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ABSTRACT The existing satellite-terrestrial integrated networks (STINs) suffer from security and privacy
concerns due to the limited resources, poor attack resistance and high privacy requirements of satellite
networks. Network Intrusion Detection System (NIDS) is intended to provide a high level of protection
for modern network environments, but how to implement distributed NIDS on STINs has not been widely
discussed. At the same time, satellite networks have always lacked real and effective security data sets as
references. To solve these problems, we propose a distributed NIDS using Federal Learning (FL) in STIN
to properly allocate resources in each domain to analyze and block malicious traffic, especially distributed
denial-of-service (DDoS) attacks. Specifically, we first design a typical STIN topology, on the basis of which
we collect and design security data sets adapted to satellite and terrestrial networks in STIN, respectively.
To address the problem of poor attack resistance of satellite networks, we propose a satellite network
topology optimization algorithm to reduce the difficulty in tracing malicious packets due to frequent link
switching. In order to solve the problem of limited resources and high privacy requirements of satellite
networks, we propose an algorithm for FL adaptation to STIN, and build a distributed NIDS using FL in
STIN. Finally, we deploy the designed distributed NIDS in a prototype system and evaluate our proposed
distributed NIDS with a large number of simulations of randomly generated malicious traffic. Related results
demonstrate that the performance of our approach is better than traditional deep learning and intrusion
detection methods in terms of malicious traffic recognition rate, packet loss rate, and CPU utilization.

INDEX TERMS Satellite-terrestrial integrated network, distributed NIDS, security data set, federated
learning.

I. INTRODUCTION

As an important supplement to the wireless network,
satellite-terrestrial integrated network (STIN) offers large-
capacity information transmission service to space access
network and terrestrial network in a recent decade [1]. How-
ever, with the development of satellite networks and billions
of devices are being connected to the continuously growing
networks, security and privacy appear to be a major concern
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in the STIN. Unfortunately, there exists a huge gap between
satellite networks and terrestrial networks in computation
power, bandwidth, and other resources. Besides, the hardware
is difficult to be upgraded after satellites launched [2]. To pre-
vent attacks, one method is to use keys to encrypt/decrypt
and authenticate data during transmission [3], [4]. Once
attacked, the resources of the satellite network will be quickly
exhausted and difficult to repair, which will make it difficult
to transmit the keys. Even if a firewall system is deployed in
the satellite node, it is not able to detect modern attack envi-
ronments and analyze network packets in depth. Because of
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these reasons, Network Intrusion Detection Systems (NIDS)
are designed to achieve high protection for the modern net-
work environment [5].

A NIDS is designed for detecting detrimental intrusions.
Generally, a NIDS is used for identifying the traffic in the net-
work, especially for distinguishing normal and malicious traf-
fic and hence is beneficial in eliminating malicious traffic [6].
As for the NIDS in the STIN, considering the limited com-
puting power of each satellite node and the high security and
privacy requirements in the transmission process, resource
utilization efficiency should be considered when designing
the detection method and system architecture. Thanks to the
development of artificial intelligence, compute nodes do not
need high-computing hardware configuration to effectively
detect known and unknown intrusion traffic based on the
database in a short time.

There have been many works proposed aiming at the
design of NIDS typically invoking machine learning algo-
rithms for identifying traffic [7]-[10]. The effectiveness of
NIDS is evaluated based on their performance to identify
attacks which requires a comprehensive data set that contains
normal and abnormal behaviors, such as NSLKDD [11] and
UNSW-NB15 [12]. However, these data sets and NIDSs are
generally used for terrestrial networks and are difficult to
apply to satellite communications because of the following
characteristics of STIN.

« Limited resource on satellites. The energy on satellites is
limited and the available resources of satellites are much
lower than that of the terrestrial calculator. Meanwhile,
the information transmitted through the satellite network
has a higher degree of privacy. Therefore, satellite com-
munications have higher security needs than terrestrial
networks. NIDS for STINs should have lower computa-
tional complexity and higher recognition accuracy.

« Satellite networks and terrestrial networks have different
tolerances for various types of attacks. Because ter-
restrial network nodes have the characteristics of high
computing performance and high openness, attacks such
as Backdoor and Botnets will bring huge trouble to
the terrestrial network. However, satellite nodes with
limited resources are afraid of malicious distributed
denial-of-service (DDoS) attacks such as Synchronize
Sequence Numbers (Syn) flooding. Careful considera-
tion should be given to the structure of security data sets
in the different domains of the STIN.

« High privacy needs. The priority of data transmitted by
satellite networks and terrestrial networks is different.
The content transmitted by satellite networks is gen-
erally more private, so data from two heterogeneous
networks cannot be integrated. It is difficult to construct
a comprehensive data set under the STIN because the
data privacy of each domain needs to be guaranteed.

To solve the dilemma of data islands in heterogeneous net-
works, bottlenecks have arisen by traditional methods. There
have been some researches that focused on Some research
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focuses on a feasible solution that meets privacy protection
and data security, called Federated Learning (FL) [13]-[15].
Indeed, the idea of FL can solve the problem of data islands.
However, the satellite network field lacks a real and effective
security data set, which is insufficient to support the applica-
tion of FL in STINS.

Therefore, in this paper, we are motivated to focus on dis-
tributed NIDS in STIN by deploying FL. method. In response
to the different tolerances of satellites and terrestrial networks
to attacks, we have designed security data sets that conform to
the characteristics of each domain. The data sets are collected
in a large and real Linux-based prototype, which contains
nearly 40 nodes and more than 10 different types of simulated
attacks. We adopt DTN [16] in the satellite networks and
use Tcpdump [17] to capture network traffic in the form of
packets, and utilize the Argus [18] and CICFlowMeter [19]
tools to create reliable features from the pcap files. Then,
to combine the horizontal FL. method with a NIDS in a STIN,
we propose a FL adapted STIN algorithm to implement data
exchange and model sharing in heterogeneous networks.

