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ABSTRACT Remote sensing images are primary data sources for land use classification. High spatial
resolution images enable more accurate analysis and identification of land cover types. However, a higher
spatial resolution also brings new challenges to the existing classification methods. In the low-level feature
spaces of remote sensing images, it is difficult to improve classification performance by modifying classi-
fiers. Probabilistic topic models can connect low-level features and high-level semantics of remote sensing
images. Latent Dirichlet allocation (LDA)models are representatives of probabilistic topic models. However,
at present, probabilistic topicmodels aremainly adopted for scene classification and image retrieval in remote
sensing image analysis only. In this study, multiscale segmentation was employed to construct bag-of-words
(BoW) representations of high-resolution images. The segmented patches were then utilized as ‘‘image
documents.’’ A structural topic model was used with an LDA model to import spatial information from
the image documents at two levels: topical prevalence and topical content in the form of covariates. In this
way, latent topic features in image documents can bemore accurately deduced. The proposedmethod showed
more satisfactory classification performance than standard LDA models and demonstrated a certain degree
of robustness against the changes in the segmentation scale. Acknowledgement for the data support from
‘‘Yangtze River Delta Science Data Center, National Earth System Science Data Center, National Science
& Technology Infrastructure of China (http://nnu.geodata.cn:8008)’’.

INDEX TERMS Bag-of-word model, latent topic, land cover, latent Dirichlet allocation, machine learning,
probabilistic topic models.

I. INTRODUCTION
Automatic land use or land cover classification using remote
sensing images has been receiving much attention from
researchers and is expected to be studied extensively in the
future. Due to the rapid development of electronics and
information technology as well as sensor technology, high
spatial resolution images are more available to researchers
and practitioners. Hence, it becomes necessary to improve
existing automatic classification methods based on remote
sensing images. High spatial resolution images can provide
abundant details of land surfaces; thus, the size, structure,
and the spatial context of objects can be better characterized.
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Nevertheless, because of higher spatial resolution, there are
greater spectral differences between the pixels of the same
object type whereas the objects of different types may have
similar spectral features. These lead to new challenges in the
conventional classification methods [1].

In the past decades, owing to the rapid development of
machine learning and artificial intelligence technology, var-
ious advanced supervised classification methods have been
established such as support vector machines (SVM) [2] and
random forests (RF) [3]. These methods generate relatively
satisfactory results, and they are widely adopted. However,
due to the extremely complex object compositions of high-
resolution images, spectral responses of objects of the same
type (e.g., construction land and roads) vary significantly.
Hence, it is difficult to enhance the classification accuracy by
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improving classifiers directly in the low-level feature spaces.
Reference [4] pointed out that feature extraction from remote
sensing images and training sample selection are more impor-
tant than classifier improvement. Meanwhile, deep learning,
which has been widely applied in remote sensing image anal-
ysis [5], can be viewed as a type of representation learning.
It constructs models by simulating how the human brain
observes and detects features in remote sensing images so
that recognizable features at higher levels can be acquired.
Regular rectangular input images are required for most deep
learning models. Classification is performed by scenes or
regular patches. As a result, few methods can achieve clas-
sification at the pixel or object levels [6]. However, for
land use cover change analysis, classification for each pixel
(or patch) is required.

Object types can be obtained from remote sensing images
because land surfaces with different physical properties pro-
vide different spectral responses. In most feature selection
or extraction methods, including deep learning methods,
low-level features (e.g., spectra and textures) are modeled.
However, in land cover classification, the surface of the
objects of the same type may have rather complex physical
properties. Objects consist of surface materials with different
properties (these materials themselves may be unobservable
latent factors) and the physical properties of these materials
determine the low-level features. Thus, new methods are
required to model the relationship between the latent factors
determining the object types (middle-level features) and the
observed low-level features and to classify these middle-level
features to obtain higher classification accuracy.

Probabilistic topic models (PTMs) [7] use probability
theory to acquire latent topic features. They have recently
become popular for semantic analysis in natural language
processing (NLP). They take text as a bag of words and view
it as a collection of unordered words. They assume that each
piece of text is generated by the mixed influence of different
topics and subsequently use probabilistic graphical models to
model the conditional probabilities between ‘‘word,’’ ‘‘text,’’
and ‘‘topic.’’ By estimating and inferencing model param-
eters, the topics that each piece of text and words within
the text belong to are determined. The PTMs can convert
text analysis from conventional word vector spaces (low-level
feature spaces) to latent topic spaces (middle-level feature
spaces). They can discover the synonyms and polysemous
words commonly found in texts.

After many researchers have achieved successful results
in NLP by extending PTMs such as probabilistic latent
semantic analysis (PLSA) and latent Dirichlet allocation
(LDA), the bag-of-words (BoW) model and PTMs have
been adopted to solve problems related to image under-
standing. These include automatic image annotation, scene
classification, and target recognition [8]–[11]. In this way,
the gaps between low-level visual features and high-level
semantics can be overcome. PTMs are successfully intro-
duced in remote sensing image analysis and applied in scene
annotation [12], target recognition [13], image fusion [14],

and change detection [15]. Thus, useful high-level semantic
information can be obtained by modeling latent topics in
remote sensing images. However, previous studies investi-
gated semantics at coarse scales, and thus there are no classi-
fications at the pixel or target levels. Furthermore, standard
LDA models assume that latent topics and text are inde-
pendent from each other. Thus, much spatial information
is lost during the modeling of high-resolution remote sens-
ing images. When the existing LDA models are extended,
much emphasis is placed on the processing of different text
metadata, e.g., the author, year, publication time, and citation
relationship of the text. These models cannot be used to
import spatial information directly; thus, it is difficult to fuse
the abundant spatial information into high-resolution images.

