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ABSTRACT The camera tracking systems based on visual image processing face a problem that they are
completely ineffective in their blind zones. To address this problem, a design of acoustic enhanced tracking
system combining visual and auditory target tracking methods is reported in this article. The system holds
the abilities of performing sound direction estimation and target tracking in real-time. Estimating direction
of arrival of the sound accompanied with the target helps the camera turn towards the target outside the field
of view. This sound-triggered mode of camera operation makes a significant supplement to conventional
cameras’ working state. Considering the embedded system is necessary in consideration of the cost and size
of the system in practical application, we designed a small aperture array with 7 digital omnidirectional
MEMS microphones and built the overall system based on FPGA and ARM. The experiments were carried
out in a normal indoor environment and the results confirmed that the system can perform auditory and visual
tracking in real-time.

INDEX TERMS Visual target tracking, MEMS microphone array, acoustic localization, computer
perception.

I. INTRODUCTION
Real-time target tracking, as a basic core technology in the
field of computer perception, is widely employed in many
applications, such as intelligent robot [1], security moni-
toring [2], and drone detection [3]. Among these applica-
tions, the detection and tracking of moving targets have been
attracting great research interest. In the past few decades,
relevant researchers have made great progress in moving
targets tracking based on video sequence [4]–[9]. Actually,
the development of the visual tracking algorithm has not dealt
with the problem existing in conventional cameramonitoring.
These cameras are completely ineffective for visual tracking
while the object is out of their field of view (FOV). As shown
in FIGURE 1, except for vision, hearing accounts for the
most proportion of all human perception, about 13% [10].
A person who hears what is happening out of sight will
turn his neck to see the object. Imitating these joint actions
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from hearing to vision, we developed a tracking system
with auditory and visual methods to address the blind angle
problem. The functions of ears, eyes, neck and brain can
be imitated by microphones, a camera, a pan-tilt actuator
and CPU, respectively. However, both the integration of
such embedded system and the implementation of effective
algorithms bring great challenges for this design in practical
applications.

In the field of acoustic source localization, the methods
based on microphone array (MA) are very popular, which
estimate the sound direction by processing the spatial infor-
mation [11]–[21]. These methods can be generally divided
into three categories: beamforming based methods [11], [12],
[16], subspace based methods [17]–[19], and parametric
methods [20], [21]. Parametric methods feature high com-
putational cost so that they are not suitable for real-time
processing. The subspace based methods are characterized
by high resolution, but these methods only care about the
direction result, without a synthesized output. That makes
them not a better choice than beamforming in terms of
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FIGURE 1. The human perception system.

functionality. Additionally, the beamforming based meth-
ods are small in computation, which gives beamforming an
advantage in real-time processing. The direction information
is mapped to the phase delay of signals received by each
array element. The detailed explanations of phased array
beamforming technologies are well documented in [22]–[24].
Adaptive beam-forming is a significant task in array signal
processing, of which the Capon beamformer is a represen-
tative example [25]–[27]. The signal of interest (SOI) is
allowed to pass through without distortion while the interfer-
ence signals and noise are suppressed as much as possible.
However, it has been found that the Capon beamformer is
sensitive to modelling mismatches [28]–[33], especially in
small aperture arrays. To address this problem, a class of
robust adaptive beamformers (RABF) are designed to offer
acceptable array output performance [34]–[41]. It was found
that the influence of array elements mismatch on locating
accuracy in small aperture arrays can be reduced by adjust-
ing the weighting vector of beamformer. Thus, RABF algo-
rithms provide a solution for the acoustic localization of this
design.

It is necessary to integrate the system in practical appli-
cation. But the array of traditional electret condenser micro-
phone (ECM) is often featured by larger size and power
consumption. Furthermore, additional amplification circuits
and AD acquisition modules also complicate the system. All
these factors above bring great difficulties to the integration
of the system. Fortunately, the emergence of the Micro-
Electro-Mechanical Systems (MEMS) microphone makes
it possible to miniaturize the acoustic sensor array [42],
[43]. The MEMS microphones have an acoustic transducer,
an amplifier, and even an analog-to-digital converter (ADC)
integrated in the chip [44], that contributes to the MA’s small
aperture. They can be directly connected to the FPGA through
the I2S interface, without using an audio decoder, enabling
the further reducing of system complexity. Additionally, com-
pared to ECM, MEMS microphones have less sensitivity
to temperature, vibrations or mechanical shocks [45], [46].
These advantages including high quality and small pack-
age, make MEMS MA more portable and suitable for our
design, that brings solutions for scheme of small-aperture
MA.