In addition, we also propose a simple satellite network
topology optimization algorithm and implement it in a pro-
totype based on Openstack. We aim to construct a topol-
ogy without link switching under the limitation of satellite
antenna, and hope it can stably adapt to FL-based NIDS. Our
emulation results show that distributed NIDS using FL have
a better performance in terms of malicious traffic recognition
rate, packet loss rate, and CPU utilization than traditional
deep learning methods and NIDSs.

To sum up, our main technical contributions in this work
are as follows.

« We design security data sets suitable for the STIN in the
prototype, borrowing the Argus and CICFlowMeter to
extract highly relevant features from the pcap file.

o We propose a FL adapted STIN algorithm to combine
the horizontal FL method with a NIDS in STINs. Then,
we propose a satellite network topology optimization
algorithm and implement it with the FL-based NIDS in
a large and real Linux-based prototype, which contains
nearly 40 nodes and many different types of emulated
attacks.

« We provide evaluation analysis to validate the function-
ality of the prototype and the feasibility of the distributed
NIDS using FL. The results of the emulations show
that our proposed distributed NIDS can achieve higher
accuracy of malicious traffic identification and lower
CPU utilization than traditional NIDSs.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III describes how to collect
and create data sets in a STIN in our prototype. Section IV
proposes a FL adapted STIN algorithm to combine the
horizontal FLL method with the NIDS. Then, a satellite net-
work topology optimization algorithm is proposed to gen-
erate the satellite network topology combined with NIDS
and deployed in the prototype. In section V, we deploy the
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distributed NIDS using FL in our Openstack-based prototype,
and analyze the experimental results according to the evalua-
tion criteria. Finally, section VI sums up the paper.

Il. RELATED WORK

In this paper, we focus on designing security data sets and
deploying the distributed NIDS using FL in STINs. In this
section, we first review some recent related work on security
data sets and FL. Then, we reviewed the latest development
of NIDS applied to DDoS detection in STINS.

A. SECURITY DATA SETS

Training, testing, and evaluation of IDS with real network
traffic is a significant challenge, so most IDS evaluation
is based on intrusion data sets [20]. KDD’99 [21] is used
in The Third International Knowledge Discovery and Data
Mining Tools contest. The data sets include a total of 24 train-
ing attack types, with an additional 14 types of experi-
mental data only. NSLKDD [11] is a data set suggested to
solve some of the intrinsic problems of the KDD’99 data
set, but it does not represent the modern low footprint
attack scenarios. Because KDD’99 and NSLKDD realized
a limited number of attacks and information of outdated
packets, UNSW-NB15 [12] is created by establishing the
synthetic environment at the UNSW cybersecurity lab.
UNSW-NBI15 represents nine major families of attacks by
utilizing the IXIA PerfectStorm tool. 49 features have been
developed using Argus, Bro IDS tools, and twelve algorithms
that cover characteristics of network packets.

These main and commonly used data sets are focused
on the research of terrestrial network security, but satellite
networks cannot effectively use these data sets due to differ-
ent transmission protocols and traffic environments. In this
article, we research and design a STIN security data set based
on our prototype.

B. FEDERATED LEARNING

In the traditional method, data collected by terminal devices is
centrally uploaded and processed in a cloud-based data cen-
ter. With the divergence of data sources today, MapReduce
programming model [22] and distributed machine learning
(DML) [23] have naturally been proposed as solutions. They
mainly use the computing and storage functions of terminal
devices and edge servers to train distributed data in parallel,
which enables large-scale data processing across multiple
fields. However, computation offloading and data processing
at edge servers still involve the transmission of potentially
sensitive data, especially security data used for DDoS attack
detection. This can discourage privacy-sensitive consumers
from taking part in model training, or even violate increas-
ingly stringent privacy laws [24].

The concept of FL is proposed by Google recently [14].
Their main idea is to build machine learning models based
on data sets that are distributed across multiple devices
while preventing data leakage. This framework applies to a
data-partition framework where each partition corresponds to
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a subset of data samples collected from one or more users.
Instead of sending the raw data over for processing, partic-
ipating devices only send the updated model parameters for
aggregation. Compared with MapReduce and DML, FL can
efficiently use network bandwidth while improving user pri-
vacy [25]. Therefore, we combine the prototype-generated
STIN security data set with FL to meet the new requirements
for security and privacy of heterogeneous networks.

C. NETWORK INTRUSION DETECTION SYSTEM

The rapid progress of STIN has also brought huge secu-
rity risks, prompting the development of security technol-
ogy, especially NIDS. Attacks as DDoS is one of the most
popular intrusions in STINs, which can lead to a decline
in service quality or denial of service [26]. Many studies
have used different machine learning techniques to establish
effective NIDSs for DDoS attack detection in satellite net-
works or terrestrial networks [27]-[30]. For DDoS attacks
in the satellite network, Di et al. [27] proposed an idea
of defense architectures combining with distributed multi-
point detection, near-source defense, collaborative manage-
ment and integrality of protection. For DDoS attacks in the
flying ad-hoc network (FANET), Mowla et al. [28] devel-
oped a model-free Q-learning mechanism with an adap-
tive exploration-exploitation epsilon-greedy policy, directed
by an ondevice federated jamming detection mechanism.
For DDoS attacks in the terrestrial network, Virupak-
shar et al. [29] used a variety of machine learning tech-
niques to propose a network traffic monitoring system
based on OpenStack firewall and raw socket programming.
Alsirhani et al. [30] proposed a dynamic DDoS attack detec-
tion system based on classification algorithms, distributed
systems, and fuzzy logic systems.

These studies have done a good job for DDoS detection
in satellite networks or terrestrial networks. However, their
research on NIDS is mainly focused on a part of the STIN
domain, and few studies discuss how to establish NIDS from
a global perspective to detect DDoS attack. The research
on security data sets and FL makes NIDS adapt to the dis-
tributed architecture of STIN to achieve lower resource usage
and higher classification accuracy. Therefore, we recommend
using FL in STIN to implement distributed NIDS to ensure
the privacy and security of its communication and informa-
tion.

Iil. STIN SECURITY DATA SET

In this section, we will introduce the testbed architecture of
STIN environment and the generation of security data set
details in each domain.

