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ABSTRACT Automated iris segmentation is an important component of biometric identification. The role
of artificial intelligence, particularly machine learning and deep learning, has been considerable in such
automated delineation strategies. Although the use of deep learning is a promising approach in recent
times, some of its challenges include its high computational requirement as well as availability of large
annotated training data. In this scenario, interactive learning offers a cost-effective yet efficient alternative.
We introduce an interactive variant of UNet for iris segmentation, including Squeeze Expand modules,
to lower training time while improving storage efficiency through a reduction in the number of parameters
involved. The interactive component helps in generating the ground truth for datasets having insufficient
annotated samples. The effectiveness of the model ISQEUNet is illustrated through the use of three publicly
available iris databases, along with comparisons involving existing state-of-the-art methodologies.

INDEX TERMS Active learning, biometrics, deep learning, fine tuning, iris segmentation.

I. INTRODUCTION

Iris recognition is one of the most trusted approaches for
automated biometric identification, and important for secu-
rity and authentication systems. This is mainly due to the
complexity, uniqueness and stability of the human iris. Inac-
curate iris segmentation can cause failure in its recognition
[1]; with error rates rising as inaccuracy in the segmentation
task increases [2]. Segmentation plays a significant role in
medical applications also.

Segmentation of iris images captured under ideal condi-
tions constitutes a comparatively simpler image processing
task [3], since the iris region demonstrates clear distinction
between the sclera and pupil. In the unconstrained scenario,
on the other hand, segmentation becomes more challenging
as the acquisition of images no longer remains ideal due
to factors like occlusion (caused by eyelids/eyelashes), poor
(or overexposed) illumination, blurring, user noncooperation,
difference in imaging equipments, etc.

In this scenario the accuracy of iris segmentation assumes
utmost importance. Starting from a correct delineation of the
iris region, one can proceed to extract valuable information
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from the iris image to further improve upon the accuracy of
the iris recognition system.

Il. LITERATURE REVIEW

Existing iris segmentation approaches can be roughly divided
into three categories, based on their use of boundary, pixel or
deep learning [4]. While the first kind localizes the iris region
by determining the pupil and sclera boundaries relying on the
contrast, the second approach classifies the pixels belong-
ing to the iris region based on discriminative iris features.
On the other hand, the deep learning approaches are similar
to pixel-based methods but with improved performance and
automated feature extraction.

Daugman’s early research [5] assumed the iris region to
be circular and bounded by the pupil and sclera on either
side. An integro-differential operator searched over the image
domain to detect the iris-sclera boundary, followed by the
pupil-iris boundary. A gradient based edge detection was
employed [6] to locate the two boundaries through Hough
transform. Noise and occlusion from the eyelids and eye-
lashes were parameterized as parabolic arcs and located by a
gradient-based edge detector. Active contour based methods
[1], [7] considered iris boundaries to be non-circular, while
handling occlusion and noise. Several other approaches in
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the boundary-based category include boundary fitting [8],
illumination normalization with coarse iris localization [9]
and reflection removal [10], to improve the accuracy of the
segmentation.

The pixel-based algorithms build a classifier for detecting
pixels of the iris region. A step-wise segmentation approach
was adopted in Ref. [11] based on the image intensities.
The eyelashes were partitioned from the input image using
texture. Next the iris was delineated through gray scale infor-
mation, followed by a post-processing step that utilized eye
geometry to refine the output. Graph-cut energy minimization
helped in optimally determining the eyelashes, pupil and iris.
Zernike moment features were computed at different radii
for classifying pixels from the iris region, with the help of
support vector machine [12]. A random walker algorithm was
developed [13] to efficiently estimate coarse segmentation of
distantly acquired iris images, in a constrained environment.
Post processing provided enhanced segmentation accuracy.
A graph-based modeling of the segmentation mapped each
pixel to a vertex (node), with the linkage between any two
pixels corresponding to the edge between them. A multilayer
perceptron, with a single hidden layer, was also used [14] for
pixel classification to distinguish between the sclera and iris
regions.

