the
eye fixation estimation task and the Spread Loss (SL) defined
at [17] for contextual conditions prediction:

KL(ĝt , gt ) =
∑
xy

gtxy log

(
ε +

gtxy
ε + ĝtxy

)
(10)

SLt l+1j
= max(0,m− (GPt l+1o

− GPt l+1j
))2 (11)

SL =
∑
j6=o

SLt l+1j
(12)

Loss = KL(ĝt , gt )+ γ ·
∑
n

SL(GPn,On,m) (13)

where gt and ĝt are the GT fixation map and the esti-
mated visual attention map, respectively; ε is a regularization
parameter of the KL function; GPt l+1o

is the GP value at the
one-hot activated position;GPn andOn are theGP values and
the one-hot encoded labels for the n discriminative task of the
model, respectively; and finally m (margin) and γ are design
parameters, which are empirically determined.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL DESIGN
1) DATASET
Our main goal is to demonstrate that GLCapsNet is able to
model and interpret visual attention in autonomous driving
scenarios, attending to several contextual conditions. For that
purpose, results are given for the DR(eye)VE dataset [49],
which contains car driving video sequences. GT maps are

VOLUME 8, 2020 217075



J. Martínez-Cebrián et al.: Interpretable Global-Local Dynamics for the Prediction of Eye Fixations in Autonomous Driving Scenarios

based on observer’s eye fixations recorded with wearable eye
tracking glasses under the different real driving conditions
defined in Section III. Training, validation and test sets are
defined as in the original paper: videos from 1 to 37 for
training, videos from 38 to 47 for test, and frames from
the training set which range from 3501 to 4000 are left for
validation.

2) EXPERIMENTAL SETUP AND BASELINES
The experimental setup is as follows. First, we train the fea-
ture branches using data augmentation, pre-trained weights
from the VGG-CNN-M model [59], a decoder guide and
mirror shortcuts. Then, branches’ decoders are removed and
remaining encoders are merged by GLCapsNet using Trans-
fer Learning. More details are described in Section III-B.
We define some baselines to compare with in an ablation
study, as well as the proposed approach:
• Feature-based models: We consider one model per fea-
ture branch (RGB, OF, Segmentation) by using the
architecture defined in Figure 2, but without remov-
ing the decoder block once it is trained. Subsequent
baselines defined below, which are built on top of
these encoding branches, do not use data augmenta-
tion, pre-trained weights fromVGG-CNN-M [59] again,
branches’ decoders or shortcut connections.

• Fusion-based models: They fuse the 3 feature-based
models by considering 2 direct approaches:
– Simple Fusion (SF): We compute the average of

the visual attention maps predicted at the output
of the decoder block of the 3 feature-based models
described above. This constitutes the most straight-
forward fusion.

– Generic Fusion (GF): Given the GLCapsNet pro-
posed, we replace the capsule blocks, dynamic
routing algorithm, Presence function and the final
concatenation by a classical convolutional pipeline
with an analogue configuration. That is, a fully
convolutional network with N × |T l+1| × zl+1 =
3× 3× 64 = 576 filters, being N = 3 the number
of auxiliary tasks as it is stated in Section III-E,
|T l+1| = 3 the number of contextual conditions
per conditions group considered in GLCapsNet and
zl+1 = 64 the number of filters per condition
capsule type, as it is stated in Section III-D.

• Capsule-based models: They fuse the output at the
encoder block of the 3 feature-based models via capsule
layers, with the aim of evaluating the contribution of
each of the components of our proposal, drawing from
the SegCaps modules presented in [19]:
– SegCaps module (SC): It merges branches using the

capsule module proposed in [19], defining 9 output
capsule types, one per condition in GLCapsNet.
Weights are shared between all the input capsule
types, as in [19].

– Non Shared (NS-SC): SC but stopping sharing
weights between input capsule types.

– 3 Pathway (3-NS-SC): It divides the NS-SC into
3 parallel branches, one per group of condi-
tions considered in GLCapsNet (Daytime, Weather,
Landscape), but without explicit knowledge about
conditions yet.