The combination of visual and auditory informa-
tion processing has attracted the interests of many
researchers [47]–[53]. A perception sensor net-work [47]
capable of detecting emergency situations was presented
for school safety, using a Kinect with four microphones
to acquire audio signals. D’Arca et al. [48] used dis-
tributed directional microphones to recognize speakers,
combined with video information captured by the camera.
Viciana-Abad et al. [49] proposed an audio-visual percep-
tion system to direct the behavioral responses of the robot
with two microphones and two cameras attached to the
head. Wilson et al. [50] combined a video camera array
and a MA to locate the speaker in a conference room,
with 32 omnidirectional microphones spread across the ceil-
ing and 2 cameras on adjacent walls. Despite the great
effort in studying the audio-visual information processing,
it has rarely been reported that using such a small aper-
ture MEMS MA to solve the camera blind spot problem.
As described before, in practical applications, embedded
implementation is necessary to meet the cost and size
constraints.

In this article, we have reported an acoustic enhanced
camera tracking system based on a small-aperture MEMS
MA, in order to extend the detection angle of the camera
tracking system to all directions, imitating the hearing-vision
interactions of human. To address the integration problem,
a circular small-aperture MEMS MA is designed with a
4.5 cm radius. The embedded platform is constructed based
on FPGA and ARM for data parallel acquisition and system
control, respectively. The estimation results confirmed that
thewhole system can perform all the localization and tracking
functions reliably in real-time.

This article is organized as follows: Section II describes the
related algorithms implemented. Section III shows the system
architecture. The experiments and discussions to evaluate the
performance of the system are explained in Section IV.

II. METHODS
In this section, the algorithms used in the system are
introduced, including the voice activity detection (VAD),
the sound source localization, visual detection and target
tracking.
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A. VOICE ACTIVITY DETECTION AND SOUND SOURCE
LOCALIZATION
1) VOICE ACTIVITY DETECTION
In order to reduce the computing burden as well as provide
trigger signals for the tracking system, the VAD processing
is implemented. The VAD is based on the estimation of the
short-term energy and short-term zero-crossing rate (ZCR).
The short-term energy of an n-th frame audio signal can be
given by:

En =
N−1∑
m=0

[ω(m)x(n+ m)]2 (1)

where N is the window length; x(n) is the audio signal; ω(m)
is given by the following equation:

ω(m) =
{
1 m = 0, 1, · · · , (N − 1)
0 others

(2)

And ZCR is expressed as:

Zn =
1
2

N−1∑
m=0

|sgn[xn(m)]− sgn[xn(m− 1)]| (3)

where

sgn[x] =
{

1 (x > 0)
−1 (x < 0)

(4)

2) SOUND SOURCE LOCALIZATION
In this work, the beamforming algorithm is used to estimate
the direction of arrival (DOA) of the sound. This method is
based on the time difference of arrival signals of the micro-
phone array elements. The time difference in time domain is
reflected as phase shift in frequency domain. The accuracy
of delay in the time domain is limited by the sampling rate,
while the accuracy of phase shifting in the frequency domain
can be higher. At the same time, most of the natural sound
are broadband signals, which need to be analyzed after being
decomposed. Therefore, the fast Fourier transform (FFT)
processing is necessary.

If the wavelength of the signal is known, the phase has
a corresponding relationship with the angle of arrival. The
output power of the SOI is maximized when the most suit-
able compensation phase making the signals of all channels
become coherent signals is found. Thus, we establish the rela-
tionship between output power and the direction of arrival.