A. ROLE OF DEEP LEARNING

Traditional segmentation algorithms, based on image his-
tograms, edges and other clustering techniques, can be sim-
ple and fast; but these typically require significant use-case
specific tuning, with limited accuracy on complex scenar-
ios. Both boundary- and pixel-based approaches require
prior domain knowledge along with extensive pre- and post-
processing. Moreover, their use of hand-crafted features lacks
flexibility to search for optimal descriptors. In this scenario,
deep learning-based methods have dramatically boosted the
field of image segmentation [15], [16] by automatically learn-
ing the features. Convolutional Neural Networks [17] (CNNs
or ConvNets) being one of the most commonly used deep
learning models for classification [18], researchers in com-
puter vision incorporated simple modifications to make them
amenable to segmentation. The first layer in a CNN is always
a Convolutional Layer which extracts the Low-Level features
(edges, color, gradient orientation, etc.) from an input image.
The Pooling layer reduces the spatial size of the convolved
feature space to decrease the number of parameters. It also
helps in extracting dominant features which are rotation and
position invariant. The last fully connected layer generates the
image class output labels.

Iris-related applications are typically sensitive due to the
very dense and complex nature of the iris texture. Inspired
by the success of CNNs, a few researchers focused on
its application towards iris recognition and segmentation.
Typically it consists of generating a binary mask to sepa-
rate the pixels of the iris from those of the non-iris region.
A segmentation network is trained on manually segmented
annotations (ground truth), and evaluated on a separate
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ground-truth augmented database. Deeplris [19] was used
to solve intra-class variation of heterogeneous iris images.
Relational features were extracted by a CNN to measure the
similarity between two candidate irises during the verifica-
tion process. A deep convolutional neural network (DCNN)
based iris segmentation model proposed in [20] to extract
highly irregular iris texture areas specifically in post-mortem
iris images. A capsule network architecture with modified
routing algorithm based on the dynamic routing between two
capsule layers used for iris recognition [21].

A parameterization of the iris was created for CNN based
segmentation [22], to bridge the gap between traditional CNN
based segmentation and the rubbersheet-transform of the
iris. This helped supplement the transformation of the iris
from the polar to cartesian coordinates during normalization.
IrisDenseNet [23] consists of a densely connected encoder
and a SegNet decoder. While the network exhibited good
performance, yet it was computationally intensive to train on
large datasets due to its dense connectivity.

Two-stage CNNs were employed for iris segmentation
[24], from images captured in the visible spectrum. A pre-
trained VGG-face model was fine-tuned with transfer learn-
ing for finer adjustment of a rough iris boundary, as extracted
by circular Hough transform. Transfer learning utilizes the
knowledge learned from larger datasets towards solving dif-
ferent but related problems involving smaller data. Deeplris-
Net [25] was designed for optimal iris representation and
its cross-sensor recognition. It comprised of a large number
of convolution/inception layers for handling large-scale iris
data with complex distributions, entailing better utilization of
computing resources.

Unlike CNN models, which use fully connected layer
after the convolutional layer to get a fixed length feature
vector, a fully convolutional network (FCN) [26] transforms
the height and width of the intermediate layer feature map
back to the size of the input image through the transposed
convolution layer. This enables the prediction to have a one-
to-one correspondence with the input image in the spatial
dimension (height and width).

Accurate iris boundaries were identified [27], in non-
cooperative environments, using hierarchical CNNs (HCNNs)
and multi-scale FCNs (MFCNss). Iris segmentation on lower
quality images, including augmentation, was performed using
Fully convolutional deep neural network (FCDNN) [28].

However the segmentation results with FCNs still lacked
perfection, as the feature maps for up-sampling were too
coarse. Unlike FCN, which up-samples different sizes of
coarse feature maps to the target resolution, the UNet [29]
reformulates the up-sampling stage by including skip con-
nections between the down-sampling and up-sampling paths.
Hence the UNet generates more precise segmentation.

Although these CNN variants have demonstrated good
performance for iris segmentation, they require millions of
parameters and large volume of data for proper training.
SqueezeNet [30], a smaller deep neural network, circumvents
this problem with fewer parameters but with similar level of
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accuracy. A SqueezeNet stacks a bunch of squeeze-expand
(SqE) modules with a few pooling layers.