– Mask Conditions (Mask-3-NS-SC): It applies the
masking procedure described in Section III-E to
3-NS-SC. This baseline is the first one specialized
by conditions.

– Multi-Task (MT-Mask-3-NS-SC): It defines the
multi-task framework by adding Presence function
toMask-3-NS-SC, but without applying Emphasize
function (5) yet. This baseline is even more special-
ized by conditions.

– GLCapsNet: It applies the Emphasize function to
theMT-Mask-3-NS-SC baseline, obtaining the final
proposed system.

Moreover, we report the results obtained by the three
related approaches in the state-of-the-art introduced in
Section II-B: BDD-A [51], CDNN [52] and DR(eye)VE [49].
In order to provide a fair comparison, all methods have been
re-trained by using the DR(eye)VE [49] database.

3) EVALUATION METRICS
On the one hand, accuracy is used as the evaluation metric
for conditions prediction. On the other hand, due to lack of
consensus in how to evaluate visual attention, many metrics
are proposed in the literature, each with different properties.
Bylinskii et al. [61] expose an exhaustive analysis about
them, being used in this work Kullback-Leibler Divergence
(KL), Information Gain (IG), Pearson’s Correlation Coeffi-
cient (CC) and shuffled Area Under Curve (sAUC). More-
over, we take from Leboran et al. [62] the shuffled variant
of Normalized Scanpath Saliency (sNSS). The lower KL the
better the results, unlike with the rest of the metrics used.
KL and CC are distribution based metrics, while IG, sAUC
and sNSS are location based. CC and sAUC are bounded
in the range [0, 1] and KL is only lower bounded by 0.
IG and sNSS are not bounded. For IG, a value over 0 tells
that prediction is better than baseline. For sNSS, a value less,
equal or greater than 0 indicates anti-correspondence, chance
or correspondence between maps above chance, respectively.
IG, sNSS and sAUC require the computation of a shuffle-map
(commonly called baseline or bias for IG), which is obtained
as the average of fixations from the training set (Monte Carlo
estimation of bias). This shuffle-map guides IG, sNSS and
sAUC to provide a higher penalty to biased predictions. Par-
ticularly, sNSS and sAUC use it as a distribution probability
map to gather negative samples for their computation.

4) TRAINING AND IMPLEMENTATION DETAILS
Code is developed in Python using TensorFlow and Keras,
and it is publicly available on GitHub.3 Hardware is com-
posed of a CPU (8 cores and 16 GB of RAM) and a NVIDIA

3GLCapsNet code is publicly available on https://github.
com/javiermcebrian/glcapsnet
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TABLE 1. Ablation study for the GLCapsNet model proposed using the DR(eye)VE dataset [49].

TABLE 2. Results obtained in the DR(eye)VE dataset [49] for the GLCapsNet model proposed and related methods in the state-of-the-art.

TABLE 3. Inference computational time and frame rate obtained in the DR(eye)VE dataset [49] for the GLCapsNet model proposed and related methods in
the state-of-the-art. Hardware used is a NVIDIA GTX 1070 GPU. Models and input frames are assumed to be already loaded in memory. BDD-A [51] has a
feature extraction (f.e.) stage, while DR(eye)VE [49] and our approach GLCapsNet has to compute optical flow (of) and semantic segmentation (seg) maps
first.

GTX 1070 GPU. All networks are trained using Adam opti-
mizer with a learning rate of 10−4 and an exponential decay of
0.99. Batch size is 32 for feature-based models and SFmodel,
and 8 for GF and capsule-based models. Models are trained
during 50 epochs, but saving checkpoints only when valida-
tion loss is improved, and the number of batches per epoch
is 512. Multi-task parameters are empirically determined
according to the validation set defined in DR(eve)VE [49]:
β for Emphasize function is set to 1, namely the highest
strength, as described in Section III-E; margin m is set to 0.9
as in [17], but without scheduling; and γ is set to 0.1. The sen-
sitivity of the latter, which balances the visual attention esti-
mation and contextual conditions prediction losses, is higher
than for the first two parameters, sowe exhaustively try values
in the range [0.1, 1]. This configuration takes approximately
3 hours to train.