Supposing that a(θ, ϕ) is the direction vector of a plane
wave propagation in space:

a(θ, ϕ) = − [ sinϕ cos θ sinϕ sin θ cosϕ ]T (5)

where θ and ϕ are azimuth and elevation angle in spherical
coordinates, respectively. In this design, we only care about
the azimuth angle θ . So, the value of ϕ is treated the same,
and a(θ, ϕ) is simplified to a(θ) to facilitate the expression.

Supposing that the array elements number is M and the
position of each is Pm(m = 0, 1, · · · ,M − 1), then the time

difference between m-th array element and reference point is
given by

τm =
aTPm
c

(6)

where c represents the velocity of the plane wave and aT is
the transpose of vector a.

The signal received by each array element is given by
Sm(t) = S(t − τm), where S(t) is the signal received at the
reference point. So its frequency spectrum is

Sm(ω) =
∫
∞

−∞

S(t − τm)e−jωτdτ = S(ω)e−jωτm (7)

where j and ω are imaginary unit and frequency, respectively.
Define the wave number k = ωa/c, then there is ωτm =

kTPm. The receive signal matrix can be expressed as

X(ω)=


S0(ω)
S1(ω)
...

SM−1(ω)

=S(ω)

e−jk

TP0

e−jk
TP1

...

e−jk
TPM−1

=S(ω)v (8)

where v is array steering vector, that is the function of k,
describing the response of the array to the signal in spatial
domain.

Actually, X(ω) is the output matrix of the array. The con-
ventional beamformer HT (ω) is used to compensate for the
phase difference. It is given by

HT (ω) =
1
M
vHs (9)

where ks is the wave number of the plane wave we are
interested in. The output is

Y (ω) = HT (ω)X(ω) (10)

Supposing that the signal is a unit of power, i.e., S(ω) = 1.
The Eq. (10) is defined as the beam pattern to describe the
array corresponds to a unit power plane wave signal in space.

In the narrow band snapshot model processing at ωc,
the output of the beamformer is given by

y(n) = ωHx(n) (11)

where complex weight vector ωH
= HT (ωc) and ωc repre-

sents the central frequency of the narrow band.
Beam output power can be calculated as follows:

P = E[ y(n)yH (n)]

= E[ ωH
· x(n) · (ωH

· x(n))H ]

= ωωωH · Rx ·ωωω (12)

where Rx is the matrix of the input signal and it can be
expressed as:

Rx = E[x · xH ] (13)

Also, ω is a function of θ and ϕ. In this application, only
the azimuth angle θ is concerned. So the Eq. (12) becomes

P(θ) = ωH (θ ) · Rx · ω(θ ) (14)
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The angular distribution of power can be represented as
power azimuth spectrum (PAS) by beam scanning in azimuth.
The azimuth of maximum power is the direction of the sound.

The standard Capon beamforming (SCB) or minimun vari-
ance distortionless response (MVDR) beamforming algo-
rithm can be summarized as that the SOI is allowed to pass
through without distortion while the interference signals and
noise are suppressed as much as possible. It is given by the
following constraints:

min
ω

ωHRω subject to ωHvs = 1 (15)

The Lagrange multiplier methodology is used to solve
formula above, and the weight vector of MVDR is obtained
as follows:

ωMVDR =
R−1vs
vHs R

−1vs
(16)

that is substituted into Eq. (14) to get the power estimate:

PMVDR =
1

vHs R
−1vs

(17)

However, the actual array steering vector often has a certain
deviation, causing power loss of the SOI. The RABF algo-
rithm estimates the true steering vector v and replaces it with
the estimated v. The smaller the deviation between v and v,
the larger the power output value of beamforming. Therefore,
the RABF algorithm based on array steering vector estimation
can be converted to the following quadratic optimization:

max
v

1

vHR−1v
subject to ‖v− v‖2 = ε (18)

where ε is the upper norm of the error of the steering vector,
which depends on the error between the theoretical and the
actual steering vector. Similarly, this problem can be solved
by using the Lagrange multiplier methodology, that is given
by

f (v, λ) = vHR−1v+ λ(‖v− v‖2 − ε) (19)

in which λ > 0 is the Lagrange multiplier. Find the partial
derivative of the above equation with respect to v, and let the
derivative be 0, then get the best steering vector estimate as:

v̂ =

(
R−1

λ
+ I

)−1
v = v− (I + λR)−1 v (20)

