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ABSTRACT In this paper, generalization for the Lindstedt–Poincaré perturbation method for nonlinear
oscillators to a class of strongly mixed-parity oscillating system is established. In this extended and enhanced
approach, two new odd nonlinear oscillators are introduced in terms of the mixed-parity oscillator. By com-
bining the analytical approximate solutions corresponding to the two new systems, the accurate approximate
solutions of the original mixed-parity oscillator are obtained. Comparing with the existing methods such as
the perturbation method, the new solution methodology for the singular nonlinear system introduced is not
only simple, but the combinatory solution is straight forward and it yields very accurate and physically
insightful solutions. Using two typical examples, we demonstrated that this new proposed approach is
capable of establishing highly accurate approximate analytical frequency and periodic solutions for small as
well as large amplitude of oscillation. The new analytical methodology established will potentially shed new
insights to the physical interpretations of strongly nonlinear oscillators including optoelectronic oscillators,
pendulums and spring-masses.

INDEX TERMS Analytical approximation, generalization, large amplitude, Lindstedt–Poincaré method,
mixed-parity nonlinearity.

I. INTRODUCTION
There exists a number of physical oscillating systems and
oscillators in electrical, electronic engineering and mechani-
cal nonlinear systems. Examples of such nonlinear oscillating
systems include optoelectronic oscillators [1]–[5], pendu-
lums [6]–[8], spring-masses [9], [10], etc. For such oscil-
lating systems with high nonlinearity and large parameters,
there exist very few research works that present analytical
or approximate solutions that are sufficiently accurate. Par-
ticular challenges are surfaced when the oscillating systems
involve a strongly mixed-parity restoring force [11]–[13],
and the recently much solicited, tunable optoelectronic meta-
oscillators [2]–[4].

As is today, the Lindstedt–Poincaré (L-P) perturba-
tion method [14]–[17] is a well-established approach for
constructing approximate analytical solutions of nonlin-
ear system having a small perturbation parameter. But
this perturbation theory is generally inapplicable in many
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practical engineer problems or a computational failure occurs
when the parameters are beyond a certain specified range.

There exists some enhanced L-P perturbation method to
the solution of strongly nonlinear systems [18]–[24]. For
instance, Cheung et al. [18] introduced a new parameter
such that the original parameter remains small regardless of
the magnitude of the original parameter. Having introduced
the new parameter, a strongly nonlinear system with a large
parameter is transformed into a small parameter system.
However, the impeding issue is this method requires a non-
zero linear quantity of the restoring force. By introducing
a linear term or a constant term, some researchers, such
as Senator and Bapat [19], Amore and Aranda [20], [21],
and Wu and his collaborators [22], [23] extended the L-P
perturbation method in order to resolve the problem. Based
on the homotopy principle, Liao [24] proposed a homotopy
analysis method, and He [25] proposed another homotopy
perturbation method and both of them effectively extended
the application range of the perturbation method. Using
the homotopy perturbation method, some further works
including the response analysis of fractionally damped
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beams subject to external loads [26], nonlinear vibration of
cantilever beams with strong nonlinearity [27], nonlinear
transversely vibrating beams with an auxiliary term have
been investigated [28]. There are some other attempts in
this line for improving the existing perturbation methods
and for improving the ranges of applicability, including
Kattiyapirak and Khovidhungij [29], Fatima [30],
Hamed et al. [31], etc. However, the effectiveness of these
different L-P methods [19], [20], [22] require that the non-
linear restoring force to have odd nonlinearity. If this con-
dition is not fulfilled, these imporved L-P methods cannot
be applied. For mixed-parity nonlinear oscillation system,
Mickens [32] constructed approximate analytical solutions by
using the usual L-P method [17]. Based on a similar conclu-
sion, these solutions are only suitable for week nonlinearity,
or for small amplitude, and practicality of the approximate
solution is very much restricted. Therefore, a way to extend
and generalize the practical application of the classical L-P
perturbation method [32], and the various improved L-P
methods [19]–[22], for highly nonlinear oscillation system
with large oscillation amplitude and with non-odd nonlinear
restoring force is critically lacking.