B. ABLATION STUDY
First of all, it is required to justify some design decisions of
the proposed system. For that purpose, we conducted the fol-
lowing ablation study by considering the baselines described
in Section IV-A2. Results are summarized in Table 1. As can
be appreciated, individual feature-based models allow for
a good prediction of eye fixations, even their CC, sAUC
and sNSS scores are not so far from the best perform-
ing models, especially in the case of RGB. However, their

performance is significantly lower when we look at KL and
IG, which means that probably CC, sAUC and sNSS are
more saturated metrics, being KL and IG more expressive
for our analysis. Fusion-based models perform better than
their feature building blocks separately, except for SF when
being compared according to sNSS, which may indicate that
a too simple fusion strategy, such as an average over the
feature-based maps, could deteriorate the individual predic-
tions. This fact positions GF as the best straightforward and
convolutional baseline, which could compete with capsule-
based approaches.

SC baseline is equivalent to apply the proposal in [19],
achieving the worst results out of the capsule-based models
because the weights are shared between feature capsules,
which limits the power of our approach whenmerging feature
branches of different nature. This approach is even worse
than feature-based and fusion-based baselines for most of the
metrics. NS-SC is the first capsule-based baseline which is
comparable to GF, as it can merge feature patterns properly
in the capsule framework. Results improve even more when
splitting the capsule module into 3 pathways (3-NS-SC),
due to the addition of structure and hierarchy to the model.
The critical point comes at Mask-3-NS-SC, which achieves
almost the best results in the study thanks to the implicit spe-
cialization of the condition capsules, which are masked with
0’s for the first time during the training stage when they are
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FIGURE 4. Visual attention maps obtained for some example frames in
DR(eye)VE dataset [49] by three different approaches: DR(eye)VE [49] (the
best competitor), GF (the best fusion-based baseline) and our proposed
GLCapsNet.

not present in the scene. The insertion of the Presence func-
tion, which establishes the multi-task framework (MT-Mask-
3-NS-SC), significantly drops the performance according to
KL and IG scores, but offers a new output, the prediction
of the conditions, which allows for the interpretation of the
system. This drop in performance is solved by making use
of the Emphasize function (GLCapsNet, our final proposal),
which even improves the conditions prediction.

We can conclude that the most important insight of this
analysis is that the specialization by conditions is improving
performance. This is more notable in the usage of masking,
but not negligible in the usage of multi-task via Presence-
Emphasize, as Emphasize clearly improves the conditions
prediction and provides stability to the visual attention met-
rics. Finally, this specialization is even more important due
to the interpretability capabilities of the model, which are
explained in detail in Sections IV-D and IV-E and would not
be allowed by a separate simple model to predict conditions.

C. RESULTS ON THE DR(EYE)VE DATASET
1) QUANTITATIVE RESULTS
Table 2 summarizes the results obtained in the DR(eye)VE
dataset [49] for the proposed system and other existing solu-
tions in the state-of-the-art. In general, as can be appreciated,
contextual conditions prediction task is easier to learn than

the eye fixation prediction task. Nonetheless, in terms of
visual attention estimation, GLCapsNet matches or outper-
forms the results obtained by related approaches in the liter-
ature, offering a huge improvement for the IG metric. It can
be seen that DR(eye)VE [49] model is the best competitor
compared toGLCapsNet, but there is still a significantmargin
in terms of KL and IG metrics. In addition, GLCapsNet pre-
dicts the contextual conditions and provides interpretability
of the results. Regarding contextual conditions, Daytime and
Landscape predictions are quite accurate but Weather pre-
diction achieves lower results. Our experiments demonstrate
the noteworthy ability of convolutional capsules to effectively
learn hierarchical representations of visual attention. This
opens the door to their extension using temporal modules,
such as Conv3D or ConvLSTM, which were considered for
the design of DR(eye)VE [49] and BDD-A [51] architectures,
respectively. Indeed, although our system already receives
as input a motion feature based on optical flow, temporal
modules could be useful to model drivers’ dynamic behavior
during the training stage, taking into account the spatio-
temporal information gathered by eye fixation sequences.