A. DESCRIPTION OF TESTBED ARCHITECTURE

As Fig. 1 shows, we implement the testbed in a prototype and
create hosts using Kernel-based Virtual Machine (KVM) [31]
and OpenStack [32]. With the help of network virtualization
technology, all these hosts in the testbed are implemented
in eight high-performance servers, including one control

VOLUME 8, 2020



K. Li et al.: Distributed Network Intrusion Detection System in STINs Using Federated Learning

IEEE Access

Satellite Network

N Terrestrlal Network p
192.168.100.X/24

FIGURE 1. Testbed architecture.

node and seven computing nodes. The servers we use are
DELL PowerEdge R720 rack-mount servers with Intel Xeon
E5-2609 CPU, 32G memory and 1 TB hard-disk storage.
Linux bridge is used to implement routing and switch-
ing between hosts. Next, we will introduce the testbed in
three parts: satellite network, terrestrial network, and attack
network.

1) SATELLITE NETWORK

Because this paper focuses on the identification of malicious
traffic at the satellite network entrance, the scale of the satel-
lite network is simplified in the testbed. We only use three
Low Earth Orbit (LEO) satellites in the same orbit as test
nodes. LEO1 and LEO2 remain connected to the satellite
gatewayl (SG1) and SG2 of the terrestrial network, and the
LEO satellites are always visible.

To make our testbed a real scenario, we simulate the actual
latency and high-latency transmission protocols of the satel-
lite network. We implement DTN in the satellite network
to meet the need for high transmission delay with the help
of Interplanetary Overlay Network (ION) [33], [34]. Then,
we limit the transmission delay between LEO to 50ms and
the transmission delay between LEO and SG to 3ms with the
help of the Linux Traffic Control.

2) TERRESTRIAL NETWORK

As is shown in Fig. 1, the terrestrial network contains two
SGs, two routers, and three clients. When deploying the ter-
restrial backbone network, considering that this paper focuses
on designing security data sets based on traffic features,
a simple star topology is used to avoid packet loss.

‘We use the TCP/IP protocol stack in the terrestrial network
because it is used in the terrestrial networks in most cases.
To facilitate protocol conversion between the satellite and
terrestrial network, we develop a DTN-TCP/IP bidirectional
conversion and deploy this function on two SGs. Moreover,
the Tcpdump tool is installed on two SGs to capture the
pcap files of the simulation uptime. Three clients are used to
communicate with the satellite network to form benign traffic
during the test time.
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3) ATTACK NETWORK

In order to truly represent the modern threat environme-
nt, we installed different operating systems (Ubuntul4.04,
Ubuntul6.04, Ubuntul8.04, and Winl0) on the four attack
hosts and set them in different network segments.

Since our proposed data set aims to test the attack detection
technology of the STIN, it should cover a diverse set of
network attack techniques and scenarios.

The terrestrial network has many security problems, and
a DDoS attack is undoubtedly the most serious harm to it.
Therefore, we hope that the malicious attacks on the terres-
trial network can cover as many types as possible. We gener-
ated a total of nine different attack scenarios based on open
source software simulations, including Botnets, Web Attacks,
Backdoor, and six different DDoS attacks (LDAP, MSSQL,
NetBIOS, Portmap, Syn, UDP).

Unlike terrestrial networks, satellite networks have a
hig-her level of security and unique DTN transmission pro-
tocol, so malicious attacks applicable to terrestrial networks
are difficult to enter into satellite networks and cause damage.
However, DDoS attacks are flexible and changeable. Only by
exploiting the loopholes in the DTN protocol’s forwarding
mechanism, it can greatly affect satellite communications.
Since our prototype was implemented based on Interplane-
tary Overlay Network (ION) [33] software, we designed and
implemented a DDoS attack for the DTN protocol, which
is a cancellation transmission mechanism based on the LTP
protocol. There is a loophole in the design of ION’s LTP pro-
tocol, that is, after any party receiving and receiving receives
Cancel_segment, it must return Cancel _ACK_segment in
the direction of the connecting node that is communicating,
without additional conditions. As soon as the node receives
Cancel_segment, it must return a confirmation message.
As shown in Fig. 2(a), the satellite network has a high
resource occupancy rate during communication under normal
conditions. When the attacking node launches an attack on the
satellite network, as shown in Fig. 2(b), the attacker’s control
host will send a large number of Cancel_segments to the SG,
it will force ION to reply to Cancel ACK_segment to the
party that normally communicates, occupying the bandwidth
and computing resources of the link, thereby implementing
the DDoS attack for the satellite network. Because the DTN
transmission mechanism is more complex, only two types of
satellite network DDoS attacks based on Syn and UDP are
constructed.

B. SECURITY DATA SET DESIGN

Our proposed STIN security data set aims to collect various
types of attacks in modern satellite and terrestrial network
environments. We construct the data set based on the test
architecture in Fig. 1. Meanwhile, to fully restore the modern
threat environment, we set the experiment duration to 3 hours,
starting at 15:00 and ending at 18:00. During the experi-
ment, we kept each domain Transmission of benign traffic.
As shown in Table 1, during the experiment, we performed
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TABLE 1. Data set statistics.

Domain Attacks Attack Times
Botnet 15:01 — 15:10
Web Attack 15:21 — 15:31
Backdoor 15:41 — 15:52
LDAP_DDoS 16:01 — 16:11
Terrestrial Network MSSQL_DDoS 16:21 — 16:30
NetBIOS_DDoS 16:41 — 16:50
Portmap_DDoS 17:01 — 17:13
Syn_DDoS 17:21 — 17:32
UDP_DDoS 17:41 — 17:52
. Syn_DDoS 15:23 — 15:57
Satellite Network UDP_DDoS 16:52 — 17:20

nine types of terrestrial network attacks and two types of
satellite network DDoS attacks.

Argus tool processes raw network packets (e.g., pcap files)
and generates attributes/features of the network flow packets.
CICFlowMeter is a flow-based feature extraction tool that can
extract 80 functions in a pcap file. Finally, the output files of
two different tools, Argus and CICFlowMeter, are stored in
the Mysql database and the available features are filtered from
them.

