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ABSTRACT The vibration signals collected from rolling bearings in industrial systems are highly complex
and contain intense environmental noise, which challenges the performance of traditional fault diagnosis
methods. Moreover, the applicability of the model in engineering practice, especially in the Industrial
Internet of Things context, puts forward higher requirements for its storage and computational costs.
Considering these challenges, this article proposes an enhanced lightweight multiscale convolutional neural
network (CNN) for rolling bearing fault diagnosis. Our contributions mainly fall into three aspects. Firstly,
the proposed model is modular and easy to expand, which combines the idea of multiscale learning with
attentionmechanism and residual learning, enabling the network to extract more abundant and discriminative
fault features directly from the raw vibration signal. Consequently, the proposed model can perform better.
Secondly, the interpretability of the multiscale learning mechanism is explored by visualizing the extraction
process of multiscale features. Finally, for the first time, we introduce the depthwise separable convolution
into multiscale CNN to reduce the storage and computational costs of the model, which realizes the
lightweight of the model and improves its applicability in the Industrial Internet of Things context. The
experimental results on the rolling bearing dataset demonstrate that, compared with the state-of-the-art
multiscale CNN models, the proposed model has better discriminative fault feature extraction ability and
anti-noise ability, and is more suitable for practical industrial systems.

INDEX TERMS Rolling bearing fault diagnosis, multiscale convolutional neural network, attention mech-
anism, residual learning, lightweight.

I. INTRODUCTION
Rolling bearings are one of the most common components
in rotating machines, and their health conditions are strictly
related to the safe and stable operation of mechanical equip-
ment [1], [2]. However, under the complex conditions of high
speed and high workload for a long time, rolling bearings are
prone to occur wear, spalling, or other faults, which quickly
lead to performance degradation of the equipment and even
cause significant economic losses and severe casualties [3].
Therefore, it is of tremendous realistic significance to esti-
mate the health conditions of rolling bearings and reduce the
risk of unplanned shutdowns.
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In the past years, a great deal of research on fault diag-
nosis of rolling bearings based on machine learning has been
prompted and achieved good results to some extent. However,
there are still some apparent drawbacks, such as being diffi-
cult to be optimized as a whole and relying heavily on specific
domain knowledge and expert experience. Deep learning,
as an end-to-end method has achieved a series of break-
throughs in the field of fault diagnosis, providing a powerful
solution to the above drawbacks [4]. Different deep learning
methods such as the recurrent neural network (RNN) [5],
[6], convolutional neural network (CNN) [7], [8], deep belief
network (DBN) [9], [10], and autoencoder [11], [12] have
been widely used in the fault diagnosis of rolling bearings
and achieved high diagnostic accuracy. In particular, CNN
has achieved remarkable success in fault diagnosis due to its
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powerful ability of automatic feature extraction and classifi-
cation. Some researchers [13]–[15] convert one-dimensional
(1D) signals into two-dimensional (2D) images, and then feed
them into 2DCNN to achieve diagnostic results. Recently,
compared with 2DCNN, 1DCNN is considered more suitable
for fault diagnosis due to its attractive characteristics, such
as uncomplicated and extracting fault features directly from
the collected vibration signals without worrying about the
loss of useful information caused by the 1D-to-2D conversion
process. Hao et al. [8] combined 1DCNN and long short-
termmemory (LSTM) network to extract spatial and temporal
features for more effective bearing fault diagnosis. Reduce
the computational complexity by using 1DCNN in front of
the LSTM layer. Peng et al. [16] proposed a 1D residual
block by introducing the idea of residual learning into the
traditional 1DCNN for fault diagnosis of wheelset bearings,
effectively solved the problem of performance degradation
for the deeper CNN. Zhang et al. [17] proposed a novel
1DCNN model with wide first-layer kernels for the fault
diagnosis of rolling bearing. In the first convolutional layer
of the model, wide kernels were used to extract features and
suppress high-frequency noise.

The attention mechanism has been proposed as a kind
of contribution screening of information and successfully
applied to a variety of research tasks such as document classi-
fication [18], handwriting synthesis [19], and image caption
generation [20], and so on. It can assist the neural network
to focus more on the task-related information and ignore
the information that contributes less to the task [21]–[23].
In this way, the learning ability and interpretability of neural
networks can be improved using the attention mechanism.
In the fault diagnosis field, attention-based neural networks
are getting more and more attention. Wang et al. [24] adopted
the multi-head attention mechanism to optimize the CNN
structure and developed a convolutional network model for
intelligent bearing fault diagnosis. Li et al. [23] constructed
a deep learning model for rolling bearing fault diagnosis,
which combines the convolutional network and LSTM. The
attention mechanism was introduced to assist the model in
locating the important features and visualizing the learned
diagnosis knowledge.