The main purpose of this article is to develop a new
approximate analytical method for deriving accurate approxi-
mate solutions to strongly mixed-parity nonlinear oscillators.
The basic solution methodology of Wu and his collabora-
tors [33]–[35] is adopted and further generalized by splitting
the original mixed-parity nonlinear system into two new sys-
tems with odd nonlinearity. By further adding a linear spring
term, we can obtain the approximate analytical solutions to
the oscillatory systems with odd nonlinearity. For brevity,
the optimal linear spring term is determined according to
Wu et al. [22]. With analytical matching and prudent combi-
natory the two analytical approximate solutions, we establish
a new approximate analytical solution to the original mixed-
parity nonlinear oscillators over the entire frequency spec-
trum. For illustrative purposes and to validate applicability of
the new method, two examples are presented to demonstrate
the fast-convergent, highly accurate and great simplicity of
the new analytical approximation approach over the entire
amplitude range.

II. ODD NONLINEAR OSCILLATING SYSTEMS
Before establishing a generalization to the said problem, the
existing approach of Wu et al. [22] is presented below. This
method is only applicable only for odd nonlinearity. Consider
an oscillation system governed by

d2x
dt2
+ u (x) = 0, x (0) = H ,

dx
dt
(0) = 0 (1)

where the nonlinear function u (x) satisfies u (−x) = u (x).
Introducing a potential energy function V (x) =

∫
u (x) dx,

a local center of energy function or a local minimum may
exist at x = x0.Without loss of generality, it is well justified
to assume x0 = 0. Thus, the system will oscillate in the

interval [−H ,H ] where H is an appropriate limit to ensure
a local minimum at x0 = 0.
Further by taking a coordinate transformation, τ = ωt ,

equation (1) becomes

ω2x ′′ + u (x) = 0, x (0) = H , x ′ (0) = 0 (2)

where x ′ represents the derivative of the variable τ . The new
variable is chosen such that the solution x (τ ) to (2) is a
periodic function for τ with period 2π , ω is the oscillation
frequency, and the frequency and periodic solutions depend
on the amplitude H .
A perturbation solution is obtained by introducing an

undetermined linear term µx. Hence, equation (2) can be
expressed as

ω2x ′′ + µx = ε [µx − u (x)] (3)

It is noted that (3) can be reduced to the original nonlinear
differential equation if ε = 1. Its approximate solution can
be expanded as

Xm (τ ) =
∑m

k=0
εkxk (τ ), �2

m = µ+
∑m

k=1
εkµk (4)

where Xm (τ ) and �m are the mth level approximations to x
and ω. The kth terms xk (τ ) in the corresponding expansions
is 2π -periodic with τ and their initial conditions are

x0 (0) = H , x ′0 (0) = 0,

xk (0) = 0, x ′k (0) = 0, (k = 1, 2, · · · ,m) (5)

Solving a series of linear equations, we may obtain Xm (τ )
and �m which are dependent on an arbitrary parameter µ, as

Xm (τ ) = Xm (τ ;µ) , �2
m = �

2
m (µ) (6)

A large number of strategies can be applied to select a good
value for µ [19]–[22]. To have an analytical formular as
simple as possible, Wu et al. [22] suggested∑m

k=1
µk = 0. (7)

With increasing m, a more accurate µ can be obtained,
however, the following approximate solutions involving µ
become more complicated. For simplicity, m = 1 and
m = 2 are assigned. The corresponding first and second level
approximate solutions are

�1 (A) =
√
µ (H), X1 (t) = x0 (τ )+ x1 (τ ) ,

τ = �1 (H) t, µ (H) = µI (H) , (8)

and

�2 (H) =
√
µ (H), X2 (t) = x0 (τ )+ x1 (τ )+ x2 (τ ) ,

τ = �2 (H) t, µ (H) = µ (H) (9)

where

x0 (τ )=H cosτ,

ρ2n−1 (H)=
4
π

∫ π/2

0
u (x0 (τ ))cos [(2n− 1) τ ] dτ,

n = 1, 2, · · · ,
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x1 (τ ) =
1
µ

∑∞

n=2

ρ2n−1

(2n−1)2−1
{cos[(2n−1)τ ]−cosτ} ,

ξ2n−1 (H) =
4
π

∫ π/2

0
ux (x0(τ )) µx1(τ )cos [(2n−1) τ] dτ,

n = 1, 2, · · · ,

x2 (τ ) =
1
µ

∑∞

n=2

{[
ρ2n−1+

ξ2n−1

µ
−

(
ρ1

Hµ

)
(
(2n− 1)2 ρ2n−1
(2n− 1)2 − 1

)][
1

(2n− 1)2 − 1

]}
×{cos [(2n− 1) τ ]− cosτ } ,

µI (A) =
ρ1

H
, µII (H) =

1
2A

×

{
ρ1+

√
ρ21+4Hξ1+4ρ1

[∑∞

n=2

ρ2n−1

(2n−1)2−1

]}
(10)

It is noted that to obtain an analytical approximation accord-
ing to the solution procedure above, the coefficients ρ2n−1,
ξ2n−1(n = 1, 2, · · · ) for the case of u (−x) = −u (x)
should be determined. In fact, these Fourier coefficients can
be neglected for n > 3 because the series approach to zero
with increasing n.