These features include packet-based features and flow-
based features. Since most of the attacks we collect come
from DDoS attacks, packet-based features are the most direct
and fine-grained features, but they will greatly affect the pro-
cessing efficiency in the actual analysis of network attacks.
Therefore, we use the flow-level features available from the
database to build the STIN security data set.

In order to adapt to the limited resources of satellite nodes,
we should reduce the cost of training and testing as much as
possible. Therefore, it is necessary to perform feature selec-
tion on the data set to retain the features with good training
effects. First, we remove features related to the environment
and time of the data set collection, such as five-tuples. Then,
a large number of features with missing values or all zeros
were deleted. Finally, Pearson coefficient and Variance selec-
tion are used to further extract features. Pearson coefficient is
used to judge the correlation between feature columns, and
the feature space is reduced by deleting the feature columns
with strong correlation. Variance selection is used to filter the
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TABLE 2. STIN data set features.

# | Name Description

1 | fl_dur Flow duration

2 | fw_pk Total packets in the forward direction

3 | 1_fw_pkt Total length of forward packets

4 | 1_bw_pkt Total length of backward packets

5 | pkt_len_min Minimum length of a flow

6 | pkt_len_max Maximum length of a flow

7 | pkt_len_std Standard deviation length of a flow

8 | fl_byt_s Packet bytes transmitted per second

9 | bw_iat_tot Total time between of two backward packets

10 | bw_iat_min Minimum time between of two backward packets
11 | fw_hdr_len Number of bytes used in forward packet header
12 | bw_pkt_s Number of backward packets per second

13 | syn_cnt Number of packets with SYN

14 | urg_cnt Number of packets with URG

15 | bw_win_byt Number of backward bytes in the initial window

variance value of each column of features, and eliminate fea-
ture dimensions with smaller variance. As shown in Table 2,
we finally screened out 15 best flow-level features that are
helpful for intrusion detection to describe various types of
benign and malicious traffic simulated in the prototype.
Based on the above-mentioned traffic extraction tools,
we can collect about 5 million traffic every 10 minutes.
Obviously, satellite nodes cannot afford such a huge amount
of data. Therefore, we adopt a systematic sampling method
to obtain a subset suitable for the processing capabili-
ties of satellite nodes at a ratio of 1:500. Through fil-
tering, we obtained 177,244 terrestrial network data and
132,320 satellite network data. The above two datasets were
named TER20 and SAT20, and were stored in CSV for-
mat as the basis for designing the distributed NIDS. The
source code and data of our data sets can be found at
https://github.com/kun9717/STIN-data-set/.

IV. FL ADAPTED STIN ALGORITHM DESIGN AND
IMPLEMENTATION
In this section, we first explain why the method of horizontal
FL is used in a STIN. Then, we propose a FL adapted STIN
algorithm to combine the horizontal FL. method with a NIDS
in STINs. After that, we propose a satellite network topology
optimization algorithm that can be combined with NIDS and
deployed in a prototype system.

For the sake of clear description, we make the definitions
as shown in Table 3.

A. HORIZONTAL FL
The horizontal FL. method means that when two data sets
have more user features overlapping and their users overlap
less, we divide the data set according to the horizontal (user
dimension). Finally, we extract data with the same user char-
acteristics but different users for training the neural network.
We define the matrix D to represent the data held by each
data owner i. The rows of the matrix represent samples and the
columns represent the features corresponding to the samples.
We denote the feature space as X, the label space as Y and we
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TABLE 3. Definition of the notations.

Notations Description

T8 win The time duration of the satellite network training model
Tttr win The time duration of the terrestrial network training model
Tiimit The limited-time of the training model

C}‘qﬁfje . The complexity of initial FL. model structure

C’T‘jl‘ot el The complexity of output FL. model structure

Nicaso The number of satellites in IGSO layer

Ny eo The number of satellites in MEO layer

w Satellite connection weight matrix

Jeonnection | Satellite topology connection matrix

use I as the sample ID space. From this, feature X, label Y
and sample Ids / form a complete training data set (/, X, Y).
In general, the horizontal FL is summarized as:

Xi=X;, Yi=Y;, I; #1;, VD;, Dj, i #j. (D

Fig. 3 presents the basic framework of horizontal FL in the
networking environment. In this system, multiple data centers
with the same data structure jointly learn a machine learning
model with the support of a high-performance aggregation
server. There is a huge barrier between data centers, so they
can only rely on aggregation servers for data integration and
transmission. At the same time, the server is honest, so it will
not leak information to participants. Each participant trains
the model locally and calculates its gradient, and transmits
the gradient to the aggregation server through various net-
work encryption technologies. After the aggregation server
receives the data from each participant, it performs security
aggregation without decryption, and feeds it back to each
participant again to implement the gradient update of the local
model.

Homomorphic Encryption (HE) is considered a viable
approach to achieve secure multi-party computing in FL,
so we would like to implement gradient encryption using
the Paillier encryption system, which is an additive homo-
morphic public key encryption system. Given that Stochastic
Gradient Descent (SGD) and its series of deformations are
the most common deep learning optimization algorithms,
we naturally think of building a federated optimization algo-
rithm based on the parallel restarted SDG. Besides, we hope
to use the Convolutional Neural Network (CNN) as the
local neural network model to achieve higher recognition
accuracy.

However, there are still many problems with deploying a
lateral FL method in a STIN. On the one hand, satellite nodes
have worse processor performance than ground-based com-
puters, so they take longer to update the same machine learn-
ing model. In general, to ensure the completeness of data,
the aggregation server will wait for all data centers to upload
data before data integration. However, while the aggregation
server is waiting for satellite nodes to upload data, the terres-
trial network is constantly occupying the interface to monitor
the data return from the aggregation server, which greatly
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FIGURE 3. Architecture for a horizontal FL system.

wastes the resources of the terrestrial network. On the other
hand, to combine NIDS with FL, it is necessary to overcome
the long delay caused by FL in processing data. NIDS should
be time-efficient and highly accurate, but machine learning
methods generally require longer processing times. At the
same time, the limited processing capacity of satellite nodes
also leads to further extension of processing time, which is
not conducive to timely analysis of various types of network
traffic. Therefore, we need a FL adapted STIN algorithm to
combine the horizontal FL. method with a NIDS in STINS.