Typically CNNs do not generalize well to previously
unseen object classes which may not have been present during
training. Therefore labeled instances of each object class need
to be available in the training set. Given that the expertise and
time required to get correct annotations of all data is often
very expensive, this severely constrains the performance of
CNNs to segment objects. The concept of active learning,
incorporating interactive refinement of intermediate results,
helps overcome this problem. Active learning is a technique
which enables learning from limited annotated examples by
detecting, and asking the user to update, the most uncertain
part(s) of the training data. In recent years interactive seg-
mentation algorithms have become very popular, particularly
in the field of medical image analysis [31], [32], by providing
faster inference with improved storage efficiency.

lIl. CONTRIBUTION

This article presents a novel interactive variant of UNet,
incorporating SqQE modules, for efficient iris segmentation.
It enables boosting of speed while significantly improving
the segmentation accuracy in the presence of limited anno-
tated samples. Incorporation of active learning for interactive
refinement is new for iris segmentation. The contribution of

this research is summarized below.
« Reduction in number of parameters in the encoder part

of the UNet by introducing the Squeeze-Expand (SqE)
module, which replaces the existing sequence of 3 x
3 convolution operations. Fewer number of trainable
parameter in the SQE module enables reduction in train-
ing time with improved storage efficiency. Moreover,
the less complex model helps avoid over-fitting during
training of the relatively smaller iris datasets available.

« Interactive learning is incorporated to circumvent the

problem of limited annotations in the publicly available
iris datasets. The model is able to utilize image-specific
information for robust handling of large context varia-
tions among different images. Interactive and automated
generation of ground truth helps reduce time expense of
experts while producing accurate segmentation.

The remaining part of the article is organized as follows.
The UNet and SqueezeNet, used in this research, are
described in Sec. IV-A and IV-B respectively. The pro-
posed Interactive Squeeze-Expand UNet (ISqEUNet) model,
involving active learning for interactive segmentation of the
iris, is introduced in Sec. V. The experimental results on three
iris datasets, viz. CASIA-IrisV4-Interval [33], IITD [34] and
UBIRIS.v2 [35], demonstrating the superiority our model
over existing state-of-the-art related literature, are provided
in Sec. VI. Finally, Sec. VII concludes the article.

IV. PRELIMINARIES

The main focus of this research is on designing a novel
interactive deep learning methodology, which builds by
incorporating the SqE module into the UNet for efficient
segmentation of the iris. In this context it is imperative
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FIGURE 1. The UNet architecture [29].

to introduce the readers to the preliminaries of UNet and
SqueezeNet.

A. UNet

The UNet was developed by Ronneberger et al. [29] for
biomedical image segmentation. It has a CNN-like architec-
ture for fast and precise segmentation of images. Compared
to FCN, the two main differences are (1) the UNet is sym-
metric, and (2) the skip connections between the contract-
ing and expanding paths apply the operator concatenation
(instead of aggregation). This is illustrated in Fig. 1. The
contracting path of UNet contains a series of convolution
layers and pooling layers. The model learns global features
by gradually reducing the feature map size and mean, while
increasing the number of feature channels. The expanding
path, on the other hand, contains a series of convolution and
deconvolution operations. These up-sample the feature maps
in incremental steps to the input size while reducing the fea-
ture channels. The skip connections supply additional local
information to the up-sampling path to enable more accurate
segmentation.

The Attention UNet (AttUNet) [4] employs ‘‘attention”
in the framework of UNet for accurate iris segmentation.
It regresses a bounding box of the potential iris region, fol-
lowed by the generation of an attention mask to be used as
a weighted function on the discriminative feature maps. This
bounding box regression module consists of a pooling layer
and a fully connected layer, added at the end the contracting
path, and generates a rectangular coordinates based attention
mask. Thereby the segmentation model is made to pay more
attention to the iris region. Unlike conventional deep learning,
which considers the whole eye image as input, here the atten-
tion component helps in estimating the position of the iris at
the end of the contracting path with improved performance.

B. SqueezeNet

SqueezeNet [30] is a small CNN architecture which achieves
accuracy of the level of AlexNet [18] on the ImageNet
database with 50 times fewer parameters. The building block
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of SqueezeNet consists of a squeeze layer with an 1 x 1
convolution layer, followed by an expand layer that has a
combination of 1 x 1 and 3 x 3 convolution layers. A concate-
nation operation is performed in the expand layer to combine
those two convolution layers. This is depicted in Fig. 2. Note
that a squeeze layer with only 1 x 1 filters, although having
9 times less parameters as compared to the typical 3 x 3
filters of CNNs, can still function as a fully-connected layer
working on feature points at the same position. The main
objective of using the squeeze layer is to reduce the depth
of feature maps; since it is often very time consuming to
multiply volumes having extremely large depths. The total
number of parameters in the 3 x 3 convolutional layer is
(input_depth) x (number_of _filters) x (3 x 3).