Substitute the above equation into constraint ‖v− v‖2 = ε,
there is

g(λ) ,
∥∥∥(I + λR)−1 v∥∥∥2 = ε (21)

Let

R = U0UH (22)

whereU consists of eigenvectors of R, and the eigenvalues of
R constitute the diagonal elements of the diagonal matrix 0,
in which γ1 > γ2 > · · · > γM . Let

z = UHv (23)

The solution λ to Eq. (21) is unique and it can be calculated
that λ belongs to the following interval:

‖v‖−
√
ε

γ1
√
ε

6 λ 6 min

‖v‖−
√
ε

γM
√
ε
,

(
1
ε

M∑
m=1

‖zm‖2

γ 2
m

)1
2

 (24)

where zm denotes them-th element of z. Once λ is determined,
the best steering vector v̂ can be calculated by Eq. (20).
Substitute the estimate of the steering vector into Eq. (16) to
obtain the weight vector:

ωRABF =
R−1v̂

v̂HR−1v̂

=

(
R+ 1

λ
I
)−1

v

vH
(
R+ 1

λ
I
)−1

R
(
R+ 1

λ
I
)−1

v
(25)

Finally, the power estimate can be calculated by Eq. (17),
as follows:

PRABF =
1

‖v‖2

M∑
i=1

(
λγm

1+λγm

)2
|zi|2

M∑
i=1

(
λ

1+λγm

)2
γm |zi|2

(26)

The overall broadband beamforming algorithm can be
illustrated as FIGURE 2. The VAD processing is to distin-
guish whether the sound signal is valuable, so it should run
on all 7 channels before beamforming. The received signal
of each array element is preprocessed and the data shell is
decomposed into K subbands by discrete Fourier transform
(DFT), and then signal in each subband can be treated as
a narrow band to perform beamforming operation. Finally,
we can obtain the output signal in time domain by inverse
discrete Fourier transform (IDFT).
K -point DFT is performed on theM sampling channels in

order to get K frequency bins. A new vector of the result in
the same frequency bin is made up so that K vectors can be
expressed as:

X(k) =


X0(k)
X1(k)
...

XM−1(k)

 k = 0, 1, · · · ,K − 1 (27)

where Xm(k) is the signal of m-th (m=1,2,· · · ,M -1) array
element in the frequency domain.

After M signals are weighted and summed, the results of
K frequency bands can be obtained as follow:

Y (k) = ωH (k) · X(k) (28)

where ωH (k) is the weight vector in each subband, it can be
expressed as:

ω(k) =


ω0(k)
ω1(k)
...

ωM−1(k)

 k = 0, 1, · · · ,K − 1 (29)
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FIGURE 2. The overall data flow of the broadband beamforming algorithm.

K -point inverse Fourier transform of Y (k) is performed to
obtain the beam output y(n) in the time domain. Calculate
the beamforming output power and scanning power-azimuth
spectrum can be plotted.

B. VISUAL TARGET DETECTION AND TRACKING
According to the result of acoustic localization, the pan-tilt
camera turns towards the target outside the camera’s FOV.
Then the frame-difference method is used to detect the mov-
ing object and the mean-shift tracking algorithm is applied to
track the detected target.

1) MOVING TARGET DETECTION BY FRAME-DIFFERENCE
The principle of the frame-difference method is to subtract
two adjacent frames of video images in order to detect the
moving target. The difference of two adjacent frames of video
images is expressed in the form of

1I (x, y) = |I (x, y, t)− I (x, y, t − 1)| (30)

where I (x, y, t) represents the gray value at the (x, y) point
and time t , and 1I (x, y) is the difference of grayscale of the
two adjacent frames of images. Then binarize the difference
image so that we can detect the target and locate its position.