III. A NEW AND GENERALIZED APPROACH TO MIXED-
PARITY NONLINEAR OSCILLATING SYSTEMS
Assuming a system governed by (1) to oscillate in an interval
[−B,H ], where the elastic restoring force u (x) is a mixed-
parity function, i.e. u (−x) 6= u (x), we have potential energy
at the boundaries as

V (−B) = V (H) (11)

Following a similar approach [28], [29], the system (1) can
be split into two systems, as

d2x
dt2
+ lu (x) = 0, x (0) = H ,

dx
dt
(0) = 0 (12a)

and

d2x
dt2
+ ru (x) = 0, x (0) = B,

dx
dt
(0) = 0 (12b)

where

lu (x) =

{
u (x) if x ≥ 0,
−u (−x) if x< 0,

(13a)

ru (x) =

{
−u (−x) if x ≥ 0,
u (x) if x< 0.

(13b)

Accordingly, two odd nonlinear oscillation systems as gov-
erned by (12) and (13) will be further analyzed. The corre-
sponding Fourier coefficients of the two systems are

ρ(2n−1)lu (H) , ξ(2n−1)lu (H) ,

ρ(2n−1)ru (B) , ξ(2n−1)ru (B) , n = 1, 2, · · · (14)

Based on (14), the analytical approximations to (12a-b)
can be denoted by �1lu (H), X1lu (t), �2lu (H), X2lu (t) , and

�1ru (B), X1ru (t), �2ru (B), X2ru (t), respectively. Here, it is
very important to establish the relation of analytical approxi-
mations for (1) and the analytical approximations for (12a-b).
Fortunately, the relation of the exact solutions of (12a)
and (12b), respectively, to the exact solution of (1) provides a
definite guide for establishing the analytical approximation.
Hence, the exact frequency ωe (H) and the periodic solu-

tion xe (t) to (1) may be obtained by combinatory piecing of
the two solutions above [13], [14]

ωe (H) =
2π
TeH

, Te (H) =
Telu (H)

2
+
Teru (B)

2
(15a)

and

xe (t)

=


xelu (t) for 0 ≤ t ≤

Telu (H)
4

xeru

(
t−
Telu(H)

4
+
Teru(B)

4

)
for

Telu(H)
4
≤ t≤Tlru1

xelu

(
t+
Telu(H)

2
−
Teru(B)

2

)
for Tlru1≤ t≤Tlru2

(15b)

where Tlru1 =
Telu(H)

4 +
Teru(B)

2 ,Tlru2 =
Telu(H)

2 +
Teru(B)

2 ,Telu (H) = 2π
ωelu(H)

, and Teru (B) = 2π
ωeru(B)

.
Applying the approximate analytical solutions to (12a-b)

and the formula in (15a) and (15b), the corresponding kth
(k = 1, 2) approximation can be obtained as follows

�m (A)=
2π

Tm (H)
, Tm (H)=

Tmlu (H)
2
+
Tmru (B)

2
(16a)

and

Xm(t)

=


Xmru(t) for 0 ≤ t ≤

Tmru (H)
4

Xmlu

(
t−
Tmlu(H)

4
+
Tmru(B)

4

)
for

Tmlu(H)
4
≤ t≤Tmlu1

Xmlu

(
t+
Tmlu(H)

2
−
Tmru(B)

2

)
for Tmlu1≤ t≤Tmlu2

(16b)

where Tmlu1 =
Tmlu(H)

4 +
Tmru(B)

2 ,Tmlu2 =
Tmlu(H)

2 +
Tmru(B)

2 ,
Tmlu (H) = 2π

�mlu(H)
, and Tmru (B) = 2π

�mru(B)
.

In what follows two examples will be presented to ver-
ify that (16a-b) with k = 2 can provide very accurate
and excellent analytical approximations to frequency and the
corresponding periodic solution of mixed-parity nonlinear
oscillators. We will verify that the approach and solution
methodology are valid for the systems with very large ampli-
tude and strong nonlinearities.