2) QUALITATIVE RESULTS
Figure 4 shows the visual attention maps obtained by
DR(eye)VE [49] (the best approach in the literature) and GF
(the best fusion-based baseline), together with our proposed
GLCapsNet (the best capsule-basedmodel) for some example
frames in the DR(eye)VE dataset [49]. The frames corre-
spond to different contexts, with the aim to analyze these
models in a wide range of situations. In the first frame, we can
see that the observer is going to steer to the right while
there is an inbound traffic lane, which is well modeled by
GLCapsNet. In the second frame, only the proposed system
is able to accurately focus the attention to the right while
keeping slight and smooth attention cues from the previous
situation (the main road where the driver comes from). In the
third example, the observer is going to turn to the left, but in
the right side there is something unusual that is part of the
attentional focus, as the proposed system is capturing better
than the other systems. In the fourth example, GLCapsNet is
the best model that tries to attend to the left steering while
expressing slight intentions for the right side, from where
unexpected vehicles could come, but DR(eye)VE [49] model
is blurring the predicted attention map. In the fifth row, all
the models perform in a similar way, but our approaches are
more accurate than DR(eye)VE [49]. Finally, in the last row,
the proposed system follows the GT pattern much better than
the baselines. In addition, DR(eye)VE predictions seem to be
too textured in general, allowing us to see the frame’s details.
Therefore, we can conclude that GLCapsNet provides the
best qualitative results.

3) INFERENCE COMPUTATIONAL TIME AND FRAME RATE
Table 3 shows the inference computational time and frame
rate for the proposed approach and related methods in
the state-of-the-art, given a system with a NVIDIA GTX
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FIGURE 5. Global dynamics shown as dendrograms for each group of conditions in DR(eye)VE dataset [49]. Dynamics are explained as Presence does at
the first column. Then, they are decomposed into routing coefficients, providing the features point of view: RGB, OF and Segmentation.

1070 GPU. Models and input frames are assumed to
be already loaded in memory. We take into account the
computational time of additional stages prior to some mod-
els: BDD-A [51] has a feature extraction (f.e.) stage, while
DR(eye)VE [49] and our approach GLCapsNet have to com-
pute optical flow (of) and semantic segmentation (seg) maps
first, using the same algorithms. While BDD-A [51] and
CDNN [52] achieve the lowest average time per frame, their
performance in terms of eye fixation prediction is signifi-
cantly lower than ours, as was discussed in Section IV-C1.
CDNN is faster than BDD-A, as it only makes use of a single
encoder-decoder architecture without temporal dependencies
(BDD-A uses ConvLSTMmodules). In contrast, DR(eye)VE
and our GLCapsNet are combining different feature extrac-
tors, which improves their quality but drops their efficiency
in comparison with the other methods in the table. When
contrasting our approach to the best competitor in quantitative
terms, DR(eye)VE, we can observe that our approach is more
efficient, even offering a reasonable frame rate of 8 fps while
running in a not extremely powerful hardware, compared to
the one that could be placed in an autonomous vehicle to deal
with computer vision tasks.

D. INTERPRETABILITY: GLOBAL DYNAMICS
For each video frame, GLCapsNet is able to route fea-
tures’ information structures to conditions’ ones by means of

contextual dynamics, building a hierarchical structure with
the goal to represent visual attention. In this section, dynam-
ics are summarized to analyze their general behavior, so we
make use of global information about routing (2) and Glob-
alPresence (9). These mechanisms provide interesting inter-
pretability capabilities to the system proposed, which allow
to determine what is the contribution of each visual feature to
each contextual condition, which conditions are difficult to
model, what their most common mistakes are, if we should
extend the dataset for these difficult cases or re-label them
properly, etc.