Recently, with the rapid development and maturity of
the Industrial Internet of Things technology, the concept of
lightweight has arisen from the need for models with lower
storage and computational costs in actual applications [25].
Liu et al. [26] proposed a lightweightMT-1DCNN for explor-
ing the possibility of using auxiliary tasks to improve the
performance of the fault diagnosis task. To reduce the pro-
posed model’s complexity, the number and size of convolu-
tion kernels are reasonably reduced. Yao et al. [25] proposed
a SIRCNN for bearing fault diagnosis. The depthwise separa-
ble convolution and inverted residual structure were adopted
to ensure the accuracy of the model in noisy environments
while achieving lightweight.

In the real industrial systems, rolling bearings usually work
under complex operation conditions, such as variable loads

and speeds. Hence, the vibration signals measured from the
bearing are nonlinear and nonstationary with strong coupling
and contain intense environmental noise. On the other hand,
the impact segment containing pulse components in vibration
signals reflect the fault behavior of rolling bearings. The fre-
quency of the pulse components caused by faults of different
positions and severity levels varies greatly, which result in
the features that sensitive to different faults are distributed
on different time scales of vibration signals [27], [28].
Therefore, vibration signals usually exhibit multiscale char-
acteristics and contain intricate patterns on multiple time
scales [29]–[31]. However, the traditional CNN architecture
cannot capture multiscale features of vibration signals due to
its single scale characteristics. Thus, it is difficult to apply
it to the diagnosis task of rolling bearings. To overcome the
limitation, researchers have proposed some methods to intro-
duce multiscale learning into CNN. Jiang et al. [32] proposed
an MSCNN architecture. It performs multiple downsampling
and smoothing operations on raw vibration signals in parallel
to obtain multiscale signals. Then convolution and pooling
operations were used to extract features of different scales.
The results demonstrate that the MSCNN has better fault fea-
ture extraction ability and robustness than single scale CNN,
and as more scales are incorporated, it can achieve better
and more reliable performance. However, due to the defects
of its multiscale signals acquisition method, the number of
scales is constrained by the length of the input sample. In [33],
an MK-ResCNN architecture was proposed, which provides
a solution to the above problem. In MK-ResCNN, convo-
lutional kernels with different sizes were utilized to extract
multiscale features from vibration signals in parallel, and
identity mapping and residual mapping were introduced to
overcome the degradation problem caused by deep networks.
In [27], a multiscale feature extraction method similar to
the MK-ResCNN was adopted. Besides, an adaptive weight
vector was introduced to emphasize the scale feature sensitive
to faults.

Although aforementioned CNN-based multiscale learning
methods make up for the defects of feature extraction ability
of traditional signal scale CNN methods and achieved good
diagnosis performance, there are still the following chal-
lenges. 1) Lacking reinforcement mechanism for discrimina-
tive fault features. As mentioned above, the impact segment
in vibration signals carries the fault information of rolling
bearings and has certain uniqueness for different faults; thus,
it can be understood as the ‘‘ID’’ of the faults. However,
due to the weight sharing strategy of convolutional kernels,
more attention cannot be paid to these fault-related signal
segments. 2) Poor interpretability. Although the multiscale
CNN has been demonstrated to have higher diagnostic accu-
racy and stronger anti-noise ability than traditional single
scale CNN, its learning mechanism is still a ‘‘black box’’ that
will significantly restrict its further development in the field
of fault diagnosis. 3) Limited by storage and computational
costs. Some studies have shown that more scales and the
wide convolutional kernel can usually improve the diagnosis
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performance of the model [23]–[32], but also increase storage
and computational costs of the model due to more parameters
and more complex structure. Furthermore, the advancement
of the Industrial Internet of Things puts forward the require-
ment of ‘‘small, light, and fast’’ for deep learning models
to improve their applicability [34], [35]. Therefore, existing
multiscalemodels have tomake a trade-off between diagnosis
performance and the cost of storage and computation. As a
result, they usually use fewer scales (four scales were used
in [27], [32], [36], and three scales were used in [33]), or stack
multiple convolutional layers with narrow kernels instead of
a layer with wide kernel [33].

To overcome the abovementioned challenges, we con-
ducted a more in-depth study and exploration on the applica-
tion of multiscale CNN in the field of fault diagnosis in terms
of overall network structure, discriminative feature extrac-
tion ability, interpretability, and applicability. This article
proposes an enhanced lightweight multiscale feature extrac-
tion module (ELMFEM) and develop a stacked ELMFEMs
(S-ELMFEMs) model for rolling bearing fault diagnosis. The
main contributions of this article are summarized as follows.

1) This paper proposed a stackable ELMFEM for rolling
bearing fault diagnosis. Through multiscale and the overall
easy-to-stack structural design, it can extract abundant and
complementary features in raw vibration signals from mul-
tiple time scales while overcoming the defects of the com-
plex structure of existing multiscale CNNs. Stacking multiple
ELMFEMs will cause the network depth to increase rapidly.
To avoid gradient explosion/vanishing caused by the above
situation, residual connection technique is introduced.

2) The multiscale CNN is still a ‘‘black box’’. As far
as we know, there is no research to show its work mecha-
nism intuitively. However, interpretability is very important
to control this technology fully. Therefore, we introduce the
attention mechanism into the ELMFEM. On the one hand,
by visualizing the attention weight, the multiscale CNN’s
working mechanism is displayed more intuitively to explore
its interpretability. On the other hand, the attention mecha-
nism makes up for the shortcomings of convolution kernel
weight sharing and improves the ability of discriminative
fault feature extraction.