In this study, a structural topic model, which is an
LDA-based model with the import of prior text knowl-
edge, was adopted to propose an unsupervised latent topic
feature extraction method applicable for high-resolution
remote sensing images. This study examined how image
documents, visual dictionaries, and visual words suitable
for high-resolution remote sensing image analysis can be
obtained. The construction of an appropriate BoW model
was also investigated. It is likely that spatially close objects
belong to similar types (latent topic compositions) and have
similar low-level features (visual word distributions). Hence,
in the spatial topic model, spatial information of image docu-
ments was imported as the prior knowledge for modelling the
uncertainty in remote sensing images and to more accurately
acquire the latent topic compositions of image documents.

II. RELATED WORK
A. LAND COVER CLASSIFICATION WITH REMOTE
SENSING IMAGES
Land cover classification based on remote sensing images is
performed to assign a pre-defined land cover type to each
pixel in an image. In the past, classification was performed
according to the spectrum of each pixel [16]. However,
as the image resolution increases, intra-class spectral vari-
ations of pixels become more significant. This reduces the
classification accuracyandleadstosalt-and-peppernoise [17].

Object-based image classification (OBIC) has become a
mainstream framework in high-resolution remote sensing,
such as IKONOS, GeoEye, QuickBird and SPOT, and
land-cover mapping over the last decade [18], [19]. However,
this method has also been applied to medium-resolution
Landsat images. The common supervised OBIC frame-
works contain the following steps: image preprocessing,
image segmentation, feature extraction, and supervised
classification [20]. Apart from spectral features, texture,
structural, and shape features can be included to enhance
the distinguishability of classes in feature spaces. A previous
study [19] provided an in-depth review on OBIC and
examined the classification methods, sampling methods,
feature selection methods, and accuracy. Another chal-
lenge to OBIC is the determination of appropriate seg-
mentation scales. It is difficult to obtain a target that is
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semantically complete. For most classificationmethods, only
the superpixels obtained through segmentation are adopted as
the basic classification units [19], [21].

In recent years, as deep learning has become more popular,
many researchers have attempted to apply it to land cover
classification. There are two main types of deep learning
methods. In the first type, only remote sensing images of
certain fixed sizes can be used as input. Deep neural net-
work models are adopted as feature extractors. Classifica-
tion is subsequently conducted using conventional classifiers
(SVMs) [22]. Recently, deep learning methods of the second
type have been more frequently used. For this type, end-
to-end deep neural network models are constructed to more
effectively perform classification pixel by pixel for remote
sensing images without using additional classifiers [23]–[25].
However, because the resolution decreases as the receptive
field increases, the scale has to be recovered with the help
of max pooling indices [26] and dilated convolution [27].
Because the spaces in the models are quite large, both types
of deep learning methods require numerous labelled data for
training.

B. BAG OF VISUAL WORDS REPRESENTATION OF
REMOTE SENSING IMAGE
The bag-of-words (BoW) methodology was first proposed
for the text retrieval domain problem in text document anal-
ysis, and it was further adapted for computer vision appli-
cations [28]. BoW representations allow unstructured data
to be expressed in word vector spaces. In addition, they are
necessary steps for the application of PTMs to mine latent
information. Images can be viewed as some collections of
local features, which are not related to location information.
These features are similar to words. Text documents can
produce word-document co-occurrence matrices, which can
similarly be acquired for images. Entries in images are often
known as ‘‘visual words’’ whereas collections of these words
are considered ‘‘visual dictionaries.’’ Documents correspond
to regions in images. In word vector spaces, images can be
subjected to image annotation, scene classification, and target
recognition [28]. When an image is expressed using BoW
representations, the following steps are required: (i) auto-
matic detection of regions/points of interest, (ii) computation
of local descriptors over those regions/points, (iii) quantiza-
tion of the descriptors into words to form visual vocabulary,
and (iv) determination of the occurrences in the image of each
specific word in the vocabulary for constructing the BoW
feature [29].

Remote sensing images can be expressed using BoW
representations to obtain image documents and visual words.
When the BoW models of scale invariant feature trans-
form (SIFT) features were used, satisfactory results were
obtained in remote sensing image retrieval [30]. In [31],
K-means clustering performed using spectral and textural
characteristics to generate a visual vocabulary list pro-
duced results superior to those obtained using SIFT fea-
tures. In addition, SVM classifiers were applied to BoW

representations of the aerial images. In [32], base images
were selected for large collections of remote sensing images
and similarity measurement methods in word vector spaces
were improved to realize the retrieval of remote sensing
images. Some researchers carried out superpixel segmen-
tation of remote sensing images and used dense SIFT fea-
tures in superpixels as low-level features to recognize clouds
through SVM classification [33]. Uniform grid segmentation
of the images was adopted in [34], in which a shape-based
invariant texture index was designed to provide joint BoW
representations for global texture features, local features, and
dense SIFT features and to achieve scene classification for
high-resolution remote sensing images. Reference [35] used
spectral means, standard deviations, and SIFT features to
construct a BoW model for scene classification and demon-
strated that classification results obtained using both spectral
and structural features show better performance than those
obtained using only one type of feature. BoW models can
also be constructed by extracting image features using trained
convolutional neural networks to achieve scene classifica-
tion [36]. In [37], image segmentation and uniform grid seg-
mentation were adopted simultaneously to acquire low-level
features to establish a multi-bag of visual words model to
realize multi-label scene classification. In aforementioned
studies, when BoW representations are formed, spectral,
texture, and dense SIFT features facilitate the representations
of images.Most studies focus on scene classification or image
retrieval; land cover classification has not been sufficiently
investigated. This study aims to examine land cover classi-
fication, where homogeneous image documents are required
and features have to be extracted and classified in individual
images.