In order to maintain a small number of parameters,
the number of 3 x 3 filters need to be reduced along with the
depth of the input volume. As the number of input channels
to these filters is reduced in the squeeze layer, it results in
fewer computations at the expand layer. The squeeze layer
and expand layer work on the same feature map size, with
the former reducing the depth and the latter increasing it.

V. ISqEUNet FOR IRIS SEGMENTATION

Here we describe the proposed Interactive Squeeze
Expand UNet (ISqQEUNet) for addressing the task of iris
segmentation.

A. NETWORK ARCHITECTURE

The overall structure of the proposed deep network is
depicted in Fig. 3. It has both encoding and decoding paths.
The contracting path extracts higher level features through
a repeated use of the Squeeze-Expand module of Fig. 2.
The number of kernels gradually increases to enable the
architecture effectively learn the complex structures.

The expanding path consists of an up-sampling of the fea-
ture map, followed by a 2 x 2 up-convolution that halves the
number of feature channels, a concatenation with the corre-
sponding cropped feature map from the contracting path, and
two 3 x 3 convolutions. The feedback connections between
the encoding and decoding paths, concatenating features from
both, enables the model to simultaneously utilize both local
and global information. An 1 x 1 convolutional layer is
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adopted at the final layer in order to map the feature vector to
the desired number of classes. The expanding path decodes
the feature map to reconstruct the output segmentation mask.
The binary cross entropy loss between predicted output (P)
and its corresponding ground truth (G) is calculated as
1 n
Lp(P.G) = —= > gilogpi + (1 — gi)log(1 — py). (1)
n i=1
where n represents the total number of pixels in an image,
with gx and py indicating the kth pixel values in G and P
respectively.

The Squeeze-Expand (SqE) module is introduced in the
contracting path of the UNet by replacing the series of 3 x 3
convolution operations. This improves accuracy, as compared
to the conventional UNet, while also reducing computation
time with fewer number of trainable parameters. For example,
with an image size of 256 x 256 x 3, the number of parameters
required to train the original UNet model was 3.1 x 10. In our
proposed ISqQEUNet this reduces to 1.6 x 107 parameters.
A structural comparison of the contracting path of UNet,
AttUNet, and ISqEUNet is provided in Table 1 to highlight
this.

The ISQEUNet combines the location information from the
down-sampling path with the contextual information in the
up-sampling path to generate a superposition of local and
global information, in order to efficiently predict a good
segmentation map.

B. INCORPORATING INTERACTIVE LEARNING

Interactive learning allows the algorithm to actively query
the user to obtain the desired output for the unknown test
samples.

Interactive segmentation integrates the user’s domain
knowledge with the application-requirements for more
robust performance. Here we introduce a novel interactive
image-specific fine tuning strategy to circumvent, to some
extent, the requirement of large number of annotated images
during training. It is particularly suitable in segmentation of
images when the availability of annotations is scarce.

Unlike Ref. [36], which uses bounding box and
scribble-based segmentation with CNNs, we incorporate the
SqE module into the conventional UNet structure with active
learning. Architecture of the ISQEUNet model is depicted
in Fig. 3. The details of interactive learning is outlined as
Algorithm 1.

The pre-trained ISQEUNet was presented with a smaller
dataset containing few annotated images, and the correspond-
ing predicted segmentation obtained at output. The images
which are incorrectly predicted, get refined manually by the
user in an interactive mode.

Next the user-refined images are used as additional ground
truth (in lieu of the corresponding incorrectly predicted
images), and the model fine-tuned through function call to
Algorithm 2 for updating weights. Depending on the value
of the threshold c the algorithm decides whether to proceed
with further fine tuning, using a Flag to mark user interaction.
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Thus the model interactively learns and updates the weights,
in the absence of sufficient annotations, and improves its
prediction accuracy while helping generate ground truth
annotations for the unseen images.

It is to be noted that in most of these cases no interaction
is required. For some of the noisy images minimal user
interaction is required, involving manual correction of only
2-3% pixels. Bypassing the manual annotation of the entire
iris region, interactive learning allows refinement of just a few
incorrectly predicted pixels of the noisy images.