3) More scale branches will inevitably bring more parame-
ters, which will increase the model’s computational and stor-
age costs. Tomeet the requirements of ‘‘small, light, and fast’’
proposed by the Industrial Internet of Things, the depthwise
separable convolution (DSC) technique was introduced into
the ELMFEM. In this way, the lightweight of the model is
realized. Besides, the existence of residual connection and
the local use of DSC effectively solve the representational
bottleneck problem of the features and lower accuracy caused
by the characteristics of DSC.

The rest of this article is organized as follows. In Section 2,
the proposed ELMFEM and S-ELMFEMs fault diagno-
sis model are described in detail. Data description and
experimental verification setup are illustrated in Section 3.
In Section 4, the effectiveness and superiority of the proposed

method are verified. Finally, Section 5 concludes the whole
article.

II. PROPOSED METHOD
As mentioned above, the fault features of vibration signals
measured from the rolling bearing under different operation
conditions and intense noise have the characteristics of time
scale diversity and unobvious, which challenges the fault
features extraction ability of single scale CNN. Therefore,
some researchers combined multiscale learning with CNN
to achieve better diagnosis performance. However, for mul-
tiscale CNN, insufficient attention has been paid to how to
effectively improve the extraction ability of discriminative
fault features, the interpretability of learning mechanism, and
the applicability in the Industrial Internet of Things con-
text. Given these, this article proposes a stackable ELM-
FEM to incorporate attention mechanism, residual learning,
and lightweight convolution to the multiscale CNN. In this
way, the proposed diagnosis model (S-ELMFEMs) con-
structed by the ELMFEM has the characteristics of high diag-
nostic accuracy, strong anti-noise ability, and lightweight,
and its learning mechanism is also more interpretable. The
details of the proposed model are elaborated in the following
subsections.

A. 1D DEPTHWISE SEPARABLE CONVOLUTION
Depthwise separable convolution (DSC) is a typical
lightweight convolution, which factorizes standard convo-
lution operations into depthwise convolution and pointwise
convolution [38]. In short, depthwise convolution applies
filters, i.e., convolutional kernels, to each channel of the input
layer by layer, and then pointwise convolution aggregate
the output of depthwise convolution with 1 × 1 convolu-
tional kernel. Experimental results in Xception [39] and
MobileNet [40] have proved that DSC can be used to CNN
on a large scale to reduce parameters and computational
cost. In this article, the 1D depthwise sparable convolu-
tion (1DDSC) is used. The schematic diagram of standard
1D convolution and 1DDSC are shown in Fig. 1. Ignor-
ing the influence of bias, the parameters and computation
amount of standard 1D convolution and 1DDSC are shown
in Table 1.
where LF is the length of the input, LK is the size of the
convolutional kernel, M is the number of input channels,
N is the number of convolutional kernels. The ratio of
the computation amount of the 1DDSC and the standard
1D convolution is:

LK ×M × LF +M × N × LF
LK ×M × N × LF

=
1
N
+

1
LK
=
N + LK
N × LK

(1)

As can be seen from (1), the 1DDSC significantly reduces
the computational cost, and when N is fixed, the wider the
convolutional kernel size, i.e., the larger LK, the higher
the reduction in calculation. It should be pointed out that the
1DDSC is only used in the multiscale feature extraction stage
in this article.

VOLUME 8, 2020 217725



Y. Shi et al.: Enhanced Lightweight Multiscale CNN for Rolling Bearing Fault Diagnosis

FIGURE 1. The schematic diagram of (a) standard 1D convolution and (b)
1DDSC.

TABLE 1. Parameters and calculation amount of standard 1D convolution
and 1DDSC.

B. DISCRIMINATIVE FEATURE REINFORCEMENT
MECHANISM (DFRM)
Since the impact segments in vibration signals reflect the fault
behavior of the rolling bearing, more attention should be paid
to it to highlight discriminative fault information, thereby
improving the pertinence and reliability of feature extraction
and the interpretability of multiscale learning mechanisms.

The basic structure of the DFRM is shown in Fig. 2. It is
actually the attention mechanism. The shape of the input
feature O′ is (T × F), where T denotes the length of O′ and
F denotes the number of channels of O′. The feature Y is
obtained through an s×1 1DDSC layer with channel number
F /r , where r is the dimension reduction factor to simplify
the model and accelerate training. Whereafter, the feature
information of all the activation maps across channels in Y
is projected and compressed on the temporal signal through a
1× 1 1D convolutional layer with 1 channel and the Sigmoid
activation function, and then the optimization vector V is
obtained. Specifically, assume that the input O′ represented
as [o1, o2, . . . , oT ], where oi ∈ R1×F and i = 1, 2, . . . ,T .
After the above transformation, i.e., (2), V = [v1, v2, . . . , vT ]
is obtained, where vi corresponds to the ith element in the
optimization vector V and the value range is [0, 1]. The value
of vi indicates the importance of the ith time-series point.