C. REMOTE SENSING IMAGE FEATURE EXTRACTION
BASED ON PROBABILISTIC TOPIC MODELS
Although BoW representations convert unstructured text or
image information into word vector spaces, they are still rep-
resentations of low-level features (spectral, texture, and dense
SIFT). PTMs such as LDA can mine latent topic information,
which is close to high-level semantic information, from low-
level feature spaces [38]. When appropriate dictionary size
and number of topics are selected, scene classification results
for remote sensing images in latent topic spaces are supe-
rior to those obtained in word vector spaces [39]. In recent
years, various LDA extension models have been developed
to meet different application requirements. A comprehensive
overview of these models can be found in [8].

After creating BoW representations of remote sensing
images, many researchers applied PTMs to extract the latent
features for scene classification, land cover classification, and
image fusion. In [40], an LDA model was used for semantic
annotation of remote sensing images whereas overlapping
uniform grid segmentation was adopted to import the spatial
relationships of image documents. In [41], uniform grids
were adopted to segment documents into patches (image doc-
uments) whereas the latent topics with words were directly
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projected into classes. Eventually, classification was carried
out for each pixel (visual word) of Landsat images. Scene
classification can also be performed using discriminant clas-
sifiers (e.g., SVM) after extracting latent topic features of
remote sensing images [42]. In [43], the process of image
mining was improved with a semantic annotation according
to the spatial relationships between objects for scene-level
analysis. In [44], a multi-scale latent Dirichlet allocation
model was proposed to address the problem of semantic
clustering of geo-objects in panchromatic images. In [45],
over-segmented parts were used as image documents and
gray-level values of pixels of panchromatic images as words.
A semi-supervised latent Dirichlet allocation (ssLDA) was
then employed for classification at the pixel level. Vocabulary
can also be established separately by segmenting images
with uniform grids and extracting spectral, texture, and SIFT
features [46]. Subsequently, PLSA and LDA models can be
employed separately to extract topics, which are fused to real-
ize scene classification. In [47], uniform grid segmentation
and an LDA model were used to analyze the scene-level land
cover of time-series remote sensing images. In [48], uniform
grid segmentation and super-pixel segmentation were used
simultaneously to construct a BoW model, followed by an
LDA model for scene classification. Some studies employed
LDAmodels to detect changes in remote sensing images [15],
to perform super-resolution reconstruction [49] andtoconduct
imagefusion[50]andtargetdiscrimination [13].

Most aforementioned studies adopted LDA for scene-level
feature representation andmostly used standard LDAmodels.
Pixel-level land use classification has not been possible. Since
it is typically assumed that documents are independent from
each other, it is difficult to represent spatial information in
remote sensing images.

III. METHODOLOGY
To more effectively use PTMs to extract latent topic fea-
tures from remote sensing images and thereby to realize
pixel-level land use classification, this study proposed a
framework consisting of three tasks: 1) BoW representations
of high-resolution remote sensing images based on multires-
olution segmentation; 2) latent topic feature extraction based
on a structural topic model (STM); 3) supervised classifica-
tion of image documents (Fig. 1).

A. BAG-OF-VISUAL-WORDS REPRESENTATION BASED ON
MULTIRESOLUTION SEGMENTATION
Because there are no natural documents or words in remote
sensing images, when a bag-of-visual-words (BOVW) model
is adopted, an analogue of text-related terms in the image
domain has to be built first. In scene classification, indi-
vidual images are often treated as documents (basic units
for classification) and images are subjected to uniform grid
segmentation to obtain basic units for visual word extraction.
The goal of this study is to perform pixel-wise land use
classification. Hence, images were first segmented to obtain
basic units for classification. Here, homogeneous basic units
are required for classification, but complete object targets

FIGURE 1. Flowchart of land use classification based on the structural
topic model framework for high-resolution remote sensing imagery.

with semantic meanings, which are difficult to be segmented,
are not required. This is different from what is required
for conventional object-based classification methods. Thus,
in this study, segmentation at smaller scales was performed
to obtain homogeneous regions from images. This ensures
that all pixels in a region belong to the same land cover type
as much as possible. The segmented regions were treated as
image documents whereas individual images were taken as
corpuses.

To more comprehensively represent the information in
image documents, this study adopted pixels as basic units and
used spectral, texture, and dense SIFT [51] features. A gray-
level co-occurrence matrix (GLCM) describes the texture
using related spatial characteristics of the gray level. It is one
of the most commonly used texture methods producing the
most satisfactory results in remote sensing classification [52].
Hence, five irrelevant statistics in the GLCMwere selected in
this study to describe the texture features of targets: the angu-
lar secondmoment and entropy, the dissimilarity and contrast,
and correlation reflect the texture homogeneity, the texture
smoothness, and the inter-correlation between a gray-level
pair, respectively. SIFT features are often used in the scene
classification of remote sensing images. Compared to SIFT,
dense SIFT only extracts structural features from images at
one scale. Thus, the 128-dimensional feature descriptor at
any position can be obtained. This can prevent the problem
of having sparsely distributed feature points in images due
to few feature points extracted by the original SIFT method.
Because the spectral, texture, and dense SIFT features are all
continuous numerical features, there are no naturally existing
dictionaries and words, which resemble those in the text
analysis. Hence, K-means, which is a simple and effective
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FIGURE 2. Process of constructing the bag-of-visual-words representation
of high-resolution remote sensing images using the late fusion strategy.

clustering method, was adopted to quantize continuous fea-
tures into discrete ones [34], [46]. During processing, there
was only one input parameter (number of clusters). Unlike
ordinary scene classification, all samples (instead of only the
training samples) were subjected to clustering when forming
visual words because image data had already been acquired.