2) MEAN-SHIFT TRACKING
After the target position is located by frame-difference,
the mean-shift algorithm is used for its tracking. The algo-
rithm tracks the target motion using gradient information,
with linear convergence rate, which makes the iterative cal-
culations small and it is easy to be applied in real-time.
The mean-shift vector about the target model is described
according to the candidate model with the largest similarity
to the target, which is the vector of the target movement.
Due to the fast convergence of the mean-shift algorithm,
by continuously iteratively computing the mean-shift vector,
the algorithm will eventually converge to the true position

of the target. The mean-shift algorithm takes the moving tar-
get obtained by the frame-difference method as the tracking
target, and the RGB feature is used to model the probability
density estimation.

Suppose that there are n pixels in the target area which
position is xi(i = 1, · · · , n). The color space of the target is
divided into m intervals. The probability density of the target
model is expressed as q = [q1 q2 · · · qm]T . Suppose
that x is the position of the center of the target region. In each
interval it is given by

qu=C1

n∑
i=1

k
(∥∥∥∥x−xih

∥∥∥∥2)δ(i, u) u=1, 2, · · · ,m (31)

In the Eq. (31), h is the window width of kernel function.
δ(i, u) is the Kronecker function which determines whether
xi belongs to the u interval, and returns 1 or 0. k is the
profile function of Epanechikov kernel function KE (z). C1 is
a normalized coefficient expressed as:

C1 =
1

n∑
i=1

k
(∥∥ x−xi

h

∥∥2) (32)

There is the formula as KE (z) = k(‖z‖2). Suppose the
volume of the d-dimensional unit ball is cd and it can be
described as:

KE (z) =


1
2
c−1d (d + 2)(1− ‖z‖2) ‖z‖ < 1

0 others
(33)

The pixels in target candidate region is assumed as xi(i =
1, 2, · · · , n) and the probability density estimation of can-
didate is expressed as p = [p1 p2 · · · pm]T . In each
interval it can be given by

pu(y)=C2

n∑
i=1

k
(∥∥∥∥y−xih

∥∥∥∥2)δ(i, u) u=1, 2, · · · ,m (34)
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where y is the position of the center of the candidate. C2 is a
normalized coefficient expressed as:

C2 =
1

n∑
i=1

k
(∥∥∥ y−xih

∥∥∥2) (35)

The Bhattacharyya coefficient is used to measure the sim-
ilarity between the target and the candidate model, as follow:

ρ[ p(y), q ] =
m∑
u=1

√
pu(y)qu (36)

The larger the value of ρ[ p(y), q ], the higher the similarity.
Let ys be the target initial position, and perform a first-order
Taylor expansion on ρ[ p(y), q ] at ys and sort it to get the
Eq. (37).

ρ[ p(y), q ]=
1
2

m∑
u=1

√
pu(ys)qu +

1
2

n∑
i=1

ωik
(∥∥∥∥y− xih

∥∥∥∥2) (37)

in which

ωi =

m∑
u=1

δ(i, u)
√

qu
pu(ys)

(38)

In Eq. (37), the first term on the right side of the equation
does not contain y. The second term represents a kernel
probability density estimation with a profile function of k and
a weight of ωi. Let T (y) represent the second term. Calculate
its gradient with respect to y and sort it to get the Eq. (39).

∇T (y)=−
2
h2

[
1
2

n∑
i=1

k ′
(∥∥∥∥y−xih

∥∥∥∥2)
]

n∑
i=1
xiωik ′

(∥∥∥ y−xih

∥∥∥2)
n∑
i=1
ωik ′

(∥∥∥ y−xih

∥∥∥2) −y

(39)

where k ′ represents the derivative of k . It can be noted that
the term in the first bracket can be regarded as the kernel
probability density estimation with the profile function of k ,
and the term in the second bracket represents the vector of
the mean shift. The maximization of T (y) can be completed
by the following mean-shift iterative process.

ys+1 =

n∑
i=1

xiωik ′
(∥∥∥ ys−xih

∥∥∥2)
n∑
i=1
ωik ′

(∥∥∥ ys−xih

∥∥∥2) (40)

When the condition ys+1 − ys ≤ ε or the number of
iterations λ ≥ N are satisfied, the iteration is considered to
be the end and the target location is updated. Take ε = 0.5
pixels and N = 20 in the algorithm.