IV. ILLUSTRATIVE EXAMPLS
In this section, an example related to the ear membrane vibra-
tion of an organism and another a discontinuous vibration
system will be used to illustrate the accuracy of the present
method. We will show through that the method established
in the prior section is able to provide excellent analytical
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approximations to the frequency and the corresponding peri-
odic solutions for strong mixed-parity nonlinear oscillators
with small, as well as large, oscillation amplitudes.
Example 1. Consider a quadratic nonlinear oscillator gov-

erned by [14], [21]

d2x
dt2
+ x + x2 = 0, x (0) = H ,

dx
dt

(0) = 0 (17)

For this problem, t he corresponding potential energy func-
tion is

V (x) =
x2

2
+
x3

3
(18)

By solving (11), we have

B =

[
(3+ 2H)−

√
9− 12H − 12H2

]
4

(19)

According to (14), the corresponding Fourier coefficients
in this example are obtained as follows

ρ1lu = H +
8H2

3π
, ρ3lu =

8H2

15π
, ρ5lu = −

8H2

105π
,

ρ1ru = B−
8B2

3π
ρ3ru = −

8B2

15π
, ρ5ru =

8H2

105π
,

ξ1lu = −
4H2(736H + 175π )

11025π2 ,

ξ3lu = −
H2 (20096H + 6615π)

99225π2 ,

ξ5lu =
H2(17792H − 693π )

218295π2 ,

ξ1ru =
4B2(−736B+ 175π )

11025π2 ,

ξ3ru = −
B2 (20096B− 6615π)

99225π2 ,

ξ5ru =
B2(17792B+ 693π )

218295π2 (20)

Two analytical approximations to the exact frequency and
periodic solution to (17) will be obtained. For the first oscil-
lator in (12a) with restoring force lu (x), they are

�1lu (H) =
√
1+ 8H

/
3π

X1lu (t) =
(
H −

4H2

63πϕI

)
cosτ +

H2

15πϕI
cos3τ

−
H2

315πϕI
cos5τ, τ=�1lu (H) t (21a)

and

�2lu (H) =
√
ϕII (H)

X2lu(t) = Cos[τ ](H +
80779H3

496125π2ϕ2II

+
4H2

63πϕ2II
−

8H2

63πϕII
)

+Cos[5τ ](
82H3

6615π2ϕ2II

+
H2

315πϕ2II
−

2H2

315πϕII
)

+Cos[3τ ](−
1651H3

9450π2ϕ2II

−
H2

15πϕ2II
+

2H2

15πϕII
)

−
121H3Cos[7τ ]

198450π2ϕ2II

+
H3Cos[9τ ]

9450π2ϕ2II

−
H3Cos[11τ ]

330750π2ϕ2II

,

τ = �2lu (H) t (21b)

where

ϕI= 1+
8H
3π
,

ϕII=
840H+315π+

√
3
√
222272H2+176400Hπ+33075π2

630π

For the second oscillator in (12b) with restoring force
ru (x), they are

�1ru (B) =
√
1− 8B

/
3π,

X1ru (t) =
(
B+

4B2

63πϕI

)
cosτ −

B2

15πϕI
cos3τ

+
B

315πϕI
cos5τ, τ = �1ru (B) t (22a)

and

�2ru (B) =
√
ϕII (B),

X2ru(t) = Cos[3τ ]

(
−

1651B3

9450π2ϕ2II

+
B2

15πϕ2II
−

2B2

15πϕII

)

+Cos[5τ ]

(
82B3

6615π2ϕ2II

−
B2

315πϕ2II
+

2B2

315πϕII

)

+Cos[τ ]

(
B+

80779B3

496125π2ϕ2II

−
4B2

63πϕ2II
+

8B2

63πϕII

)

−
121B3Cos [7τ ]

198450π2ϕ2II

+
B3Cos [9τ ]

9450π2ϕ2II

−
B3Cos [11τ ]

330750π2ϕ2II

,

τ = �2ru (B) t (22b)

where

ϕI = 1−
8B
3π
,

ϕII = (−840B+ 315π

+
√
3
√
222272B2−176400Bπ+33075π2

) 1
630π

.