The three low-level features that describe remote sensing
images from different perspectives have different physical
meanings, dimensions, and dimensionality. There are two
commonly used feature fusion methods: early fusion and late
fusion. For early fusion, low-level features of different types
are stitched directly into a high-dimensional feature. Subse-
quently, visual words are acquired by clustering the resulting
high-dimensional feature. This method is simple with a lower
computational load. However, low-dimensional features can
be submerged by high-dimensional ones. For late fusion,
which is applied in the present study, visual words are first
obtained separately within the spectral, texture, and dense
SIFT feature spaces through clustering (Fig. 2). Therefore,
an object can be depicted from different perspectives. This
is similar to using synonyms in the text. Because late fusion
can provide more perspectives to describe an image docu-
ment and the over-segmented image documents are relatively
homogeneous, this method can avoid the situation where
there are insufficient types of words in image documents.
In this method, the frequency of the visual words in each
image document is obtained to present the BoW represen-
tation of the image. In addition, in the present framework,
the classification accuracy is not sensitive to the segmentation
scale, which avoids the difficult choice of segmentation scale.

B. LATENT TOPIC EXTRACTION BASED ON STRUCTURAL
TOPIC MODEL
BOVW models allow objects to be represented using struc-
tured data after segmentation while most interior details of
objects are preserved. Hence, supervised classification mod-
els can be adopted for classification. Nevertheless, images in
the BOVWmodels are still represented by low-level features.
Objects of identical land use types may have significantly
different low-level features whereas objects of different land
use types may have similar low-level features. These lead to
considerable difficulties in classification. LDA models [38]
were originally used to eliminate or reduce the gaps between
high-level semantics and low-level words in the text repre-
sented by BoWmodels; thus, they assume that multiple topics

TABLE 1. Meanings of symbols in NATURAL LANGUAGE PROCESSING and
in this paper.

are mixed to present the document contents. Each topic is
defined as a probability distribution of a word in the dictio-
nary. Image documents of different land use types consist of
several materials. Hence, image documents are assumed to be
made up of multiple latent topics, each of which corresponds
to the probability distribution of a low-level feature. In this
way, different low-level features (spectral, texture, and dense
SIFT) are generated. Using a PTM model, the uncertainty
of remote sensing image can be modeled and observations
can be made on documents and words to deduce the posterior
probabilities of latent topics in each image document.

Tomore clearly illustrate the proposedmethod, Table 1 lists
the definitions of parameters used in LDA models for text
analysis in [38] and this study.

For LDA, a document set (image) is prepared as described
below.

1) Select a K -dimensional Dirichlet random variable
θ ∼Dir(α), where K is the number of the topics in the corpus.

2) For each of visual word wn with n ∈ Ê1, 2 . . .ÃĆÂN ,
perform the following actions:

a) Select a topic zn ∼ Multinomial(θ ).
b) Select a word wn from p(wn|zn, β), a multinomial prob-

ability conditioned on the topic zn.
The graphical illustration of the full data generation pro-

cess for the LDAmodel is provided in Fig. 3. An LDAmodel
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FIGURE 3. Graphical model representation of LDA [38].

is a three-layer Bayesian model with a complex structure;
thus, an accurate calculation is extremely difficult. Owing
to the advancement in computer software and hardware,
parameter learning methods for the LDA model have been
improved continuously in recent years. There are two types of
parameter learning methods: Gibbs sampling and variational
inference [7]. The former yields a higher accuracy whereas
the latter has a higher speed.

The LDA model can be used to simulate the ‘‘generation’’
of remote sensing images. Each segment obtained by seg-
mentation is composed of diverse materials with different
physical properties (latent topic), and the observed low-level
features (spectrum, texture, etc.) of the surface are precisely
blended by the features (visual words) of the different materi-
als. Furthermore, the segments classified into the same class
may have different physical components, which is consistent
with the fact that a document often contains several different
topics and there are obvious differences in the distribution
of words belonging to the same topic across different doc-
uments. In general, latent topic features are used to bridge
the gap between low-level features and high-level semantic
features.

The composition of topics of the text in an LDA model is
determined by the Dirichlet distribution of hyperparameter α.
The content of each piece of text is considered as the mixing
of different topics. There are two assumptions concerning
independence in an LDAmodel. First, topics are independent
from each other (limited to a (K-1)-dimensional simplex).
Second, documents are independent from each other. Unlike
text, image documents are obtained via over-segmentation.
Hence, it is expected that spatial information between patches
can be included when image documents are modeled. For this
purpose, an STM [53] was used to import document-level
metadata for more accurately deducing the latent topics in
image documents. The probabilistic graphical model of the
STM is illustrated in Fig. 4.