Figure 5 shows 12 dendrograms which serve to represent
global dynamics. Each row of dendrograms corresponds to
each group of conditions (Daytime, Weather, Landscape),
being each condition defined by a color legend for the sake
of interpretation. These colors are placed at dendrogram’s
left and up sides. Each cell represents the divergence of each
pair of conditions by a numeric value and a color, where
the numeric value is normalized between 0 and 1 and the
color is normalized along all dendrograms’ numeric values.
In this way, each dendrogram shows how different each
group of mutually exclusive conditions are. This difference
is explained from multiple points of view (see columns):
Presence and features. AsPresence is based on routing values
(see (5), (8) and (9)), we can see Presence dendrograms as the
resulting combined behavior from features’ dendrograms.
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Each dendrogram is computed as follows. First, routing
coefficients and Presence are generated for each frame in the
test set. Then, the values that apply for mutually exclusive
groups of conditions and each particular feature are collected.
For example, for the top-left dendrogram we select Daytime-
Presence only, while for the one on its right we select the
routing coefficients for the relationship Daytime-RGB. Once
we have collected the data, as we do not want the distribu-
tion of the values themselves, but the distribution of when
they are correctly predicting the conditions, we group the
values by considering the real condition labels and, after that,
we average the results to estimate the probability distribu-
tions. Finally, numeric values are computed using Jensen-
Shannon Divergence (JSD) between each pair of conditions:

JSD(P,Q) =
1
2
KL(P,M )+

1
2
KL(Q,M ) (14)

where P and Q are the data defined above as probability
distributions for each case, M =

1
2 (P + Q) and KL is

Kullback-Leibler Divergence defined in (10), but assuming
1D probability distributions. JSD values behave as a soft met-
ric (before hard predictions), based on Presence and routing
values, which can serve for interpretability measurement.

As can be seen in Figure 5, OF is less discriminative than
the other features, being RGB the best in these terms. This
means that RGB is able to route information better than the
other features, guiding the main flow to where is needed (i.e.
the condition defined for each frame). This guiding property
is due to the specialization of the model by conditions, and
is desirable since information flow gets structured and ineffi-
ciencies are reduced. As an example, the RGB capsule type
of the system is able to guide information efficiently with
a 0.49 discriminative power between Morning and Night.
For a better understanding, if all dendrogram values were 0,
we could say that each feature’s capsule type sends informa-
tion to each conditions’ capsule types group as the Generic
Fusion would do. We could see these values as a structural
efficiency gain measure over the Generic Fusion baseline.
Presence column, as an aggregation of features behavior, rep-
resents the global structural efficiency gain. If we compute the
mean of that measure for each group of conditions, namely
by rows of Figure 5, the results explain why Daytime and
Landscape accuracies are better thanWeather’s, as it is shown
in Table 2.

Changing the point of view to the rows in Figure 5,
we could analyze specific cases of confusion. When diver-
gence is low, this means that the pair of conditions share
visual properties (similar colors, driving speed and semantic
concepts) and, when divergence is high, it means that they
have different ones. In other words, the presence of these con-
cepts at the scene is similar or different, respectively, concep-
tually speaking. It can be observed for Daytime row that the
pair Morning-Evening has the lowest divergence, while the
pair Morning-Night has the highest one. In the Weather row,
the pair Sunny-Cloudy has the lowest values, while Sunny-
Rainy achieves the highest one. Finally, in the Landscape

FIGURE 6. Results obtained for frame 4153 in video 47 from DR(eye)VE
dataset [49], where a decision at a crossroad is made. Video 47 context is
defined by the conditions Morning, Rainy and Downtown. In the first row,
GT fixations and visual attention maps are shown for the most relevant
baselines taken from fusion-based (GF) and capsule-based (GLCapsNet
model proposed). Baselines are introduced in section IV-A2. In the second
row, visual attention maps for the feature-based models are shown, to be
compared with the features themselves in row 3. Finally, on the last row,
GlobalPresence values (conditions prediction scores) determined by
GLCapsNet for each condition GP

t l+1
j

(9) are included.

row, we can see that the pair Countryside-Highway has
the lowest divergence, while Downtown-Highway has the
highest one, except for OF, which obtains its lowest value
for Downtown-Countryside. These insights make sense and
could be explained from a human perspective in the scope of
visual attention for autonomous driving. However, some of
them could express the need of more video sequences with
other variations of the most degraded conditions, a recalibra-
tion of the condition labels, or that human language (which
defines conditions labels) is limited as it defines frontiers on
the information which are useful for communications but not
for this task.