V = σ (W2f (W1V + b1)+ b2) (2)

The obtained optimization vector V can be dynamically fol-
lowed and adjusted according to the input signal’s change.
The values of vi in the corresponding positions of the dis-
criminative fault features are large, and the values of vi in the
corresponding positions of the irrelevant features are small.
Finally, through (3), the discriminative fault features in Y are
reinforced, the irrelevant features are weakened, and then the
optimized feature Y′ is obtained.

Y ′ = [y′1, y′2, . . . , y′T ] = Y · V (3)

FIGURE 2. The basic structure of the DFRM.

where ‘.’ denotes element-wise multiplication operation.
Therefore, the optimized feature Y′ has more discriminative
fault information and interpretable learning mechanism.

C. ENHANCED LIGHTWEIGHT MULTISCALE FEATURE
EXTRACTION MODULE (ELMFEM)
The structure of the ELMFEM is graphically illustrated
in Fig. 3. The goal of the EMFEM is to extract complementary
multiscale fault features from vibration signals in a parallel
manner, somultiple convolutional layers with different kernel
sizes are used to form multiple scale branches (referred to
as multiscale 1DDSC in Fig. 3). The original feature set
{Y1,Y2, ..,YS} is obtained though S parallel 1DDSC lay-
ers with different kernel sizes, where Yj ∈ RT×(F/r)(j =
1, 2, . . . , S) and S denotes the number of scales. In order
to extract detailed information and keep the feature Yj in
the same shape during the above operation, the stride of all
1DDSC layers is set to 1. The padding strategy is adopted
to make Yj (j = 1, 2, . . . , S) have the same length. Then
the original feature set {Y1,Y2, ..,YS} is reconstructed by
DFRM to obtain the optimized feature set {Y′1,Y′2, . . . ,Y′S},
and Y′j is concatenated along the channel dimension to form
a multiscale feature map Ym, which is denoted as

Ym =
[
Y ′
1,Y

′
2, . . . ,Y

′
S
]

(4)

FIGURE 3. Framework of the proposed ELMFEM.

It contains all the discriminative fault information of different
time scales. Furthermore, Ym is fed into the feedforward
neural network (FNN) containing two fully connected layers
(number of neurons: 256 and F) to integrate hidden layer fea-
tures, thereby further extracting useful features and removing
redundant features. It is worth mentioning that the number
of neurons in the second fully connected layer is set to F so
that the output of the FNN has the same shape as the input of
the ELMFEM. Finally, the residual connection is introduced
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FIGURE 4. (a) Architecture of the S-ELMFEMs and (b) flowchart of the S-ELMFEMs based fault diagnosis method.

to add the output of FNN and the input of EMFEM to get
the final output of ELMFEM. There are two reasons why
the residual connection is used here. First, retain the original
information to prevent the loss of useful information; and
second, to overcome the performance degradation problem
of deep networks.

D. STACKED ELMFEMS (S-ELMFEMS) BASED FOR FAULT
DIAGNOSIS
As mentioned before, fault features of rolling bearings in
industrial systems are highly coupled with intense envi-
ronment noise, and the feature distribution under different
operating conditions is quite different. Although comple-
mentary fault features can be extracted from multiple time
scales, sufficient depth of the network is still indispensable.
According to Lin et al. [41], the deeper networks can extract
more abstract and higher-level fault features, which have
strong condition expression ability and robustness, and can
significantly improve model performance. Therefore, this
article constructs a deep multiscale network (S-ELMFEMs)
by stacking multiple ELMFEMs for rolling bearing fault
diagnosis.

The architecture of S-ELMFEMs is shown in Fig. 4(a),
where three ELMFEMs are used. In the experiment, 1D vibra-
tion signals are used as inputs of the model directly. First,
the various type features of raw input signals are extracted
through a 1D convolutional layer (Conv1D) to expand its
channel dimension. In addition to being regarded as a feature
extractor, the Conv1D can also implement residual connec-
tion operation in the first ELMFEM of S-ELMFEMs. The
number of kernels in Conv1D can be adjusted according to the
actual situation, which is set to 64 in this article. Whereafter,
the output of the Conv1D is fed into the stacked ELMFEMs.
It is worth mentioning that we use the max-pooling layer
with a pooling length of 2 between every two ELMFEMs
to capture local invariant features and accelerate training.
Finally, the global average pooling layer is used to replace the
full connection layer to prevent overfitting. A softmax layer

is used to output a conditional probability for each category,
which is defined as

Pc =
exp(θcx)∑C
c=1 exp(θcx)

, c = 1, 2, . . . ,C (5)

where θc is the model parameter and
∑C

c=1 Pc = 1.
Some structural parameters of the S-ELMFEMs in this

article are summarized as follows: the number of kernels in
Conv1D is 64, the dimension reduction factor r is set to 4,
and the number of neurons in the two fully connected layers
of FNN is 256 and 64, respectively.