VI. EXPERIMENTAL RESULTS

In this section we present the performance of ISQEUNet on
the three publicly available databases. Implementation was
made in Keras. Both qualitative and quantitative evaluation of
iris segmentation is provided. Comparative study with state-
of-the-art literature establishes the effectiveness of our model.

A. DATASETS

Three publicly available well-known iris databases, viz.
CASIA-IrisV4-Interval [33], IITD [34], [37] and UBIRIS.v2
[35] were used to evaluate the performance of ISQEUNet.
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CASIA-Iris-V4-Interval is a subset of CASIA-IrisV4, col-
lected by the Chinese Academy of Sciences’ Institute of
Automation (CASIA). The CASIA-Iris-V4-Interval database
contains left and right eye images of 249 (mostly Chinese)
subjects, each with approximately 1-10 images, with the total
number of images being 2639 of size 320 x 280 and 256 grey
levels. The IITD database has 224 subjects (students and staff
of IIT Delhi, India), with 10 (left and right) iris images of size
320 x 240 from each.

UBIRIS.v2 is an iris database which contains visible wave-
length iris images captured on-the-move and at a distance,
with more realistic noise factors. This database, with images
of size 400 x 300, encompasses a total of 261 subjects.
A subset of 500 images from UBIRIS.v2 (as obtained from
[38], with ground truth) was used for training, along with the
remaining 500 samples for testing. This was called NICE.I
competition challenge [38], and was used in our experiments.

B. EVALUATION METRICS
The Mean Error Rate (MER) [4] is a widely used evaluation
metric for the task of binary image segmentation. It provides
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TABLE 1. Contracting path architecture of UNet, AttUNet and ISQEUNet.

UNet

AttUNet

I1SqEUNet

Input size

256 x 256 x 3

512 x 512 x 3

256 x 256 x 3

layers in

upsampling path

64,convl,3 x 3,ReLU

64,conv2,3 x 3,ReLU

pooll, 2 x 2

64,convl,3 x 3,ReLU

64,conv2,3 x 3,ReLU

pooll, 2 x 2

16,convl,1 x 1,ReLU
32,conv2,1 x 1,ReLU
32,conv3,3 x 3,ReLU

pooll, 2 x 2

128,conv3,3 x 3,ReLU
128,conv4,3 x 3,ReLU

pool2, 2 x 2

128,conv3,3 x 3,ReLU
128,conv4,3 x 3,ReLU

pool2, 2 x 2

32,conv4,1 x 1,ReLU
64,convs,1 x 1,ReLU
64,conv6,3 x 3,ReLU

pool2,2 x 2

256,conv5,3 x 3,ReLU

256,conv6,3 x 3,ReLU

pool3, 2 x 2

256,conv5,3 x 3,ReLU
256,conv6,3 x 3,ReLU
256,conv7,3 x 3,ReLU

pool3, 2 x 2

64,conv7,1 x 1,ReLU
128,conv8,1 x 1,ReLU
128,conv9,3 x 3,ReLU

pool3, 2 x 2

512,conv7,3 x 3,ReLU

512,conv8,3 x 3,ReLU

pool4, 2 x 2

512,conv8,3 x 3,ReLU
512,conv9,3 x 3,ReLU
512,conv10,3 x 3,ReLU

pool4, 2 x 2

128,conv10,1 x 1,ReLU
256,convll,1 x 1,ReLU
256,conv12,3 x 3,ReLU

pool4, 2 x 2

1024,conv9,3 x 3,ReLU
1024,conv10,3 x 3,ReLU

512,convl1,3 x 3,ReLU

512,conv12,3 x 3,ReLU

512,conv13,3 x 3,ReLU

512,conv14,3 x 3,ReLU

512,conv13,3 x 3,ReLU

up-sampling, 2 x 2 up-sampling, 2 X 2 up-sampling, 2 x 2

No. of parameters 3.1 x 107 2.6 x 107 1.6 x 107

2 Layers in expanding path are the same as shown in Fig.1 for UNet, ATTU Net and ISqEU Net.

the ratio of all false pixel prediction in the whole image. Let
Im be the input image of size r x ¢, with P(i, j) the predicted
binary image and G(i, j) its ground truth mask (annotation).
Here N is the total number of test images and @ denotes the
binary XOR operation. We have

r c
x Y Y PALHO®GGE). (2
i=1 j=1
Dice similarity coefficient (DSC) is a spatial overlap index,
which provides a measure of similarity between the pre-
diction and the ground truth. The range of this matrix is
[0,1], with higher values indicating better segmentation. It is
defined as
2 x [P G|
|P| + |G