B. FL ADAPTED STIN ALGORITHM

Considering the key points mentioned in the previous section,
we need to propose a FL adapted STIN algorithm to combine
NIDS and FL in a STIN.

The FL adapted STIN algorithm needs to consider two key
points, synchronization of processing time and efficiency of
identifying traffic. Due to the limited resources of the satellite
network, the complexity of the training model Cj,gq0; Will
greatly affect the T}, of the satellite nodes, calculated as
shown in (2).

D
Cnoder ~ O (Z M} K} Py - P 2
1=1

where D is the number of convolutional layers of the neural
network, M is the side length of each convolution kernel
output feature map, K is the side length of each convolution
kernel, [ is the /th convolutional layer of the neural network,
P is the number of convolution kernels of the /th convolution
layer.

Therefore, the purpose of the algorithm is to output a
suitable C9, . to achieve time synchronization in the FL
process. Besides, we do not pay attention to the specific
relationship between model complexity C;oq.; and training
time Ty4in. For this reason, we simply define that the training
time T4in of each network is directly proportional to the
model complexity Cpodei-

The basic procedure of FL adapted STIN algorithm is
shown in Algorithm 1, which has the algorithm complexity
of O(n). The process of FL adapted STIN algorithm working
out C%td .; Values can be divided to two stages:
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Algorithm 1 FLL Adapted STIN Algorithm

t L init
Input: 7 tralonu’t Ttrain’ Tlimit Cmodel'
Output: C,7, . . '
1: for masked gradients arrive do
t s
2 lf Ttram X 80% < Ttram — tram then
3 ifT; . < = Tiimit tltlen
ou ini .
4 Cmodel Cmodel ’
5: else
out J— init P
6 Cmoa’el C del/[ tram/Tllm”]’
7 end if
N
8 elseif 7). < T . x80% then
9 if7) . < = Tiimit tlllen
. ou ini .
10: Cmadel Cmode tram/ train X 80%];
11: else if 7y < T;, .. then
12: Reduce network complexity, rerun step 1;
13: end if
. t N
14: elseif 7, . < T, . then
15: it 7, .. < Tiimi; then
. out init
16: Cmoa’el C del/[ tmm/ tram
17: else
18: if Tttrazn = Tiimir then
19: Cgllf)del Clmdel/ tmtn/Tlimi’];
20: else
21: Reduce network complexity, rerun step 1;
22: end if
23: end if
24: end if
25: end for
26: return Cmo del
1) TIME SYNCHRONIZATION DECISION
We compare the values of 7%, . and T}, . to analyze the speed

of satellite and terrestrial networks uploading data. We first
set 80% as a threshold to allow satellite nodes to fluctuate
in T . values due to insufficient performance. The aggre-
gation server receives the model training times 73 . . T ..
from the satellite and the terrestrial network, limited training
time Tj;nir (varies with network size), and the initial model
C"” vdel 88 input. When masked gradients reach the aggrega-
t10n server, we start to compare the values of T’ tmm and Tt’mm,
and use it to determine whether the models transmitted by
satellite network and terrestrial network are synchronized.
If so, we judge whether T}, ; is within the specified time
limit Ty, If this condition is met, set C%del to C,;;'(‘) 0y and
output the result. If the conditions are not met, skip to step
2 to optimize efficiency. If not, We need to determine whether
T} inis longer or shorter than T/ . . If both Tt‘mm and T}, . are

higher than T7;,,;;, there is a problem with the size of the STIN.
We need to readjust the number of nodes or link connections
in the network and rerun the algorithm. Otherwise, skip to

step 2 to execute the efficiency decision.

2) EFFICIENCY JUDGMENT
An important basis for optimizing efficiency is to simplify
the complexity of the model to reduce the training time of
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the satellite network, so that the network eventually achieves
higher data processing efficiency. Therefore, we need to pro-
cess the value of C%ij ol

We compare the sizes of T}, . Ttmm, and 77 to decide
whether to increase or decrease the complexity of the model.
The C%, ., conversion formula and decision conditions have
been given in Algorithm 1. We can use this to obtain Cow
as output. The final model CJ“,  can not only save the
resource occupancy rate of different STINs, but also meet the

time-efficient requirements of NIDS.

C. PROTOTYPE IMPLEMENTATION

NIDS based on DL or FL relies heavily on a relatively stable
network topology, which has a clear transmission path and
continuous traffic. However, traditional satellite networks
will always switch topologies, which causes great problems
for tracing attack sources and analysising features. Therefore,
in this section, we adopt the satellite network topology opti-
mization algorithm proposed in the previous work [35] to
establish a stable topology when the number of antennas is
limited. In the end, we combined this topology with NIDS
using FL and implemented them in a prototype system.

Different from terrestrial networks, satellite networks have
time-varying characteristics regardless of nodes or topolo-
gies. However, the satellite network has the characteristics of
predictability and periodicity. At the same time, the move-
ment of the satellite node has a slow and insignificant effect
on the continuous satellite time-varying topology network
G. Therefore, based on the knowledge of graph theory,
the time-varying satellite network topology in a continuous
state is static within a period, and the model of defining the
satellite network topology is: G(V, A, W).

Where V = {v{, v2...v,} represents the set of finite nodes
in the satellite network; A represents a finite set of links,
A CV xV;W = {w;} represents a weight matrix, and w;
represents the stability weight between node v; and v;, which
is defined as:

log <
Wij = 2 Tij Lmin Dy
0, i #]J

where Tperioq is the period of the satellite topology
network,T;; is the maximum visible time of satellite nodes v;
and v; within a period, L;; is the inter-satellite link capacity,
and the minimum link capacity L,,;, is required to prevent net-
work congestion; The satellite node has its own link weight
of 0, that is, it is impossible to establish a link with itself;

= {1, 2} represents the intra-layer or inter-layer links of
the satellite, and different link distance thresholds Dy should
be defined for links at different levels. D;; is the weighted
distance between satellite node v; and v; within one period
Tperioa» which is defined as follows:

Tperiod Lij Dij > i = j
’ (3)

n

D;j = > Dj 4)
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Algorithm 2 Satellite Network Topology Optimization Algo-
rithm
Input: Nigso, Nyeo, W.
Output: J connection-
1: fori =1 to Njgso do
2: GEO satellites are connected in pairs as an alternative
path, and all elements in row i and column i of M onnection
are set to 1;
3: for j = 1to Nygo do
Select a column with element 1 in the (j +
Nigso)th row of W, record it as k;

»

5 Ji;onnection — Jﬁannection — 1;
6: Wij = Wji = 0;

7: end for

8: end for

9

. return Jeonnection

TABLE 4. Parameters of IGSO/MEO constellation.