The flowchart of the S-ELMFEMs based fault diagnosis
method is shown in Fig. 4(b). It should be pointed out that
both offline training and online testing are performed in a
single specific task in this article, which satisfied the general
assumption that the training data and testing data have the
same feature distribution. If the offline training and online
testing of the proposed model are used for different tasks,
it is necessary to adopt techniques such as fine-tuning in
the online testing part to realize online learning. The general
procedures are summarized as follows.

1) Step 1: Collect vibration signals of rolling bearings in
different health conditions through a data acquisition
system. Then, segment vibration signals into multi-
ple small segments of the same length as samples for
training.

2) Step 2: We build an end-to-end fault diagnosis model
based on S-ELMFEMs. The raw vibration signals are
directly used as input. After the Conv1D, the extracted
multi-dimensional feature maps are fed into stacked
ELMFEMs and classifiers, and the corresponding diag-
nosis results are finally output. Offline training is com-
pleted until the maximal epoch is met.

3) Step 3: Collect test samples from vibration signals of
the test bearing in the same way as training samples
and input them into the well-trained model for online
diagnosis. The model finally outputs the current health
condition of the test bearing.
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III. DATA DESCRIPTION AND EXPERIMENT SETUP
A. DATA DESCRIPTION
The fault dataset was acquired from the bearing data cen-
ter of Case Western Reserve University (CWRU). The test
stand in CWRU is shown in Fig. 5. The dataset includes ten
health conditions: normal condition (N), inner race fault (IF)
(fault diameters: 7 mil, 14 mil, 21 mil), ball fault (BF) (fault
diameters: 7 mil, 14 mil, 21 mil) and 6 o’clock outer race
fault (OF) (fault diameters: 7 mil, 14 mil, 21 mil), where
the same health condition under different loads and speeds is
treated as one category. The detailed description of the dataset
and condition labels is summarized in Table 2. The vibration
signals were collected from the drive end with a sampling
frequency of 12 kHz.

FIGURE 5. The test stand in CWRU.

TABLE 2. Description of the dataset and condition labels.

To prevent ‘‘test leaky’’, the raw vibration signal is first
divided into five equal-length parts, one part is used as a test
data subset to generate test samples, and the remaining part
is used as a training data subset to generate training samples.
Then the sliding window segmentation approach with over-
lap is used on the two subsets to obtain data samples. The
window size (sample length) and sliding step size are set to
1200 and 600, respectively, ensuring the difference between
the two adjacent samples. In this way, a total of 7920 data
samples are obtained, including 6360 training samples and
1560 test samples. In the experiment, to ensure the reliability
of the experimental results, the construction of the above data
samples and each experiment are repeated five times, with
each of the five equal-length parts used once as the test data
subset. The average diagnosis results of the test set over five
times are recorded.

B. EXPERIMENTAL SETUP
In this article, two evaluation indicators, testing accuracy and
F1 score, are adopted to indicate the diagnosis performance,
which are defined as:

accuracy =
TP+ TN

TP+ FN + FP+ TN
(6)

F1 =
2TP

2TP+ FP+ FN
(7)

where TP, TN, FP, and FN represent the true positive sam-
ples, true negative samples, false positive samples, and false
negative samples, respectively.

To simulate the noisy operating environment in real
industrial systems, Gaussian white noise is added to the raw
vibration signals with different signal-to-noise ratios (SNRs).
The definition of SNR is shown as (8).

SNRdB = 10 log10(
Psignal
Pnoise

) (8)

where Psignal and Pnoise denote the power of the raw signal
and the noise, respectively.

The proposed model is implemented in the Keras (Tensor-
flow backend) and trained on a PC with a GTX 1060 GPU,
8GB of RAM, and an Intel Core i7-8750H CPU. In the
experiment, the categorical cross-entropy loss function and
Adam optimization algorithm with an initial learning rate
of 0.0001 are adopted, and the batch size is set to 150.
Besides, a learning rate decay operation is also adopted dur-
ing training, that is, when loss of more than 3 epochs do not
decrease, the learning rate is multiplied by 0.7.

IV. RESULTS AND DISCUSSION
In this section, the effectiveness and superiority of the pro-
posed S-ELMFEMs are validated and discussed through five
experiments on the above dataset. First, we explore the influ-
ence of the number of scales and ELMFEMs on diagnosis
performance and determine the model structure mainly used
in subsequent experiments. We then verify the effectiveness
of the DFRM, residual learning, and 1DDSC in improv-
ing model performance and applicability through compara-
tive experiments. Finally, the proposed model is compared
with four existing multiscale CNN models to illustrate its
superiority.

A. INFLUENCE OF THE NUMBER OF SCALES AND
ELMFEMS ON DIAGNOSIS PERFORMANCE
The S-ELMFEMs can flexibly adjust the number of scales
and network depth (i.e., the number of the ELMFEMs). Both
parameters have a considerable influence on diagnosis perfor-
mance. Hence, it is of great significance to study the influence
of scale and depth on diagnosis performance.