The Mean True Positive Rate (mTPR) is another common
measure used in image segmentation. It computes the average
ratio of predicted ground truth pixels w.r.t. the total ground
truth-foreground pixels. It is expressed as

1 TP
mTPR = — X ——,
N TP+ FN
where TP and FN denote the numbers of true and false
positives, respectively.

C. SEGMENTATION

The model was trained on 70% of the data, for classifica-
tion into iris and non-iris pixels; the remaining data con-
stituted the test set. Each set consisted of discrete images
from independent individuals, such that there were no images
from the same person in more than one set. Training the

DSC = 3)

“
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Algorithm 1 Interactive Learning

Input: Data set X € {Xi}é‘:l, where k = # images in X,
Pre-trained ISQEUNet with frozen weights W, Threshold ¢ €
[0, 1];
Output: Refined Ground Truth Y
1: Input c /* user-defined threshold to control fine tuning */
2: repeat
3:  Initialize Flag < 0; /* Flag to determine if refinement
needed*/
Initialize Counter < 0;
5. for each sample image {X;,i=1,...,k} do

6: Input X; to the ISQEUNet with weight W and gen-
erate predicted segmentation output Yj;
7: if user detects any misclassified pixels in image Y;
then
8: User refinement through interaction;
9: Generate refined output Vi /% toggles binary
value for refinement */
10: Counter < Counter+1; /* Increment counter
*/
11: Y] < Y Replace predicted output image by
refined version */
12: end if

13:  end for
14:  if Counter > ¢ * k then

15: Set Flag < 1;

16: [W] = FineTuning (X, W, Y') /*Weights of ISqE-
UNet are updated */

17:  end if

18: until (Flag == 0);
19: return (Refined Ground Truth Y);

Algorithm 2 FineTuning (X, W, Y’)
Input: Data set X, ISQEUNet with weights W, Refined output
Y’, No. of epochs Ep
Output: Fine-tuned Weights W'
1: for i:=1to Ep do
Train ISQEUNet to generate predicted output IA/[,
Update weights W’ based on Loss Minimization,
Lp(¥,, Y');
end for
return (W’);

AN

ISqEUNet over 15 epochs (averaged over 5 runs), with batch
size of 16 and learning rate 0.00001, was found to be suf-
ficient (over 5 runs) for stopping based on cross validation.
The optimum weights of the model and the hyperparame-
ters were experimentally determined. The mean and standard
deviation (Sd) of the quantitative metrics [eqns. (2)-(4)] were
computed over 5 runs. The average values are presented
in Table 2, with the value within parentheses indicating the
Sd in each case, for the datasets CASIA-IrisV4-Interval and
IITD. The number of parameters (as specified in Table 1)
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TABLE 2. Quantitative comparison of segmentation by ISqEUNet
(without interactive learning).

CASIA-IrisV4-Interval uTD

Model DSC mTPR MER DSC mTPR MER

UNet 0.913 (0.008)  0.908 (0.007)  0.996 (0.004) | 0.934(0.004)  0.922 (0.006)  0.954 (0.006)

ISqEUNet | 0.987 (0.0013) 0.972 (0.0077) 0.176 (0.0027) | 0.985 (0.0031) 0.980 (0.0048) 0.249 (0.0034)

olclc o [0

(d)

~
o
~

FIGURE 4. Comparative segmentation (without interactive learning) of
iris from sample images: Rows 1-3 from database CASIA-Irisv4-Interval,
and rows 4-6 from IITD. (a) Original, and (b) Ground truth, with output
obtained by (c) UNet, and (d) /ISqQEUNet.

were kept the same while evaluating the performance of the
models over all three datasets. Comparative study was also
made with UNet on the same data. It was observed that
ISqEUNet performs better in all cases (as depicted in bold
in the last row) for these unconstrained datasets.