Constellation parameter 1IGSO MEO
Inclination (°) 55 55
Altitude (km) 35768 21500
Number of planes 3 3
Number of satellites per plane 1 8
Number of antennas 3 2-3
where s = {t1,t>...t,} represent time slices for visibility

between satellite nodes, T is the length of each time slice, and
Dy, is the physical distance between node v; and v; within each
time slice physical distance. Therefore, a weighted distance is
assigned to each inter-satellite link as the basis for measuring
link connection quality to evaluate the impact on link stability.

The basic procedure of the satellite network topology opti-
mization algorithm is shown in Algorithm 2. The algorithm
first refers to the link weights to establish a stable topology in
the Inclined Geo Synchronous Orbit (IGSO) layer, and then
we fully consider the connection weight W in the Medium
Earth Orbit (MEO) layer to establish a stable double-layer
satellite network topology. Jeonnection T€presents the connec-
tion status of the nodes in the satellite network as output.

In this paper, the standard Walker24/3/1 constellation is
adopted, which consists of 24 MEO satellites and 3 IGSO
satellites form a double-layer satellite network. We imple-
ment DTN in the satellite networks to meet the need for high
transmission delay with the help of ION. Table 4 shows the
specific parameters of the IGSO/MEO constellation.

In order to describe a sufficiently large STIN, we also
deployed 3 terrestrial domains in the prototype, each of which
includes 4 hosts, 2 servers, and 3 routers. As shown in Fig. 4,
the nodes are connected by the tree topology which is widely
used in the construction of terrestrial networks. We verified
that the network complexity of the proposed STIN meets the
requirements of the FL adapted STIN algorithm.

The distributed NIDS includes two stages of offline train-
ing and traffic monitoring. During the offline training phase,
we deploy machine learning models in two SGs and two
Edge Routers. Among them, Edge Router 1 both stores local
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FIGURE 4. lllustration of the prototype.

training data and acts as an aggregation server to aggregate
data from all parties, thus simplifying the data transfer pro-
cess in FL. We input the SAT20 to the SGs and the TER20 to
the Edge Routers. Machine learning models in different nodes
transmit their training gradients to Edge Router 1 after their
learning. Then, server send them back to each node after
encryption and aggregation. During the traffic monitoring
phase, each SG and Edge Router can independently monitor
the traffic coming from the external network and determine
whether it is malicious traffic. If so, add the corresponding
firewall policy and block the traffic. Otherwise, temporarily
add it to the firewall whitelist and trust the data traffic from
the source address in the short term.

V. PERFORMANCE EVALUATION

In this section, the performance of our proposed distributed
NIDS is studied in an emulation environment based on a
Linux-based prototype. We first introduce the STIN topology
used in our emulation and the associated emulation parame-
ters. Then, we propose the evaluation criteria for performance
evaluation. Finally, we describe the performance evaluation
of distributed NIDS using FL in a STIN.

A. EMULATION SETTINGS
Our emulation is based on the OpenStack and TensorFlow
Federated [36] (version 2.2.0, running on CPU), which is
an open-source framework for machine learning and other
computations on decentralized data. We use the prototype
shown in Fig. 4 to implement distributed NIDS, which is
also deployed on the OpenStack platform where the testbed is
located. All nodes are implemented using virtualization tech-
nology, and they implement routing and switching through
Linux bridges. Among them, each link of the terrestrial net-
work and the backbone network is set to 100 Mbps. The link
delay parameters of the STIN are shown in Table 5.

CNN has the sparsity of connections, so each of its regions
has its own unique characteristics, which complements the
distributed characteristics of FL. Thus, deep CNN is used
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TABLE 5. Parameters of link delay.

IGSQ MEQ SGs Edge
satellites  satellites routers
IGSO satellites \ 86 ms \ \
MEO satellites 86 ms \ 50 ms \
SGs \ 50 ms \ 3 ms
Edge routers \ \ 3 ms \

TABLE 6. Main parameter values of Sec.IV.

Parameter Value  Parameter  Value
Tperiod(s) 86400  Nygo 24
Cnin(Mbps) 500 K 5
Dy (km) 66000 K> 3
Do (km) 40000 Co
Ts(s) 60 Ch 32
Nigso 3 Cs 64

as the deep learning model deployed in FL. Based on the
FL adapted STIN algorithm, we need to reasonably control
the complexity of the CNN structure under the established
topology to achieve higher data processing efficiency.

The SAT20 and TER20 are divided into 80% training set
and 20% testing set. Two training sets are stored in the SGs
and Edge Routers respectively for local model training. Two
testing sets are combined into a comprehensive testing set and
stored in a aggregation server to evaluate the performance of
the final model.

Finally, we set Tj;;; to 10 seconds. The values of T} . .
Tt’mm and M; all change with the structure or input data of
CNN. For the neural network in FL, CNN consists of two
convolutional layers, two pooling layers and one dropout
layer. The optimization algorithm is based on the parallel
restarted SDG.

Table 6 shows the values of the main parameters in
Section I'V.

B. EVALUATION CRITERIA

There are different evaluation criteria commonly used to
determine the performance of NIDSs or FL. In this section,
the evaluation criteria used for performance evaluation are
explained below.

o Time cost: The total time cost of FL is the sum of local
training time and communication time in all communi-
cation rounds, calculated as shown in (5).

rounds
Trotal = Z (Tlocal + Tcommunication)~ (5)
i=1
where Tjycq 1s equal to max(Tfmin, Tt’min), which varies
with the size of the data set and C,Zl’ffdel, T communication
represents the time to complete a round of model trans-
mission and update between the Edge Router and the
SG, which is limited by the upload bandwidth in the
STIN.