In this study, ten different kernel sizes are set to be 1 × 1,
4× 1, 9× 1, 16× 1, 25× 1, 36× 1, 49× 1, 64× 1, 81× 1,
and 100×1, and the number of all kernels is 16. Additionally,
different numbers of ELMFEMs range from one to five are
considered. The experiment is carried out under the noise
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of −10 dB. The average results of accuracy over five folds
are shown in Fig. 6. In the legend, 1s refers to using only
1×1 kernel, 2s refers to using 1×1 and 4×1 kernels, and so
on, and 10s uses all ten kernels. Overall, the testing accuracy
of the proposed model increases as the number of scales
and ELMFEMs increases. When the model consists of four
ELMFEMs, and each ELMFEM contains ten scales (denoted
as the model (4, 10)), the testing accuracy is the highest,
reaching 93.42%. This implies that the deeper network with
more scales can learn more comprehensive and higher-level
features, which enable the model to achieve better diagnosis
performance. On the other hand, when the model contains
more scales and ELMFEMs, the testing accuracy tends to
be saturated. For example, the testing accuracy of the model
(3, 8) is improved by nearly 11.42% compared to model
(1, 5); however, model (5, 10) is only improved by about
0.53% compared to model (3, 8). The above phenomena
can be explained from the following two aspects: 1) Limited
by the training sample size. When the training sample size
is fixed, and model parameters increase to a certain value,
these parameters are difficult to continue to be optimized.
2) Limited by the length of training samples. According to the
structure of the S-ELMFEMs, more max-pooling layers are
used as the network depth increases, which greatly reduces
the length of the extracted feature maps. As a result, the con-
volutional layers with the wide kernel (large scale branches)
in the ELMFEMs at the end of the model can hardly extract
useful features.

Therefore, for the challenging diagnosis tasks in practi-
cal engineering, the above problems can be solved using
the following approaches to further improve the diagnosis
performance: increasing the number and length of training
samples, removing some max-pooling layers, and properly
adjusting the kernel size. From the comprehensive consider-
ation of the characteristics of the samples used in this article,
the diagnosis performance, and training speed of the model,
the model (8, 3) is mainly used in subsequent experiments.
In the absence of special instructions, the S-ELMFEMs men-
tioned in this article refers to the model (8, 3).

To intuitively understand the influence of the number of
scales and network depth on diagnosis performance, the
t-SNE technique [42] is adopted to visualize the learned fea-
ture maps in a three-dimensional space for easier comparison.

FIGURE 6. Influence of the number of scales and ELMFEMs on
performance using the S-ELMFEMs.

FIGURE 7. Feature visualization of the proposed model for different
health conditions: (a) input data, (b) output of the model composed of
single ELMFEM with single scale (64 × 1), (c) the model (8, 1), and (d) the
model (8, 3).

As shown in Fig. 7, where different colors distinguish features
of different health conditions. From Fig. 7(a), we can observe
that different health conditions are very chaotic and overlap
each other, which means that the input data’s feature infor-
mation is hardly separable. In Fig. 7(b), features in different
health conditions are gradually separated, and features in the
same condition are gradually clustered, representing that the
distinguishing features are initially extracted. As the number
of scales (c) and ELMFEMs (d) increase, more distinguish-
ing features are learned, and features in the same condition
present better clustering effects. In Fig. 7(d), the health con-
ditions are clearly clustered into ten clusters, and only a few
samples are misclassified. The visualization results further
prove that the S-ELMFEMs can learn more discriminative
and robust fault features from raw vibration signals, and has
excellent fault classification ability.

B. EFFECTIVENESS OF THE DFRM
This section verifies the effectiveness of the DFRM under
SNR = −10 dB. In this experiment, two model structures,
i.e., the S-ELMFEMs and the model-I, are set up. It should be
noted that the model-I only lacks the DFRM compared to the
S-ELMFEMs. Both of them adopt the same training strategy
and are trained and tested on the same dataset. The average
results of theF1 score and accuracy over five times are shown
in Fig. 8, where the error bar represents the standard deviation

FIGURE 8. Performance of the proposed model and comparison model.
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FIGURE 9. The visualization of optimization vectors with (a) raw vibration signals of rolling bearings in different health conditions as input and
(b) vibration signals of different SNRs as input.

and shows the stability of diagnosis performance. Obviously,
the performance of the S-ELMFEMS always outperforms the
model-I. Specifically, compared to the model-I, the accuracy
is improved by 2.75%, and the F1 score of different health
conditions are improved by 0-0.08. In addition, it can also
be found that a smaller standard deviation for each condition
can be noticed for S-ELMFEMs. These results prove that
DFRM can effectively improve the discriminative fault fea-
ture extraction ability, and enable the model to obtain better
and more stable diagnosis performance.

To further understand the learning mechanism of the
DFRM and multiscale CNN, the optimization vectors of
the well-trained model are visualized for different inputs,
as shown in Fig. 9. To obtain a better correspondence with
input signals, the visualized optimization vectors selected
here come from eight scales of the first ELMFEM. It can
be seen in Fig. 9(a) that almost all optimization vectors can
adaptively locate the impact segments and reinforce the fault-
related features reflected by them according to the intrinsic
characteristics of the input data itself so that the model can
pay more attention to them. In Fig. 9(b), when noise is added,
the impact segments are overwhelmed. However, there are
still some optimization vectors that can locate them. This
fault feature reinforcing mechanism enables the model to
efficiently extract more discriminative fault information, thus
improving the diagnosis performance. The experiment results
further prove the effectiveness of the DFRM.