A qualitative comparison of the segmentation output, with
that of UNet, is presented in Fig. 4 for sample images.
While the first three rows of the figure correspond to images
from CASIA-IrisV4-Interval, the last three rows refer to
images from IITD. We provide sample segmentation results
on some noisy cases from both datasets in the figure.
The CASIA-IrisV4-Interval and IITD datasets involve NIR
images with high contrast, with many images suffering from
the effects of (i) drooping eyelashes and low contrast between
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FIGURE 5. Segmentation of iris from sample images of non-ideal NICE.I
database. (a) Original, (b) Ground truth, (c) UNet, and (d) Prediction by
ISqEUNet with interactive learning.

sclera and iris parts, (ii) having same pixel values in skin area
and iris region, (iii) involving non-cooperative and blurring
effects. The ISQEUNet learned to reduce segmentation error
caused by noisy pixels, and was able to demarcate the visible
iris part in a better manner as compared to conventional UNet.

D. INTERACTIVE LEARNING

Here we present the refinement in segmentation, evaluated
quantitatively as well as qualitatively. The baseline model
was UNet without the SE module. Interactive segmentation
was incorporated into the ISgEUNet model, pre-trained on the
CASIA-IrisV4-Interval dataset. Next the model was interac-
tively fine-tuned on NICE.I database (without using available
ground truth). Fine tuning was performed using Stochastic
Gradient Descent (SGD) optimizer with small learning rate
(1073). Fig. 5 provides the segmentation output on NICE.I
data from different sample images.

For an input image of size 256 x 256 x 3, the run
time of ISgEUNet was 6.152e-06 sec., on an Nvidia
Quadro K6000 GPU with 12GB DDR5 RAM; whereas,
in case of UNet it was 9.106e-06 sec. Table 3 lists a
summary of comparative segmentation performance, with
existing state-of-the-art methodologies, on dataset NICE.L
It is observed that the error MER is lower for our model
ISqEUNet, as compared to AttUNet and UNet. Introduc-
ing interactive learning results in further improvement in
performance.
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TABLE 3. Comparative study on NICE.I dataset with related
state-of-the-art approaches from literature.

Methods NICE.I
mTPR MER
Proenca et al. [14] - 1.87
Tan et al. [13] - 1.72
Zhao et al. [9] - 1.21
MEFCN [27] - 0.90
UNet [29] 0.948 0.898
AttU Net [4] 0.968 0.764
ISqEUNet
(without interactive 0.972 0.374
learning)
ISqEUNet
(with interactive 0.983 0.261
learning)

This is particularly true for cases where annotated data is
scarce, mainly due to the expenses involved. Fine tuning or
refinement, through user interaction, is found to perform very
well in such scenario. It enables semi-supervised generation
of effective annotations. This is evident from the results on
NICE.I dataset. Given the small size of the data the value of
Ep for fine tuning was experimentally chosen to be 5 with
good results.

Some of the other related segmentation approaches [9],
[13], [14], [27] were also compared to establish the effec-
tiveness of our model. Qualitative comparison on some chal-
lenging image samples, involving hair occlusion (row 3),
eye-glass occlusion (rows 2, 6), and non-cooperation (rows
1,4, 5) are illustrated in Fig. 5. It is visually evident that our
ISqEUNet model provides good segmentation results with
interactive learning, for such non-ideal images. Interestingly,
even in the absence of user interaction, the performance of
ISqEUNet is found to be superior to that of UNet and AttUNet
(as reported in [4]) using the architectural layout of table 1.

VIi. CONCLUSION

A novel deep ISqEUNet model was developed, with
interactive learning, for efficient iris segmentation in a
non-ideal environment; encompassing challenging situations
like occlusion, reflection, and poor illumination. Incorpora-
tion of the Squeeze-Expand module enabled improved speed
of network training by reducing the number of trainable
parameters, along with enhanced accuracy of the segmen-
tation. Fine tuning for interactive learning allowed robust-
ness in iris segmentation, particularly with availability of
insufficient annotations.

Segmentation results were compared with that of
state-of-the-art iris segmentation methodologies. Results on
CASIA-Irisv4-Interval, IITD, NICE.I databases established
the superiority of our algorithm for non-ideal iris images,
in terms of evaluation metrics MER, DSC and mTPR.
Experimental results demonstrated that iris images captured
in visible wavelength and NIR, inluding non-cooperative
and non-ideal samples, could be appropriately segmented
with ISqQEUNet without involving any complex pre- or
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post-processing. The mean error rate showed an improvement
by at least 0.4% over the existing methods.

Semi-automated approaches for training data generation,
with iterative refinement of deep learning models, is expected
to become an important tool in a researcher’s imaging toolset
in the near future. Future study aims to improve upon the
accuracy and optimization of the model pipeline, to enable
it to perform in real time.
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