III. SYSTEM ARCHITECTURE
This section describes the system architecture depicted in
FIGURE 3. It is worth mentioning that the rotation range of
the camera is 0 to 360 degrees in the two-dimensional plane.
The array shape should not only match its detection range,

but also adopt the minimum system volume. The resolution
of the circular array is the same in all directions, so it per-
fectly matches the rotation range of the camera. As shown
in FIGURE 4, the overall system is integrated on a circular
substrate with a diameter of 10 cm. It is connected to the
host computer through Ethernet or USB port. The platform
is based on FPGA data acquisition and ARM system control.
The auditorymodule ismainly divided into three parts: acous-
tic sensor, FPGA data acquisition and ARM control module.

1) The acoustic sensing module in the system is a cen-
trally symmetrical circular array structure consisting of
7 acoustic digital MEMS sensors ADMP441.

2) FPGA synchronously acquires digital audio signals
from 7 MEMS acoustic sensors via I2S bus.

3) ARM aggregates and processes the data received by the
FPGA through the FMC bus.

The ADMP441 (ADI, Massachusetts, America) micro-
phone consists of MEMS sensor, ADC circuit, power man-
agement and industry standard 24-bit I2S interface. It has a
flat response curve from 60 Hz to 15 kHz and can be directly
connected to the FPGA using the I2S interface. Therefore,
no audio encoder and decoder are required in the system.

The main function of the FPGA is to provide a syn-
chronous multi-channel I2S interface design. The low-power
and low-cost chip EP2C5T144C8 (Altera, California, Amer-
ica) in the Cyclone II family is selected as the FPGA con-
troller. It needs to complete the timing simulation of four
I2S buses, a buffer area and a data transmission interface for
the task of collecting data in parallel. The 48 MHz active
crystal oscillator is used as the clock input of FPGA. The
serial configurator EPCS16 with 16 Mbit storage capacity
is used in program storage and chip configuration, and the
USB blaster is used as the emulator for debugging and down-
loading programs. The two AMS117 linear voltage stabilizer
chips provide the core voltage of 1.2 v and 1.8 v respectively
for the FPGA. To keep the microphone signals acquired
synchronously, the same set of connecting lines SCK andWS
are used between the FPGA and microphones.

Themain function of ARM chip in this system is to process
the data collected by FPGA through FMC bus. Communica-
tion with FPGA requires a high-speed communication bus.
Meanwhile, the underlying hardware and drivers supporting
USB or ethernet are needed to transmit data with the upper
computer. The ARM microprocessor Cortex-M7 series is
used in real-time control, in which the STM32F746ZGT6
(STMicroelectronics, Geneva, Switzerland) has a 216 MHz
main frequency, 320 KB RAM and 1 MB FLASH stor-
age space. Most importantly it supports FMC function,
USB interface and ethernet communication. In this design,
STM32 mainly writes the data in SRAM into the buffer
through the FMC bus, and then transmits packaged data to the
host computer through the USB bus to realize the function of
the USB microphone array. The main work is the implemen-
tation of the STM32 and FPGA communication interface,
as well as the adaptation of the USB audio class specification.
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FIGURE 3. System architecture.

FIGURE 4. Photograph of the system.

STM32 and FPGA initiate data transmission through a
16-bit data bus, and data transmission is performed by means
of time division multiplexing of data lines and address lines.

IV. RESULT AND DISCUSSION
In this section, the experiment setup as shown in FIGURE 5
(a) consists of the MEMS microphone array mentioned in
Section III, a PTZ camera (DS-2DC7120IW-A, Hikvision,
Hangzhou, China), and a computer. The system was tested
in a normal office room with the size of 12 m× 7.5 m× 4 m.
FIGURE 5 (b) illustrates the experimental scenario. The door
opening sound activated the auditory module of the system,
and then the visual module was driven to detect and track the

target person according to the azimuth information provided
by the auditory module. Auditory module was separately
tested because of its significance to the overall system.