Based on the LDA model, an STM introduces additional
covariates from two aspects: topical prevalence and topical
content. The former describes the topic compositions of the
documents whereas the latter provides the usage rates of
words of different topics. For topical prevalence, the Dirichlet
distribution that controls the proportion of words in a docu-
ment attributable to different topics is replacedwith a logistic-
normal distribution with a mean vector parametrized as a

FIGURE 4. Graphical model representation of STM [53].

function of covariates. While all the documents in the LDA
model use the same global parameter, the topical prevalence
component can specify a document-level covariate in the
model as prior knowledge affecting the latent topic compo-
sitions in the document. For topical content, the distribution
is defined over the terms associated with different topics as
an exponential family model, similar to multinomial logis-
tic regression, parametrized as a function of the marginal
frequency of occurrence deviations for each term, and of
deviations from it that are specific to topics, covariates, and
their interactions. The topical content establishes a base dis-
tribution for the words of each topic in the document set and
parameterizes the deviation of the word distribution from the
base distribution in the logarithmic space.

When the vocabulary size is V and the number of topics
equals K, an STM can be created as illustrated below [54].

1) Draw the document-level attention to each topic from a
logistic-normal generalized linear model based on a vector of
document covariates Xd .

Eθd |Xdγ ,
∑
∼ LogisticNormal(µ = Xdγ ,

∑
) (1)

where Xd is a 1-by-p vector, γ is a p-by-K − 1 matrix of
coefficients and

∑
is K − 1-by-K − 1 covariance matrix.

2) Given a document-level content covariate yd , estab-
lish the document-specific distribution over words represent-
ing each topic (k) using the baseline word distribution (m),
the topic specific deviation κ (t)k , the covariate group deviation
κ
(c)
yd and the interaction between the two κ (i)yd,k .

βd,k ∝ exp(m+ κ(t)k + κ
(c)
yd + κ

(i)
yd,k ) (2)

m, and each κ (t)k , κ (c)yd and κ (i)yd,k are V -length vectors contain-
ing one entry per word in the vocabulary. When no content
covariate is present, β can be formed as βd,k ∝ exp(m+κ(t)k )
or simply point estimated (the latter approach is the default).

3) For each word in the document, (n ∈ 1, . . . ,Nd ):
• Draw word’s topic assignment based on the
document-specific distribution over topics.

zd,n|Eθd ∼ Multinomial(Eθd ) (3)

• Based on the topic selected, draw an observedword from
that topic.

wd,n|zd,n, βd,k=zd,n ∼ Multinomial(βd,k=zd,n ) (4)

In the present study, topical prevalence in the STM was
used to describe the phenomena that latent topics in image
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documents may vary at different spatial locations. Because
image documents are generated through over-segmentation,
it is more likely for spatially close image documents to have
similar latent topic compositions. Hence, they are attributed
to the same land use type. This holds also true for the oppo-
site. For image documents of some land use types (e.g., con-
struction land and agricultural land), when they are spatially
separated from each other, word compositions may differ
considerably. On the contrary, when the image documents of
the same type are spatially close to each other, their word
compositions are relatively similar. The variations in word
compositions with spatial location can be depicted by the
topical content. Therefore, ‘‘topical prevalence’’ and ‘‘topi-
cal content’’ can describe the heterogeneity between image
documents at the topic and word levels. However, the spatial
distribution of the land uses in remote sensing images is not
continuous. For example, patches adjacent to construction
land may be agricultural land whereas those adjacent to water
bodies may be forests. These patches are spatially adjacent
to each other, but they have remarkably different latent topic
compositions. Hence, it is not appropriate to directly use
their spatial locations as the prior knowledge of their topic
compositions. Thus, in this study, a multi-scale region merg-
ing algorithm in multi-scale segmentation was adopted to
merge image documents. To minimize the heterogeneity of
parent patches after merging, the following spectral and shape
heterogeneity indicators were used [55].

1) The spectral heterogeneity indicator for an image
patch is

hcolor =
∑

c
wc · σc (5)

where wc is the band weight, σc denotes the standard
deviation of the spectral value for each band, and c is
the number of bands;

2) The shape heterogeneity indicator for an image patch
consists of smoothness and compactness.

hshape = wsmooth · hsmooth + wcompact · hcompact (6)

3) The overall heterogeneity indicator for an image
patch is

h = wcolor · hcolor + wshape · hshape. (7)

When multi-resolution merging is implemented, the influ-
ence of the spectra and shapes are controlled by wcolor and
wshape, respectively. This paper focuses largely on the internal
characteristics of image documents, and the shapes of the
segments and the region is not critical; therefore, wcolor is set
to maximum and wshape is set to minimum during multi-scale
merging (performed in eCognition).

After merging the image documents with similar prop-
erties, the resulting parent patches were considered as the
‘‘regions’’ where the patch documents are located. In this
study, the ‘‘region’’ attribute of a document was considered as
a covariate. For topical prevalence, the covariate correspond-
ing to document d is taken as a P-dimensional vector, where
P denotes the number of regions. If document d belongs to

the i th region, then the i th location of Xd is 1 whereas other
locations are 0. For topical content, yd is defined as the ID of
the region where the patch is located.

In an STM, parameter inference can be performed using
variational methods. Latent topics in image documents can
thereby be obtained. However, this is different from text anal-
ysis. Latent topic compositions in image documents are not
high-level features with semantic meanings, but middle-level
features between low-level features and high-level semantics.
Therefore, supervised classifiers are still required for the
classification of image documents in topic spaces. In addi-
tion, it is worth pointing out that since the number of latent
topics is usually much lower than the dictionary size, that
is, the dimension of the latent topic feature space is much
less than the BOW feature, which facilitates the avoidance
of dimensional disaster and the achievement of superior
classification performance.