214860

o Accuracy: Accuracy value is the ratio of the number of
samples correctly classified by the system to the total
number of samples, calculated as shown in (6).

TP + TN

TP+ TN + FP+FN’
where True-Positive (TP) is the number of samples cor-
rectly predicted in the intrusion class; True-Negative
(TN) is the number of samples correctly predicted in
the normal class; False-Negative (FN) is the number
of samples incorrectly predicted in the normal class;
False-Positive (FP) is the number of samples incorrectly
predicted in the intrusions class.

o False Positive Rate (FPR): FPR is the ratio of mali-
cious traffic being misidentified as normal traffic to the
total number of malicious traffic in NIDS, calculated as
shown in (7).

Q)

Accuracy =

FP
- IN +FP’
o Training loss: We use the mean square error (MSE) to
estimate the expected value of the square of the dif-
ference between the predicted value f(X) and the true
value Y. MSE can evaluate the degree of data change.
The smaller the value of MSE, the better accuracy of the
training model. It is calculated as seen in (8).

FPR @)

LNy
MSE = — ,;(Y FX))?. 8)

where f(X) represents the predicted value output by
the training model with C%¥,  after each round of FL
training, Y represents the true label in SAT20 or TER20.

o CPU utilization: CPU utilization refers to the percentage
of CPU occupied in real time during program operation.

« Packet loss rate: Packet loss rate is the ratio of the num-
ber of lost data packets to the transmitted data group.

« Malicious traffic recognition rate: Malicious traffic
reco-gnition rate is the ratio of malicious traffic that
NIDS recognizes from the total incoming traffic, calcu-
lated as shown in (9).

Flowmaiicious

x 100%.  (9)

Recognition rate =
Flowinpur

C. PERFORMANCE ANALYSIS

We designed three sets of experiments, including minimiz-
ing the processing time of FL, comparing the effects of FL
and traditional DL in STIN, and comparing the performance
differences between distributed NIDS and traditional IDS.

1) TIME COST OF FL

In terms of FL in a general environment, due to the
rapid development of the Graphics Processing Unit (GPU),
the computational cost is lower compared to the communi-
cation cost. Therefore, if additional calculations are added to
each node to reduce the number of communication rounds
required to train the model, the time cost can be reduced.
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FIGURE 5. Total time cost of FL communication rounds.

However, the computing resources of satellites are much
lower than that of the terrestrial calculator. Therefore, regard-
less of Tipcar OF Teommunications it Will affect the processing time
of FL in the STIN.

We need to find a balance between the training round of
the local model and the communication round of the training
model. Therefore, we use a certain numerical Accuracy as a
standard to measure the total communication cost of FL. It is
calculated as seen in (6).

Because our goal is to evaluate to minimize the time cost
of federated learning, rather than to achieve the best accu-
racy on this task, we set target accuracy rates of 85%, 88%,
and 90%, respectively. Besides, learning rate is an important
hyperparameter in deep learning, which determines whether
the objective function can converge to a local minimum and
when it converges to the minimum. Therefore, to avoid the
influence of the learning rate on the experimental results,
we respectively compared the influence of different learning
rates of the model on the time cost.

According to (5) and (6) above, Fig. 5 shows the rela-
tionship between the communication rounds of FL and
the total time cost under different target accuracy. It can
be observed that when the accuracy requirement is low,
the fewer communication rounds, the lower the time cost;
when the accuracy requirement gradually increases, it is nec-
essary to appropriately increase the communication rounds
to reduce the total time cost. Taking the target accuracy
rate of 90% as an example, we choose 3 communication
rounds will reduce the total time cost by 8.36% compared
with other choices. In addition, different learning rates also
conform to the law of communication rounds and time
cost.

2) FLOW RECOGNITION ACCURACY OF DIFFERENT DL

After adjusting the communication rounds of FL, we will test
the performance of FL offline training. As mentioned in the
previous section, we have divided the SAT20 and TER20 into
training sets and testing sets. In addition, we deployed three
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DL methods for comparison. Each model is described as
follows:

CNN1: We use the same model structure as the deep CNN
in FL to compare performance.

CNN2: Compared with CNN1, a convolutional layer and a
pooling layer are added.

CNN3: We doubled the model of CNN1, adding 2 convo-
lutional layers and 2 pooling layers.

Since the focus of FL is to solve the problem of data
islands, it has not improved the learning model. Therefore,
we use three CNN1s with the same structure as the CNN
in FL, and evaluate the efficiency of FL through different
training sets and testing sets. CNNI1-integrated combined
the SAT20 and TER20 into a comprehensive data set as
the training set and the testing set; CNN1-satellite used the
SAT20 as the training set and the TER20 as the testing set;
CNNI1-ground used the TER20 as the training set, and the
SAT?20 is used as the testing set.

Besides, due to the high complexity of the models of
CNN2 and CNN3, resulting in 75, > T} .. > Tiimis, they
do not satisfy the FL adapted STIN algorithm. Therefore,
we will also deploy CNN2 and CNN3 in FL for comparison.
We select the training model in Edge Router 1 to participate
in the evaluation.

Fig. 6 and Fig. 7 show the accuracy and loss rate of three
FL and three CNNls in the training time within half an
hour, which have been demonstrated by (6) and (8). It can
be seen from Fig. 6 that in most cases, CNN1-integrated has
a higher recognition accuracy rate than FL. The reason is that
CNNI-integrated has no model changes caused by infor-
mation exchange between hosts. CNNIl-satellite and
CNN1-ground show better performance in Fig. 6 and Fig. 7
because their training data is only traffic information in a
single network environment, with fewer data entries and
types of attacks, it is easier to identify. In addition, compared
to CNN2 and CNN3, the CNNI model deployed in FL
shows high stability during training time. This is because
the CNNI1 structure conforms to FL adapted STIN algorithm,
which reduces the training time in the satellite network so
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FIGURE 8. Testing accuracy and FPR of six methods.

that the STIN achieves higher synchronization of processing
time.