E. INTERPRETABILITY: LOCAL DYNAMICS
In this section we expose how contextual dynamics work,
as they are defined in Section IV-D, but going from global to
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local perspective. Here, routing coefficients and Presence are
expressed in a 2D form, giving us the opportunity to explore
how the system works at spatial locations. Our purpose is to
illustrate local dynamics for a better understanding, trying to
answer the following question: How are the visual features
at the spatial locations highlighted by the system for a given
contextual condition? This can be done by assuming that
routing coefficients constitute visual attention maps partic-
ularized for each pair feature-condition.

Figures 6, 7 and 8 show an example frame taken from
video 47 in DR(eye)VE [49] database, where a decision at
a crossroad is made, together with the information provided
by the GLCapsNet model proposed. Additional example fig-
ures (Figures SM.1-SM.18) and video sequences are included
in the supplementary material. In the case of Figure 6,
the driver is focusing the attention on the road but with an
additional interest in the car that is nearby. This final attention
is the result of combining cues from visual features (the car as
a color pattern, moving object and a semantic concept) guided
by 2D context representations (which information is relevant
given that it is a rainy morning in the downtown). First, as can
be appreciated in the figure, GLCapsNet model is the one
that best captures that behaviour, at the same time it correctly
predicts the context.

Second, in Figure 7, local dynamics are represented thanks
to the local routing coefficients, which provide a 2D map
for each feature-condition relationship. Moreover, LocalP-
resence constitutes another 2D map for each condition. Each
of the 12 visualizations of the figure is built by concatenating
maps which belong to the same group of conditions. For
instance, the 3 Daytime LocalPresence maps are considered
at the top-left graph, similarly to the graph represented on
its right using the three Daytime-RGB routing coefficient
maps (Morning-RGB, Evening-RGB andNight-RGB). Then,
an argmax function is applied pixel-wise along the conditions
dimension to classify each spatial location according to them.
Each row of sub-figures is dedicated to each group of condi-
tions (Daytime, Weather, Landscape), being each contextual
condition represented by a color for the sake of interpretation.

Third, if we revert the argmax function and expand the
maps horizontally, each column of the Figure 7 is represented
as each sub-figure in Figure 8, where all the local dynamics’
maps are visualized for the example frame. By construction,
when aggregating maps from sub-figures 8b, 8c and 8d,
we obtain the LocalPresence maps of sub-figure 8a. There-
fore, when applying the argmax function, the results of
Figure 7 are obtained (keeping aggregation properties
between the routing coefficient columns and the Presence
column asmentioned). Finally,GlobalPresence values shown
at Figure 6 are built by aggregating pixel’s values before
argmax function in the Presence column from Figure 7.
Considering each local map from subfigures 8b (RGB),

8c (OF) and 8d (Segmentation) as visual attentionmaps, input
features from Figure 6 can be filtered to answer the question
declared at the beginning of this section. LocalPresencemaps
in sub-figure 8a would behave as the combination of the

FIGURE 7. Local dynamics for frame 4153 in video 47 from DR(eye)VE
dataset [49]. They are represented as classification maps for each group
of conditions. At first column, dynamics are explained as Presence does.
Then, they are decomposed into routing coefficients from the features
point of view: RGB, OF and Segmentation.

FIGURE 8. Local dynamics for frame 4153 in video 47 from DR(eye)VE
dataset [49]. The information is the same as in Figure 7 but, in this case,
each condition group is unrolled into 3 columns (one per condition).
Hence, there are 4 unrolled blocks: Presence, RGB, OF and Segmentation.

visual features’ ones. To simplify the analysis, the classifica-
tionmaps fromFigure 7 can be used. As some examples, Day-
time maps explain that some darker regions of the road and
darker clouds belong to Evening, while the clearest regions
and clouds belong to Morning. Weather maps mainly split
the scene into the clear car (Sunny), the wet road (Rainy) and
the Cloudy sky. Landscape maps perceive that vegetation is
related to Countryside, while road and buildings are related
to Downtown, and it seems that the bottom side has shared
patterns with the ones that occur in Highway conditions.