A. AUDITORY LOCALIZATION
In the auditory module test, seven channels of sound signals
are received by the MA. The phase difference of these seven
signals is used to calculate the source direction. A snapshot
of these seven signals acquired by the MA in time domain
is shown in FIGURE 6. FIGURE 7 demonstrates a snapshot
of the sound signal and the VAD result based on short-term
energy and ZCR. The part between the two red lines is judged
to be a valid voice.
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FIGURE 5. Experimental setup. (a) A picture of the experiment setup. (b) The experimental situation.

FIGURE 6. A snapshot of signals received by multiple microphones.

The power-azimuth spectrum estimates of CBF, MVDR
and RABF are plotted on a graph with a theoretical R and a
sample R respectively, as is shown in FIGURE 8. The circular
MA is used in this design with omnidirectional microphones,
that is why the SOI power will not be different depending
on the azimuth of the source. Therefore, the SOI azimuth in
the simulation is set to 0◦, while the azimuth angle of the
experimental sound source relative to the MA is assumed to
be 0◦. Same as the MA, the number of array elements M=7,
radius r=0.045 m, and array spacing d=0.045 m are set. As
is well known to us, in the time domain signal processing,
the under-sampling of the signal will lead to the generation of
the gate lobes. The appearance of the grating lobes will lead to
peak response blur. This is Nyquist’s sampling law. Similarly,
in order to satisfy the spatial sampling law to eliminate lobe
aliasing, it must be satisfied that d/λ ≤ 1/2, that is, the signal
frequency is lower than 3777 Hz. The frequency of the simu-
lated signal is set to 3600 Hz. Therefore, the simulated signal

FIGURE 7. A snapshot of VAD results.

TABLE 1. Localization results of different angle.

source is composed of 3600 Hz sine wave and Gaussian white
noise. Under the comparison of the SOI power estimates of
these three algorithms, it is obvious that RABF obtains higher
SOI power than the other two algorithms.

Further more, in order to study the robustness of the algo-
rithms, we also calculate the root-mean-square error (RMSE)
performance of these three algorithms from 500Monte-Carlo
runs, respectively. In the simulation, for the sake of generality,
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FIGURE 8. Results of auditory localization test. (a) Power estimation with a theoretical R. (b) Power estimation with a sample R.

FIGURE 9. RMSE performance of each DOA estimation method. (a) RMSE versus SNR with the number of snapshots N=16. (b) RMSE
versus number of snapshots with SNR=0 dB.

the SOI azimuth is given randomly from 0◦ to 359◦. The SNR
is set to be 0 dB while changing the number of snapshots,
and the number of snapshots is set to be 16 while changing
the SNR. FIGURE 9 (a) illustrates that RABF and CBF are
superior to MVDRwhen the number of snapshots is less than
16 and RABF and CBF have similar performance. FIGURE 9
(b) shows that CBF and RABF are slightly better thanMVDR
when the SNR is lower than 0 dB and also RABF and CBF
have similar performance. There is no doubt that CBF is of
superior robustness. FIGURE 9 demonstrates that RABF has
almost the same performance as CBF in both less snapshots
number and low SNR. The above experiments demonstrates
that RABF possesses superior robustness while having higher
SOI power. The RMSE is less than 3◦ in the case of 0 dB SNR
with enough sampling points.

Finally, the localization accuracy of the sound module was
tested in the conference room environment. The microphone
array was placed in the center of the room, and the sound

sources was placed at 0◦, 90◦, 180◦, and 270◦, respectively,
at a distance of 3m from themicrophone array. The algorithm
is tested 30 times at each direction, and the estimation results
are described in TABLE 1. The experiment results prove that
the error of the averaged angle is less than 3◦ and it is helpful
for visual module to detect and track the target.

B. AUDITORY-VISUAL TRACKING TEST
The experiment of auditory-visual joint tracking was per-
formed in accordance with the scenario of FIGURE 5 (b).
The system was modeled as human perception system. At the
beginning, the camera was in a normal state and the target
was out of sight. When the system received the valid audio
input, that was door opening sound and footsteps, the auditory
localization algorithm was used to detect the target angle and
the PTZ camera rotated to make the target emerge in the FOV
of camera. Then the visual module could detect and track
the target. The pan-tilt rotation was controlled according to
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FIGURE 10. Weight distribution of the target area.