According to the calculation of (6) and (7), Fig. 8 shows
the testing accuracy and FPR of each method on the respec-
tive testing set. Although CNN1-ground and CNN1-satellite
showed the highest accuracy during the training process, they
showed lower testing accuracy and extremely high testing
FPR when verifying the model through the testing set. This
shows that the attack data in a heterogeneous network is very
different. CNN1-integrated has the highest testing accuracy
and the lowest testing FPR among the six methods. The
reason is that FL does not improve the learning model. There-
fore, in the case of a centralized data set, the traditional DL
method can show better classification performance. However,
in a STIN, data is restricted by security and privacy, and
it is difficult to combine them. Therefore, FL is a suitable
solution. In the comparison of the three federated learning
models, the FL-CNN1 model adopted in this paper achieves
the highest testing accuracy and the lowest testing FPR,
thanks to the implementation of the model based on the
FL adapted STIN algorithm. The models of FL-CNN2 and
FL-CNN3 are too complicated for resource-constrained satel-
lite nodes, so the terrestrial node cannot complete the training
synchronously with the satellite node, resulting in lower data
processing efficiency and higher testing FPR.
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TABLE 7. Terrestrial flow type and time.

Flow type Slowloris
Beginning and

ending times

Syn_DDoS | UDP_DDoS | SMB/s files
600s—660s | 900s-960s | 1200s—1800s| 2700s—2760s

3) PERFORMANCE COMPARISON OF DIFFERENT NIDS
Through the above work, we have designed a suitable FL.
framework for distributed NIDS. Next, we will compare the
performance of three distributed NIDSs using FL with tra-
ditional IDSs in the same intrusion detection environment,
including Snort [37] and Bro IDS [38], to verify the effect of
the distributed NIDS using FL.

In order to emulate the normal traffic environment,
we used the MEOI1-SG1-Edge Routerl-Intra-domain
Routers-Host1 path to send a IMB text file per second from
the MEO node to the terrestrial node for a total of 1 hour.
he attack scenario is shown in Fig. 9. Among them, MEOL1 is
the MEO node directly connected to SG1, and Hostl is a host
in terrestrial domain 1. We use Hping3 and Python tools to
emulate DDoS attacks, and finally three other hosts in the
terrestrial domain 1 attack MEO1. The types and beginning
and ending times of DDoS attacks are shown in Table 7.

We have deployed FL-CNN1 + Iptable [39], FL-CNN2
+ Iptable, FL-CNN3 + Iptable, Snort + Iptable, and Bro
IDS five NIDSs and processing tools on the Edge Routerl.
Among them, Snort uses its own detection rules, and Bro IDS
writes the scripting language based on Snort rules. Fig. 10
shows the throughput changes of the egress router of terres-
trial domainl during the emulation time under five intrusion
detection scenarios. Each intrusion detection scenario has
experienced two DDoS flood attacks, a slow attack, and a
large file transfer. The changing trend of their input flow is
basically the same.

As shown in Fig. 11, we calculated the recognition rates
of five types of NIDS for different malicious traffic accord-
ing to (9). For the traditional Syn_DDoS and UDP_DDoS,
the five types of NIDS show similar recognition capabilities.
For short-term burst traffic and Slowloris attacks, distributed
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NIDS using FL show better performance than traditional IDS.
The reason is that distributed NIDS using FL can distinguish
whether it is a network attack based on the characteristics of
the traffic, rather than a simple five-tuple. Therefore, it has a
certain ability to identify normal traffic or malicious attacks
that are not involved in training data sets. Besides, due to
the Cy0de1 of CNN1 adapted to STIN, the distributed NIDS
using FL-CNN1 exhibits a higher rate of malicious traffic
recognition than other FL. models.

We use iPerf [40] to measure the packet loss rate of normal
traffic on the transmission path from MEOI1 to Hostl. Fig. 12
selects Os, 630s, 930s, 1500s, 2730s, and 3600s to plot the
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packet loss rate under the five NIDSs at each moment. Fig. 12
shows that the distributed NIDS using FL-CNNI1 can get
near-optimal results, exceeding the result of the other NIDSs.

Through the above analysis, it can be known that FL-
CNNI1 shows the best performance compared with other CNN
algorithms implemented in FL. Therefore, we use the dis-
tributed NIDS using FL-CNN1 as a representative to compare
the CPU utilization with two traditional IDSs. Fig. 13 shows
the CPU utilization of the Edge Routerl using three NIDSs.
Compared with Snort and Bro IDS, distributed NIDS using
FL-CNNI1 not only exhibits lower CPU utilization in most
cases, but also has the fastest response time under different
DDoS attacks.

The emulation results in Fig. 11, Fig. 12, and Fig. 13
demonstrate that distributed NIDS using FL-CNN1 can adapt
to resource-constrained STIN and identify malicious traffic
more comprehensively.

VI. CONCLUSION

In this paper, we propose a distributed NIDS using FL in
a STIN, aiming to meet the requirements for traffic secu-
rity and privacy in heterogeneous networks. We propose
FL adapted STIN algorithm and satellite network topology
optimization algorithm to adapt to NIDS. We deployed the
distributed NIDS in a prototype system and conducted exten-
sive emulations to evaluate the performance of our approach
by randomly launching malicious attacks. Related results
demonstrate that compared with traditional deep learning and
intrusion detection systems, the distributed NIDS using FL
has a higher malicious traffic recognition rate, lower packet
loss rate, and lower CPU utilization rate. Our future work will
follow three directions. Firstly, we plan to increase the types
of DDoS attacks from six to more than fifteen. We will extend
our current work to the 5G mobile communication network
access scenario with massive terminal equipment. Secondly,
starting from the principles of various DDoS attacks, we are
ready to construct a new flow feature extraction method and
generate a unique malicious flow behavior data set. Finally,
based on the knowledge graph, we will establish a distributed
network behavior knowledge base in massive terminal
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scenario to effectively respond to the endless threats and
challenges brought by the 5G scenario.
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