IV. EXPERIMENT AND ANALYSIS
A. EXPERIMENTAL SETUP
To assess the performance of the proposed method for latent
topic extraction from high-resolution remote sensing images,
two datasets were adopted for land cover type classification
experiments. For each dataset, the following features were
used for classification: a. low-level features of segmented
patches (spectral means and standard deviations and texture
features) (Segment LowLevel Feature, SLLF); b. word vector
features based on the BoW model (Bag of Words, BoW);
c. latent topic features extracted using a standard LDA model
(Bag of Topics by LDA, BoT-LDA); d. latent topic features
extracted using an STM by fusing spatial information (Bag
of Topics by LDA, BoT-STM). For model hyperparameters
(C and Gamma SVM; number of estimators and maximum
depth for RF), the optimal values were determined by grid
search. In addition, five-fold cross validation was adopted for
model selection. For BoW and the proposed feature extrac-
tion strategies, there are two important parameters: visual
dictionary size V and the number of latent topics K, will
be tested with different values in the classification. More-
over, when fusing spatial information of image documents,
the segmentation scale of multi-resolution merging adopted
to obtain the regions where image documents are located may
also affect the classification accuracy. Different values of the
aforementioned parameters were adopted in the experiments
and the results were compared. According to [19], SVMs
and RFs demonstrate more satisfactory performance. Hence,
these two supervised classifiers were used in this study, and
20% of the patches were arbitrarily selected as training sam-
ples whereas the remaining 80% were used as testing sam-
ples. The performance of the methods was evaluated using
the overall accuracy measure and Kappa coefficients. Each
classificationmethod was tested 10 times. The average values
were adopted as the results.

All experiments were conducted using a PC equipped with
an i5-6500 CPU, a NVIDIA GT730 GPU, memory of 24 GB,
and Windows 10 Pro. The models were implemented in
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FIGURE 5. QuickBird Image dataset and its acquisition location.

Python 3.7.6 and R 3.6.3 environments. Image segmentation
was done using eCognition 8.7 Developer 64.

B. QUICKBIRD IMAGE DATASET
A high-resolution remote sensing image of the Yicheng sub-
district of Yixing in Wuxi taken by QuickBird was used for
analysis (Fig. 5). The image was taken on August 16, 2005 at
a width of 3350 pixels and a height of 3405 pixels. There
are four bands: blue (450–520 nm), green (520–600 nm),
red (630–690 nm), and infrared (760–900 nm). The fusion
product has a spatial resolution of 0.6 m. This study focused
on the Meilin catchment area, which is approximately 9 km
from Taihu Lake. The study area contains various land use
types. At higher altitudes, the hillside is covered by extensive
pine and bamboo forests. In other regions, agricultural land
dominates, covering five land cover types: paddy fields, dry
land, wood land, urban land, and water areas. Basic pre-
treatment was performed for the image. The true values of the
reference land use types were adopted from the data reported
by the Yangtze River Delta Science Data Center, National
Earth System Science Data Center, National Science & Tech-
nology Infrastructure of China; the data were acquired by
interpreting human-computer interactions, with an accuracy
of >92%.

eCognition Developer 8.71 was adopted for multireso-
lution segmentation to obtain image documents. The goal
of segmentation is to obtain homogeneous patches, but not
complete objects. In other words, the image segmentation in
the present paper is actually a form of over-segmentation.
Hence, through manual visual interpretation, the segmenta-
tion scale was set to 60 such that most image documents are
homogeneous in terms of their land use types. Meanwhile,
the color parameter is set at the default value, 0.5. A total
of 7073 image documents were acquired. Image documents
with strong ambiguity or land use types, which are difficult to
determine, were discarded. In total, 5001 image documents
were adopted for analysis. Different visual dictionary sizes
(60, 90, 120, 150, 180, 210, 240, 270, and 300) were used
to construct BoW representations of remote sensing images.
Because the late fusion strategy has been used, spectral, text,
and SIFT dictionaries were independent from each other. The
sizes of these three types of dictionaries were set the same.
Another parameter significantly affecting feature extraction

1http://www.ecognition.com/

FIGURE 6. Overall classification accuracy using BoW, BoT-LDA, and
BoT-STM models for various dictionary sizes using the QuickBird Image
dataset.

TABLE 2. Kappa coefficients at visual dictionary sizes 180 and 300.

is the number of latent topics. It is often set to be substantially
smaller than the dictionary size. The number of latent topics
was set to be 20, 30, 40, 50, 60, 70, 80, 90, and 100 to
compare the resulting classification accuracy. In eCognition,
the minimum and maximum values that scales can be set at
are 5 and 250, respectively.When constructing BoT-STM fea-
tures, the largest segmentation scale (250) in eCognition was
used to obtain regions where image documents are located.
In total, 529 regions were formed. The classification results
using SLLF, BoW, BoT-LDA, and BoT-STM features are
presented in Fig. 6 and Table 2 shows the Kappa coefficient
of classification results when the visual dictionary sizes are
180 and 300, which represent the ratio of error reduction
between classification and completely random classification..