Applying the L-P perturbation method, we obtain the
second-order analytical approximate frequency ωLP (H) and
the periodic solution xLP (t) as follows

ωLP(H ) = 1− 5H2/12 (23a)

and

xLP (t) = H cos [ωLP2 (H) t]

+H2
{
−
1
2
+
1
3
cos[ωLP2(H)t]+

1
6
cos[2ωLP2(H) t]

}
(23b)

The exact frequency ωe (H) is

ωe (H) =
2π

Te (H)
(24)
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TABLE 1. Comparison of approximate frequency with exact frequency
solution.

where

Te (H) =
∫ π

2

0

2dt√
1+ [2H(1+ sin t+ sin 2t)]

[3(1+ sin t)]

+

∫ π
2

0

2dt√
1− [2B(1+ sin t+ sin 2t)]

[3(1+ sin t)]

and B is given, in terms of H , in (19).
For this oscillator, the oscillation amplitude H should sat-

isfy H < 0.5, when H = 0.5, and (17) has a homoclinic
orbit with period +∞. The exact frequency ωe(24) and the
ratio of approximate ones �1(16a), �2(16a), ωLP(23a) to
ωe(24) are listed in Table 1. It is observed that (13a) give
excellent approximate periods for both small and large oscil-
lation amplitude H except when H approaches to 0.5. This
is because at H = 0.5, it correspondence to an oscillat-
ing system with an infinite oscillation period and hence the
assumption of periodic oscillation is invalid and the solution
expressions thus derived becomes inapplicable.

Table 1 indicates that (16a) are very accurate. The second
approximations provide the most excellent frequencies with
respect to the exact one for whole range of oscillation ampli-
tudes.

A comparison of analytical approximate solutions
X1(16b),X2(16b), and xLP (t) (23b), with respect to the exact
periodic solutions xe (t) obtained by direct numerical integra-
tion of (17) is presented in Figs, 1, 2 and 3 for three different
amplitudes of oscillationH = 0.4,H = 0.49 andH = 0.494.
These figures demonstrate that the proposed approximate

periodic solutions in (16b) are more accurate than the per-
turbation approximation in (23b) for all permitted oscilla-
tion amplitude. Furthermore, the second-order approximation
provides better accuracy of approximate analytical periodic
solutions for both small and large amplitude of oscillations.

FIGURE 1. Periodic solutions H= 0.1 in example 1.

FIGURE 2. Periodic solutions H= 0.4 in example 1.

FIGURE 3. Periodic solutions H= 0.494 in example 1.

Example 2. Consider the following nonlinear
oscillator [32], [33]

d2x
dt2
+ u (x) = 0, x (0) = H ,

dx
dt
= 0. (25)

where u (x) =

{
x3 if x ≥ 0,
−x2 if x< 0.

For this problem, we have

V (x) =


x4

4
if x ≥ 0,

−
x3

3
if x< 0.

(26)
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Furthermore, one can obtain

B =
3

√
3H4

4
. (27)

The corresponding Fourier coefficients for this example
are as follows

ρ1lu =
3H3

4
, ρ3lu =

H3

4
, ρ5lu = 0, ξ1lu =

3H5

64
,

ξ3lu =
3H5

128
, ξ5lu =

3H5

128
, ρ1ru =

8B2

3π
, ρ3ru=

8B2

15π
,

ρ5ru =
8B2

105π
, ξ1ru = −

2944B3

11025π2 , ξ3ru =
20096B3

99225π2 ,

ξ5ru =
17792B3

218295π2 (28)

Substituting (28) into (8) and (9) leads to two analytical
approximations to the exact period and periodic solution as
governed by (25). For the first oscillator with restoring force
lu (x), they are
Two analytical approximations to the exact frequency and

periodic solution to (25) will be obtained. For the first oscil-
lator in (12a) with restoring force lu (x), they are

�1lu (H) =
√
3H
/
2,X1lu (t) =

(
H −

H3

32ϕI

)
cosτ

+
H3

32ϕI
cos3τ, τ = �1lu (H) t (29a)

and

�2lu (H) =
√
ϕII (H)

X2lu(t) = Cos[τ ](H +
23H5

1024ϕ2II
−

H3

16ϕII
)

+Cos[3τ ](−
3H5

128ϕ2II
+

H3

16ϕII
)+

H5Cos[5τ ]

1024ϕ2II
,

τ = �2lu (H) t (29b)

where

ϕI =
3H2

4
, ϕII =

(
6+
√
30
)
H

2

16

For the second oscillator with restoring force ru (x), they
are

�1ru (B) = 2
√
2B
/
(3π)

X1ru (t) =
(
B−

4B2

63πϕI

)
cosτ +

B2

15πϕI
cos3τ

−
B2

315πϕI
cos5τ, τ=�1ru (B) t (30a)

and

�2ru (B) =
√
ϕII (B)

X2ru(t) = Cos[τ ](B+
80779B3

496125π2ϕ2II

−
8B2

63πϕII
)

FIGURE 4. Periodic solutions for H= 0.1 in Example 2.