Furthermore, the extraction ability of different scales to
discriminative fault features is defined through the location
accuracy and reinforcement degree (judged by the color con-
trast) of the corresponding optimization vector to impact
segments. According to the above definition, the three scales
with the highest extraction ability are marked with red dots
in Fig. 9. It can be found that the marked scales are not fixed.
This indicates that different scales have different discrimina-
tive features extraction ability for different input signals (such
as different health conditions and noise levels). This proves
that the superiority of multiscale CNN, which can extract

FIGURE 10. Training accuracy and loss of the proposed model and
comparison model with respect to epoch.

abundant and complementary fault features from different
time scales to make up for the defects of a single scale, thus
has stronger feature learning and anti-noise ability than tradi-
tional single scale CNN.What is more, these results make the
learning mechanism of multiscale CNN more interpretable.
It can be understood as presetting multiple feature extrac-
tors with different scales to match an unknown vibration
signal, resulting in a greatly increased probability of extract-
ing discriminative fault features. Compared with the single
scale CNN, it has higher robustness and more reliable diag-
nosis results.

C. EFFECTIVENESS OF THE RESIDUAL LEARNING
This section verifies the effectiveness of residual learning
under SNR = −10 dB. In this experiment, two model struc-
tures, i.e., the S-ELMFEMs and the model-II, are set up.
The model-II only lacks the residual connection compared
to the S-ELMFEMs. Both of them adopt the same training
strategy and are trained and tested on the same dataset. The
results are summarized in Fig. 8. It can be easily observed
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TABLE 3. Parameters and size of the proposed model with different number of ELMFEMs. (The number of scales per ELMFEM is set to 8).

TABLE 4. Parameters and size of the proposed model with different number of scales. (The number of ELMFEMs is set to 3).

that the performance of S-ELMFEMs always outperforms the
model-II. Specifically, compared with the model-II, the accu-
racy is improved by 1.91%, and the F1 score of different
health conditions are improved by 0-0.08. It indicated that
the performance degradation is effectively alleviated in the S-
ELMFEMs. Fig. 10 shows the training accuracy and loss of
the first 70 epochs. It can be found that the training accuracy
of both models is almost 100% and higher than the testing
accuracy, but the testing accuracy of the S-ELMFEMs is
higher than model-II, which means that the S-ELMFEMs has
better generalization. Moreover, compared with the model-
II, the training loss curve of the S-ELMFEMs is steeper, and
the final loss is smaller, which means that the S-ELMFEMs
converges quicker and better during the training process. The
above results further prove that residual learning can effec-
tively alleviate the performance degradation in the deeper
network and reduce the training difficulty.

D. EFFECTIVENESS OF THE 1DDSC
In this section, the effectiveness of 1DDSC is verified by
comparing it with standard 1D convolution on the proposed
model. The parameters and size of the model with different
number of ELMFEMs and scales are list in Table 3 and
Table 4, respectively, and their change trends are shown
in Figure 11. Besides, the diagnostic accuracy of mod-
els is also given in Table 3 and Table 4 for comparison.
It can be seen that as the number of ELMFEM increases,
the parameters and size of the model increase linearly.
Comparedwith standard 1D convolution, the 1DDSC reduces
model parameters by about 70% and model size by more than
55% under the same number of ELMFEM. Moreover, with
the introduction of more scales and wider convolutional ker-
nels, the model’s parameters and size increase exponentially,
and the advantages of 1DDSC become more prominent. The
parameters and size of the proposed model are dramatically
reduced by using 1DDSC instead of standard 1D convolution,
so the storage and computational costs of the model are
reduced, and its applicability is improved. It can also be found

FIGURE 11. Parameters and size of the proposed model with different
number of (a) ELMFEMs and (b) scales.

that the diagnostic accuracy of the proposed model under
these convolution operations is almost the same, and the use
of 1DDSC can maintain the excellent diagnosis performance
of the model. The experiment results prove the effectiveness
of the 1DDSC, which also explains lightweight in the name
of the ELMFEM.

E. COMPARISON WITH EXISTING MULTISCALE CNN
MODELS
To verify the superiority of the proposed model, four exist-
ing multiscale CNN models, including MK-ResCNN [33],
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AWMSCNN [27], MS-DCNN [36], and MSCNN[32] are
implemented as comparisons in this study. TheMK-ResCNN
uses three scale branches composed of three different ker-
nel sizes (3 × 1, 5 × 1, and 7 × 1). Each scale branch
extracts features through three CNN blocks, and each CNN
block is composed of two convolution layers and a residual
connection. The AWMSCNN consists of a denoising layer,
four-scale feature learning block (2 × 1, 4 × 1, 6 × 1,
and 8 × 1), multiscale feature weighting layer, and a fea-
ture fusion layer. The MS-DCNN consists of three pairs of
convolutional and pooling layers, four-scale feature extrac-
tion block (1 × 1, 3 × 1, 5 × 1, and 4 × 1 pooling), and
two fully connected layers. In the MSCNN, multiple coarse-
grained layers are adopted to represent the raw vibration
signal. Then two pairs of convolutional and pooling lay-
ers and a global average pooling layer are used to extract
features.