FIGURE 11. Results of visual tracking. (a) Color histogram of the target in FIGURE 10. (b) The similarity between the target and
candidate.

TABLE 2. The time cost of the algorithms.

the target position in each frame image. The audio module
is a supplement to its working state for necessary situation.
The detection rate of the vision module is 25 FPS. In the
experiment, the target moved at a speed of about 1 m/s, and
the distance between the target’s straight path and the system

was about 2.5 m. In this design, the sound source module
is always in working state to provide azimuth information
for the system. The priority of visual tracking is higher than
that of auditory, because the information obtained by visual
module is larger than that of auditory module. Until the video
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FIGURE 12. The results of real-time auditory-visual tracking.

tracking loses its target, it will be tracked by the audio module
again. If neither has an enabling signal, the system works like
a normal camera.

For the visual tracking, referring to Eq. (33), the probability
weight distribution of each pixel of the target region is shown
in FIGURE 10. In the target area of 310 × 136 pixels,
the weight of the center portion is greater than edge portion.
Referring to the Eq. (31), FIGURE 11 (a) expresses the color
histogram of the object model, and the RGB color space is
divided into 16× 16× 16 bins. The sub-figure shows the gray

histogram of each color. Referring to Eq. (36), FIGURE 11
(b) is the curve showing the similarity between the target and
the candidates of four sets of experiments. The target tracking
in the experiment indicates the accuracy of the visual module,
as shown in FIGURE12. The execution time and frame length
of the implemented algorithms is shown in TABLE 2. The
VAD, FFT and beamforming all run on 7 channels. N is
the length of audio data per frame or the number of pixels
of image data per frame. The computational cost represents
the number of times the system performs real multiplication.

VOLUME 8, 2020 215837



L. Li et al.: Acoustic Enhanced Camera Tracking System Based on Small-Aperture MEMS MA

Obviously, the beamforming and mean-shift algorithms takes
up a lot of calculations and the time cost of time is 9.205 ms
and 25.583 ms, respectively. The overall time cost meets the
real-time requirements.

The process of the overall test is shown in FIGURE 12.
The time process was represented in numerical order. From
frame 1 to 3, the video module was initially in sleep or normal
state and it was triggered by the door opening sound signal.
The pan-tilt rotation was controlled by auditory azimuth sig-
nal, based on the data of the auditory localization, until the
target in the video sequence was detected as frame 4. When
the target was detected, visual enable signal took over the
control of pan-tilt rotation according to the data of mean-shift
tracking, as frame 5 to 16. When the target was lost by visual
module, control was taken over by the auditory module again.
If neither module provide an enable signal, the tracking ended
and the visual module re-entered the sleep or normal state
until it was triggered by an audio signal. The experiment was
repeated 20 times and the targets were accurately detected
and tracked in all groups.

V. CONCLUSION
In this article, for the purpose of solving problems that con-
ventional cameras fail to monitor objects in their blind zones,
we proposed an acoustic enhanced camera tracking system
for real-time monitoring. It is developed based on a small
aperture MEMS microphone array with a 4.5 cm radius, that
makes the system miniaturized and integrated. The demo is
inspired by the joint action of human beings from hearing
to vision. The broadband beamforming and mean-shift algo-
rithm were mainly implemented in sound and image data
processing. The acoustic localization results prove that the
error of the averaged angle is less than 3◦, demonstrating that
it is helpful to locate the target outside FOV of camera for
the visual tracking module. In the joint tracking experiments,
targets were accurately detected and tracked in all groups.
The system extends the detection angle of camera tracking
system to all directions and performs well in the real-time
and robustness. In practical applications, worse scenarios is
often faced with, such as lower SNR, occlusion environment
and multi-source situation. The applied algorithms need to
be optimized to improve the system’s performance in worse
environment. An improved tracking strategy is also indis-
pensable to meet the demands of more complex situations.
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