FIGURE 5. Periodic solutions H = 1 in example 2.

+Cos[5τ ](
82B3

6615π2ϕ2II

−
2B2

315πϕII
)

+Cos[3τ ](−
1651B3

9450π2ϕ2II

+
2B2

15πϕII
)

−
121B3Cos[7τ ]

198450π2ϕ2II

+
B3Cos[9τ ]

9450π2ϕ2II

−
B3Cos[11τ ]

330750π2ϕ2II

,

τ = �2ru (B) t (30b)

where

ϕI =
8A2

3π
, ϕII =

4B
(
105+

√
10419

)
315π

For this example, the exact frequency ωe (H) is

ωe (H) =
2π

Te (H)
(31)

where

Te (H)=
2
H

∫ π
2

0

√
2

1+sin2 t
dt+

2
√
B

∫ π
2

0

√
3 (1+sin t)

2
(
1+sin t+sin2 t

)
dt ≈

3.7081494
H

+
3.4346307
√
B

,

and B is given, in terms of H , in (27).
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FIGURE 6. Periodic solutions H= 10 in example 2.

TABLE 2. comparison of approximate frequencies with exact frequency.

The exact frequency ωe (H) (31) and the ratio of approx-
imate solutions �1(16a), �2(16a) to ωe (H) are listed in
Table 2.

It is observed from Table 2 that (16a) is valid for the whole
range of amplitude H . Furthermore, we have

lim
H−>0+

�1

ωe
= 1.0222049, lim

H−>0+

�2

ωe
= 0.9996911,

lim
H−>0+∞

�1

ωe
= 1.0072554, lim

H−>0+∞

�2

ωe
= 1.0002124.

(32)

Hence, we conclude that the proposed method is able to
give excellent approximate frequency solutions for the whole
range of oscillation amplitude.

A comparison of analytical approximate solutions
X1 (16b) and X2(16b), with respect to the exact periodic solu-
tions xe (t) obtained by direct numerical integration of (25) is
presented in Figs, 4, 5 and 6 for three different amplitudes of
oscillation H = 0.1, H = 1 and H = 10.

These figures show that both the first-order analytical
approximations and the second-order approximations provide
excellent solutions with respect to the exact periodic solutions
for small as well as large amplitude of oscillation.

V. CONCLUSION
In this study, we proposed a generalized and enhanced L–P
perturbation method for solving strong nonlinear oscillation
systems with mixed-parity nonlinearity. This new solution
methodology has extended the validity range compared to the
original method. Comparing with the existing methods, this
present solutionmethodolody by introducing singular nonlin-
ear system has the characteristics of simple form and it yields
very accurate and physically insightful solutions. Using two
practical examples of nonlinear oscillators, we demonstrated
that the proposed approach is capable of establishing highly
accurate approximate analytical frequency and periodic solu-
tions for small as well as large amplitude of oscillation, and
to a range as wide as the infinity limits at both ends.

Furthermore, the proposed method is capable of establish-
ing solutions with general boundary conditions including an
initial ývelocity. With both initial displacement and initial
velocity available, the initial velocity can be transformed
to a level of zero by system transformation of energy con-
servation. The proposed method can be further extended to
an oscillator with non-polynomial nonlinear restoring force,
however, the integral expression will be more symbolically
lengthy, yet solvable using symbolic mathematics, for solving
the harmonic oscillators.

With reference to the improved perturbation principle [36],
solutions to the transient response of highly nonlinear
damped vibration systems will be presented in a future work.
The modified L-P method will be extended to establish accu-
rate steady-state periodic solutions of nonlinearly damped
vibration systems.

REFERENCES
[1] Y. K. Chembo, L. Larger, and P. Colet, ‘‘Nonlinear dynamics and spec-

tral stability of optoelectronic microwave oscillators,’’ IEEE J. Quantum
Electron., vol. 44, no. 9, pp. 858–866, Sep. 2008.