Because interior information of more image patches (doc-
uments) can be represented by using BoW models than by
employing conventional object-based methods, the methods
based on BoW and BoT (BoT-LDA and BoT-STM) features
reveal significantly more accurate classification results than
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FIGURE 7. Classification results of QuickBird Image dataset. (a) Ground
truth. (b) Results of BoT-LDA feature. (c) Results of BoT-STM feature.
In these experiments, dictionary size = 300, topic number = 100, RF is
applied to the topic latent feature.

their counterparts based on SLLF features. Except for the
conditions where there are few topics, for BoT feature-based
classification, lower-dimensional features can be used to
achieve higher accuracy. This is because document inference
is performed using BoT features, and features inside image
documents can be more efficiently represented using latent
topics. In addition, BoT-STM-based method use the spatial
regions where documents are located as prior knowledge
and thus constraints for the classical LDA model. On the
one hand, it is more likely that documents of the same
region have the same topic composition. On the other hand,
the same topics in the same region have the same proba-
bility distributions of visual words whereas the same topics
in different regions may have different probability distribu-
tions of visual words. For all different visual dictionary sizes
and topic numbers, BoT-STM-based classification results
are more accurate than those based on BoT-LDA (Fig. 7).
Furthermore, for all visual dictionary sizes, accuracy of both
BoT-LDA- and BoT-STM-based classification is enhanced
as the number of topics increases because more latent top-
ics allow more comprehensive feature representations of the
document content. However, when the number of latent topics
increases to a certain number, the improvement of classifica-
tion accuracy also decreases. Both classifiers (SVM and RF
models) demonstrate satisfactory classification performances
for high-dimensional feature data. The visual dictionary size
insignificantly affects the accuracy of BoW-based classifica-
tion. The accuracy is lower for the visual dictionary size of 60.
However, for all other sizes, the classification accuracy based
on BoW features is approximately 83%. BoT-LDA- and BoT-
STM-based classification methods achieve the highest accu-
racy when the visual dictionary size is 90. This suggests that
using latent topic features enables smaller visual dictionaries
to be used to achieve higher accuracy.

Fig. 7(b) and 7(c) provide the classification results based
on BoT-LDA and BoT-STM features, respectively, when the
visual dictionary size is 300 and the number of topics is
100. The true values are shown in Fig. 7(a). Misclassifi-
cation is noted between dry land and woodland, between
water areas and urban land, and between dry land and urban
land. According to Fig. 7, satisfactory classification results
were obtained using BoT-LDA and BoT-STM features. The
overall classification accuracy was higher for the result based

FIGURE 8. Overall classification accuracy using BoW, BoT-LDA, and
BoT-STM models for dictionary size = 120, 210, 300 and region size =

200, 225, 250 using QuickBird Image dataset.

on BoT-STM features. As revealed by the results in red
rectangles, because regional prior knowledge was introduced
during BoT-STM feature construction, salt-and-pepper noise
was only noted for the classification result by the BoT-LDA
features. This is because topical prevalence was introduced
for BoT-STM features. Hence, documents of the same region
may have similar topic compositions. The STM model also
adopts topical content as a covariate to describe the situation
where the same topic may have different visual word dis-
tributions in different documents. As illustrated by the blue
rectangles in Fig. 7, the BoT-LDA-based method incorrectly
recognizes water areas as urban land whereas the BoT-STM-
basedmethod correctly recognize those areas. This is because
water areas and urban land have been divided into different
regions, but owing to the topical content, water areas can still
be correctly recognized although their visual word composi-
tions in the document may differ from those in the training
samples.

Another parameter that may influence the classification
accuracy is the segmentation scale used to obtain the regions
where image documents are located. To evaluate the effects
of this segmentation scale on the classification results, experi-
ments were conducted by setting the number of topics as 100;
the segmentation scales as 250 (forming 529 regions), 225
(650 regions), and 200 (799 regions); and the visual dictio-
nary sizes as 120, 210, and 300. In this way, the BoT-STM-
based classification accuracy under three different region
sizes can be compared (Fig. 8). The classification accuracy
based on BoT-STM features is not sensitive to the region
size. Hence, the method based on BoT-STM features is fairly
robust against the variations in region size, and its robustness
is higher than that based on BoT-LDA features.

C. GAOFEN IMAGE DATASET
Being a new large land use and land cover (LULC) classifi-
cation dataset [23], the Gaofen Image Dataset (GID) contains
150 high-quality Gaofen-2 (GF-2) images of more than 60
cities in China. These images cover a geographic area of more
than 5× 104 km2 and have high intra-class diversity as well
as low inter-class separability. GF-2 is the second satellite
of the High-resolution Earth Observation System (HEOS)
and generates panchromatic images with a spatial resolution
of 1 m and multi-spectral images with a spatial resolution
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FIGURE 9. Three selected images from Gaofen Image dataset and their
ground truth.

TABLE 3. The image documents construction information.

of 4 m. The image size is 6908 × 7300 pixels. Multi-
spectral images include images in the blue, green, red and
infrared bands. Since its launch in 2014, the satellite has
been adopted for important applications such as land surveys,
environmental monitoring, crop yield estimation, and urban
planning. The GID refers to Chinese Land Use Classifica-
tion Criteria (GB/T21010-2017) to establish a hierarchical
category system. In the large-scale classification set of the
GID, five major categories are annotated: built-up, farmland,
forest, meadow, and water. In this study, three GID images
taken at different locations were selected to include all five
land use types of interest. Feature extraction and classifica-
tion experiments were then performed. The chosen images
are GF2_PMS1__L1A0001680858-MSS1, GF2_PMS2__L1
A0000607677-MSS2 and GF2_PMS2__L1A0000607681-
MSS2 (Fig. 9). Table 3 shows the information of image
document construction.