The experiments are carried out in different noise
environments with the SNRs ranging from −10 dB to
10 dB, and the training strategies of the five models
are the same. The experimental results are summarized
in Fig. 12.

Obviously, the S-ELMFEMs is superior to the other four
CNN models, and its diagnostic accuracy exceeds 95.5% at
almost full noise level (from −8 dB to 10 dB). In general,
the accuracy of the five models increases with the increase of
SNR, and after the SNR exceeds 0 dB, the change of accuracy
tends to be stable. It is because the diagnostic accuracymainly
depends on the ability of the model itself to extract fault
features when the noise is small.When the SNR changes from
0 to 10 dB, only S-ELMFEMs always maintain an accuracy
of over 99.9%, which indicates that the proposed model has
excellent and stable discriminative fault feature extraction
ability. What is more, when the SNR decreases to −10 dB,
the S-ELMFEMs can still achieve accuracy of 92.86%,

which is 3.59%, 21.55%, 21.37%, and 12.79% higher than
MK-ResCNN, AWMSC, MS-DCNN, and MSCNN respec-
tively. Therefore, the S-ELMFEMs has strong anti-noise
ability even without any additional denoising process. Fur-
thermore, SNR = −10 dB indicates that the noise power is
much larger than the raw signal power, which means that
the proposed model can effectively detect extremely weak
faults.

Although the S-ELMFEMs has only a small improve-
ment over the MK-ResCNN (the maximum improvement
is 5.28% when SNR = −8 dB), the storage and computa-
tional costs of the S-ELMFEMs are much less than the MK-
ResCNN. The proposed model has two orders of magnitude
less floating-point computation amount than MK-ResCNN.
As mentioned in Section 1, the model’s storage and com-
putational costs are two crucial factors for developing a
real-time diagnosis system in the Indusial Internal of Things
context. As shown in Table 5, the size, training time (per
epoch), and testing time (per sample) of the five models
are recorded. The size of S-ELMFEMs is less than one-fifth
of the MK-ResCNN. Thus, it has higher applicability and
broader application. Also, both the training time and test-
ing time of the MK-ResCNN are almost twice that of the
S-ELMFEMs, which means that S-ELMFEMs has higher
operating efficiency, lower diagnosis system development
cost, and faster releases of updates when much more training
data are available. Especially for real-time diagnosis, the S-
ELMFEMs can help operators make timely decisions due
to faster testing speed. According to Table 5, the AWMSC,
MS-DCNN, and MSCNN have a smaller size and consume
less training and testing time than S-ELMFEMs. It is not
a surprise because the S-ELMFEMs has more scales and
deeper network structure than the other four models. Even
so, it still has only 4.96 MBmodel size, 13.55 s training time,
and 2.76 ms testing time. Hence, considering the diagnosis

FIGURE 12. Performance of S-ELMFEMs and four comparison models in different noise environment.
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TABLE 5. Size and cost time of different models.

performance and the cost of storage and computation, the pro-
posed model has more enormous advantages, especially for
practical industrial applications.

V. CONCLUSION
Targeting the fault diagnosis of the rolling bearing under
complex operation conditions and intense noise, this article
proposes an ELMFEM and develops an S-ELMFEMs fault
diagnosis model. The S-ELMFEMs is easy to expand, and
the techniques involved, such as discriminative feature rein-
forcement mechanism (DFRM), residual learning, and 1D
depthwise separable convolution (1DDSC), etc., form com-
plementary advantages, improve the ability of fault feature
extraction and the applicability in the Industrial Internet of
Things context. Besides, the interpretability of multiscale
CNN is also preliminarily explored in the article. It provides
a solution to overcome the three challenges about multiscale
CNN mentioned in Section 1.

The proposed S-ELMFEMs fault diagnosis model is eval-
uated on the rolling bearing dataset. The experimental results
illustrate the effectiveness of DFRM, residual learning, and
1DDSC. They can significantly improve the multiscale CNN
performance while dramatically reducing the parameters and
size of the model. Additionally, the S-ELMFEMs shows
significant advantages over existing multiscale CNN models.
Our work shows that the proposed model not only has excel-
lent discriminative fault features extraction ability and strong
anti-noise ability but also has low storage and computational
costs. It indicates that the proposed model is more promising
in practical engineering, especially in the Industrial Internet
of Things context. Moreover, the proposed multiscale CNN
diagnosis framework can also be applied to other industrial
systems without any processing.

For further work, first, we are going to introduce the trans-
fer learning to improve themodel’s domain adaptation ability.
Second, we will further explore the learning mechanism of
multiscale CNN to improve the pertinence of scale parameter
setting according to specific diagnosis tasks, thereby further
improving the diagnosis performance of the model and sim-
plifying the model structure.
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