Based on this analysis, one more step in depth would
be to aggregate that information for multiple frames and
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FIGURE 9. Local dynamics for DR(eye)VE [49] shown as estimations of the
posterior probability distribution for the action of attending given a
feature and a condition. Each histogram has been built by filtering the 2D
representation of each input feature using the local routing coefficients
which correspond to each pair feature-condition.

study the general behaviour of GLCapsNet. For that purpose,
Figure 9 summarizes the aforementioned information, dis-
tinguishing between contextual conditions (rows) and visual

features (columns) point of view. In total, the information
coming from 27 maps is summarized (one per cell in the
figure).

Nine thresholds defined between 0 and 1 are applied to
each routing coefficients map, resulting in 27 binary masks
for each threshold. These thresholds emulate the human
visual attention focusing at some location. As the abso-
lute contributions are described in Section IV-D, routing
coefficient maps can change their scale to express relative
results and interpretations. Therefore, eachmap is normalized
between 0 and 1, as the thresholds are in that range.

Masks are 27 × 27 pixels resolution, so they are first up-
sampled to the original input size (112 × 112 pixels) and
used then to select the visual regions from which to gather
information. In addition, the frames’ features are only taken
into account at the conditions (rows from Figure 9) to which
the frame belongs (based on the condition GT, not on the
predicted condition). A histogram is computed separately for
each channel in RGB. Another histogram is built for OF, but
in this case the channel used is the Euclidean norm of the
optical flow. Segmentation requires a histogram along the
Cityscapes categories [39]. For each pair feature-condition
(channel-condition in the case of RGB), this process results
in 9 histograms, one per threshold. These histograms are
averaged to obtain an estimation of the joint probability distri-
bution between the feature and the action of attending, given a
condition. To achieve an estimate of the posterior probability
distribution for the action of attending given a feature and
a condition, the prior probability distribution of the features
given a condition is estimated as a histogram computed by
following the same process, except for the application of
the binary masks (the whole input feature map is used).
This posterior probability distribution is the one which shows
relevant information. The formulation is as follows:

Pr(att|f , c) =
Pr(att, f |c)
Pr(f |c)

(15)

where att is the action of attending, f refers to a feature and
c refers to a condition.

According to Figure 9, it is easy to realize that
discriminative patterns are extracted for each pair feature-
condition. Focusing on RGB column, histograms are inter-
pretable from a light intensity point of view. Morning is
represented by brighter regions than for Night, being Evening
in the middle. Sunny locations are brighter than Rainy ones,
and Cloudy achieves high peaks (maybe due to raindrops).
In terms of occluded regions from the sunlight, assuming that
Downtown>Countryside>Highway as an hypothesis, RGB
column is showing that behavior.

From the OF perspective, an interesting insight is that
very different OF patterns are achieved for each condition.
It should be noted that these patterns are not modeling car
speed, as the attention maps (routing coefficients) focus on
relevant space regions but not in the absolute velocity. As it
is shown, slow motions are salient for most of the condi-
tions, but fast motions peaks are only appearing for some
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particular cases. Night has a fast motion peak because the
observer must drive with caution and, therefore, attend to
fast movements. Sunny and Cloudy have also fast motion
peaks. This might be because there aremoremoving elements
in these conditions than in Rainy, where social activity is
reduced. The same behaviour is observed for Downtown,
where social activity is higher than in Countryside and High-
way, guiding the attention to dangerous areas.

Finally, regarding Segmentation histograms, which are
in log scale for the probability axis, some conclusions are
extracted. It seems that the model gives less attention to
people and riders in Morning, Cloudy and Highway condi-
tions, probably because these semantics are not so surprising
or meaningful for the model to build attention maps at the
described conditions (we expect them with high probability
in Morning, and with low probability in the other two con-
ditions, but they do not constitute conspicuous elements).
There seems to be a lot of cars in all conditions, but this
actually refers to the observer’s car. As interesting examples
of conditions, it is shown that traffic lights are less important
in Highway than in the other landscapes. Moreover, build-
ings are less important in Countryside than in Downtown or
Highway (since vegetation covers the scene). Finally, the sky
is sometimes occluded in Downtown and Rainy conditions,
being less attended by the model.