Fig. 10 illustrates the overall classification accuracy of
the BoW, BoT-LDA, and BoT-STM models under different
visual dictionary sizes. Because regions with class ambiguity
have been removed from the ground truth data of the GID
images, the resulting overall classification accuracy is higher
although the spatial resolution of the images in this analysis
is lower than that in section B. Except for the conditions with
few topics (20 or 30), all the features represented by the latent
topics exhibit more satisfactory classification performance
than the BoW model. Because spatial information has been
imported, classification based on BoT-STM features yields
significantly more accurate results than its counterpart based

FIGURE 10. Overall classification accuracy using BoW, BoT-LDA, and
BoT-STM models for various dictionary size using Gaofen image dataset.

on BoT-LDA features. In this analysis, another pattern is
also noticeable: the classification accuracy using BoT-LDA
and BoT-STM features is improved as the number of topics
increases. This pattern is more distinct than that observed in
section B because a larger number of image documents are
involved in this analysis. The larger the corpus, the greater
the number of topics required for semantic description.

In addition to the overall classification accuracy, which is
adopted to evaluate the model performance, Blei [7] proposed
that model perplexity can be used to assess the reliability of
a PTM. Perplexity is defined as follows, where MK denotes
a topic model using K topics and The meanings of the other
symbols are similar to those in Table 1:

Perplexity (MK ) = exp

(
−
∑D

d=1 logp (zd )∑D
d=1 Nd

)
(8)

Normally, when the perplexity obtained from (8) decreases
as the number of topics K increases, the image document
set fitted by the PTM becomes more similar to the true
image document. Hence, the perplexity indicator describes
the levels of similarity between the topic and visual word
distributions of the images fitted by the model and the true
distributions. It can also be used to evaluate the generalization
ability of the model for the test data. Given the applica-
tion scenarios of interest, the topic model was considered
as a tool to mine information from the entire dataset. The
training and testing sets were not separated from each other.
Thus, perplexity was calculated directly from the original
image document set. Fig. 11 shows the perplexity variations
with the number of topics (with a constant visual dictio-
nary size of 300) when BoT-LDA and BoT-STM models are
employed separately. For both methods, perplexity decreases
as the number of topics increases. For all different numbers
of topics, the BoT-LDA-based method shows considerably
lower perplexity than the BoT-LDA-based method. More-
over, when the number of topics increases, the perplexity
of the BoT-STM-based method drops more rapidly because
spatial information of image documents is included in the
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FIGURE 11. Perplexity value of LDA and STM model for various number of
topics.

FIGURE 12. Overall classification accuracy using BoW, BoT-LDA, and
BoT-STM models for dictionary size = 120, 210, 300 and region size =

200, 225, 250 using Gaofen Image dataset.

spatial LDA model. As a result, less topics are needed to
represent useful information and to more accurately fit an
approximate model to the true distributions.

To validate the effects on the classification accuracy by
the segmentation scale used to obtain regions where image
documents are located, three segmentation scales (200, 225,
and 250) were adopted to acquire regions of image docu-
ments whereas three visual dictionary sizes (120, 210, and
300) and a constant number of topics (100) were used for
classification. The overall classification accuracy of themeth-
ods based on BoT-LDA and BoT-STM features was com-
pared (Fig. 12). The effect of the segmentation scale on
the classification accuracy is not significant. The accuracy
of the BoT-STM-based method is higher than that of the
BoT-LDA-based method.

V. CONCLUSION
During land use classification based on remote sensing
images, because objects of the same type may exhibit differ-
ent spectral features and objects of different types may have
similar spectral features in the low-level feature spaces, it is
difficult to improve the classification performance by directly
modifying the classifiers. Hence, a PTM-based classification
framework was developed. First, BoW representations of
remote sensing images were obtained. An LDA model was
subsequently adopted for secondary mining of low-level fea-
tures (spectral, texture, and dense SIFT features). Segmented
image patches were used as documents while the low-level
features inside were used as visual words. Given that an LDA
model is a generativemodel, the document generation process

includes the process in which low-level features are created
according to the physical properties of land surfaces. Next,
using an STM, a feature extraction method fusing spatial
information of image documents was proposed. Two types
of prior knowledge were introduced to the standard LDA
model in the form of covariates to simulate the effects of the
regions on the topic compositions of documents and word
compositions of topics.

Two experiments were conducted on land use classification
using high-resolution remote sensing images. The results
demonstrate that using PTMs for secondary feature extraction
from image documents yields more accurate classification
results than adopting BoW models or using low-level fea-
tures directly. Because spatial information of the documents
is imported to the STM, latent topic information of image
documents can be mined more accurately, effectively enhanc-
ing the classification accuracy. The proposed method is a
supervised feature extractionmethod. Yet, it is also applicable
for out-of-sample data to extract latent topic information of
the new data.

In the future, further research is required to explore how
to utilize label information to construct an end-to-end frame-
work and a supervised or semi-supervised PTM so that dis-
criminant models are no longer needed for classification. This
can reduce the number of steps in the framework and enhance
the classification performance. Secondly, how to determine
the optimal number of latent topics and use more low-level
features and systematically analyze the impacts of different
low-level features in BoW and PTM on classification accu-
racy also needs to be resolved. In addition, the computa-
tional load can be loweredwhile increasing the computational
efficiency. Finally, the semantic segmentation model based
on deep learning can simultaneously segment and recog-
nize remote sensing images. How to compare the mecha-
nisms and experimental results between these methods and
the methods in this paper should be explored in subsequent
research. Furthermore, we will explore how to integrate PTM
and deep learning models to achieve higher classification
accuracy.
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