F. TOWARDS REAL-TIME EYE FIXATION PREDICTION:
MODEL STRENGTHS AND LIMITATIONS
With regard to the interpretability achieved by our proposal,
the great advantages of capsules are undeniable. They result
in specialized sets of filters based on particular conditions or
properties of a scene, which allow for context-aware visual
attention understanding and, at the same time, could signify
a step forward to safer and more user-friendly autonomous
driving systems. However, even though our results have
shown the potential capability of capsules when predict-
ing eye fixations in several challenging situations, such as
making decisions at crossroads (e.g. Figures 6 and SM.7)
or steering when multiple vehicles are present (e.g.
Figure SM.16), we are still a long away from reaching
the accuracy of human drivers’ attention and, consequently,
additional research should be accomplished towards real-time
visual attention estimation.

When considering the deployment of such a system in
a real scenario, it is worth mentioning some implications.
First, it would be necessary to define a more diverse set of
contexts, according to the ones expected in a real setting.
This labelling task would not require a significant human
effort when compared to the video recording and eye-tracking
annotation tasks, as context annotation would be probably
done by default, given that each driving session corresponds
to a single context.

Second, the quality of GT eye fixations used for train-
ing the system has to be measured and monitored, in order
to compensate for bias effects derived from the exper-
tise of drivers conducting the eye-tracking annotations.

Hybrid approaches for eye fixation prediction based on the
ensemble of future BU saliency models, which are able to
determine the conspicuousness of high-level concepts and
actions, and TD architectures such as GLCapsNet, which
can be extended by using temporal modules for dynamic
behaviour modeling, could enable to reach this goal, notably
enhancing the performances reported in the literature so far.

Third, focusing on the implementation of the system in the
perception module of an autonomous vehicle, we highlight
the following two considerations: 1) The physical integration
would need a capable GPU, which could be already required
by the autonomous vehicle itself, thus this is not an additional
requirement, and 2) Sub-systems could be easily integrated,
as they only require the video sequence as input, providing
as output the interpretable visual attention maps to filter
the scene information, along with the context predictions
to condition subsequent autonomous decisions. Last but not
least, we have shown that the inference speed of GLCapsNet
is quite fast and not so far from offering a real-time smooth
video sequence of visual attention maps.

V. CONCLUSION
In this article, we have presented Global-Local Capsule Net-
works, which introduces for the first time, to the best of our
knowledge, the use of capsules for context-aware visual atten-
tion modeling. This type of networks allows to learn concepts
and relationships between them at both global and local lev-
els. Our approach has been validated in an autonomous driv-
ing scenario, using DR(eye)VE [49] dataset. The system’s
formulation is based on [19], but with important differences.
While their purpose is to decode capsules using their modulus
for the main task, our goal is to give semantic meaning to
the latent and hierarchical capsular structure. This structure
self-organizes relationships between internal concepts (latent
representations of visual features and contextual conditions)
dynamically for each new input frame, at the same time it pro-
vides an endpoint for each discriminative concept (contextual
conditions). These endpoints are calledPresence and are used
to predict these conditions. In addition, the specialization of
the model by conditions serves as a guide for the CNN to
efficiently route information between layers.

We have demonstrated that the proposed GLCapsNet
matches or outperforms several baselines and similar
approaches in the literature in terms of eye fixation pre-
diction. Emphasize function enhances conditions prediction
improving the results obtained by the specialized capsule net-
work proposed. Finally, the model has interpretability capa-
bilities: it is able to express feature-condition relationships
both globally and attending to particular visual regions.

Adding capsules at context level, modeling motion pat-
terns and temporal sequences of fixations with LSTM, Con-
vLSTM or Conv3D units [63]–[65], or sampling data with
better strategies would be some interesting future lines of
research. New horizons: What if my data or my system is
required to change its information structure fast, dynamically
and to other complex structures? This is the real case of a
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situation where data structure could change based on partic-
ular needs, affecting to the dataset construction (new video
recordings and context labels) and model re-training (for new
information maps). This is a challenge proposed for One Shot
Learning line of research, where new capsule types could be
learned fast and using only a few more data.
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