[2] J. J. Zhang and J. P. Yao, ‘‘Parity-time-symmetric optoelectronic oscilla-
tor,’’ Sci. Adv., vol. 4, no. 6, 2018, Art. no. 6782.

[3] Y. K. Chembo, D. Brunner, M. Jacquot, and L. Larger, ‘‘Optoelectronic
oscillators with time-delayed feedback,’’ Rev. Modern Phys., vol. 91, no. 3,
Sep. 2019, Art. no. 035006.

[4] T. F. Hao, ‘‘Recent advances in optoelectronic oscillators,’’ Adv. Photon.,
vol. 2, no. 4, 2020, Art. no. 044001.

[5] A. Demir, A. Mehrota, and J. Roychowdhury, ‘‘Phase noise in oscillators:
A unifying theory and numerical methods for characterization,’’ IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 47, no. 5, pp. 655–674, May 2000.

[6] Parwani, and R. Rajesh, ‘‘An approximate expression for the large angle
period of a simple pendulum,’’ Eur. J. Phys., vol. 25, no. 1, pp. 37–40,
2004.

[7] R. B. Kidd and S. L. Fogg, ‘‘A simple formula for the large-angle pendulum
period,’’ Phys. Teach., vol. 40, pp. 3–81, Dec. 2002.

[8] A. Beléndez, ‘‘Analytical approximations for the period of a nonlinear
pendulum,’’ Eur. J. Phys., vol. 27, no. 3, p. 539, 2006.

[9] W. P. Sun, B. S. Wu, and C. W. Lim, ‘‘Approximate analytical solutions
for oscillation of a mass attached to a stretched elastic wire,’’ J. Sound
Vib., vol. 300, nos. 3–5, pp. 1042–1047, Mar. 2007.

214900 VOLUME 8, 2020



W. P. Sun, C. W. Lim: Generalization of L-P Perturbation Method to Strongly Mixed-Parity Nonlinear Oscillators

[10] W. P. Sun and B. S. Wu, ‘‘Large amplitude free vibrations of a mass
grounded by linear and nonlinear springs in series,’’ J. Sound Vib., vol. 314,
nos. 3–5, pp. 474–480, Jul. 2008.

[11] H. P. W. Gottlieb, ‘‘On the harmonic balance method for mixed-parity non-
linear oscillators,’’ J. Sound Vib., vol. 152, no. 1, pp. 189–191, Jan. 1992.

[12] M. Belhaq and F. Lakrad, ‘‘On the elliptic harmonic balance method
for mixed parity non-linear oscillators,’’ J. Sound Vib., vol. 233, no. 5,
pp. 935–937, Jun. 2000.

[13] C. W. Lim, S. K. Lai, B. S. Wu, W. P. Sun, Y. Yang, and C. Wang,
‘‘Application of a modified Lindstedt–Poincaré method in coupled TDOF
systems with quadratic nonlinearity and a constant external excitation,’’
Arch. Appl. Mech., vol. 79, no. 5, pp. 411–431, May 2009.

[14] J. D. Cole, Perturbation Methods in Applied Mathematics. Waltham, MA,
USA: Blaudell, 1968.

[15] A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations. New York, NY,
USA: Wiley, 1979.

[16] P. Hagedorn, Nonlinear Oscillations, Oxford, U.K.: Clarendon, 1988.
[17] R. E. Mickens,Oscillations in Planar Dynamic Systems. Singapore: World

Scientific, 1996.
[18] Y. K. Cheung, S. H. Chen, and S. L. Lau, ‘‘A modified lindstedt-Poincaré

method for certain strongly non-linear oscillators,’’ Int. J. Non-Linear
Mech., vol. 26, nos. 3–4, pp. 367–378, Jan. 1991.

[19] M. Senator and C. N. Bapat, ‘‘A perturbation technique that works even
when the non-linearity is not small,’’ J. Sound Vib., vol. 164, no. 1,
pp. 1–27, Jun. 1993.

[20] P. Amore and A. Aranda, ‘‘Presenting a new method for the solution
of nonlinear problems,’’ Phys. Lett. A, vol. 316, nos. 3–4, pp. 218–225,
Sep. 2003.

[21] P. Amore and A. Aranda, ‘‘Improved Lindstedt-Poincaré method for the
solution of nonlinear problems,’’ J. Sound Vib., vol. 283, pp. 1115–1136,
2005.

[22] B. S. Wu, C. W. Lim, and P. S. Li, ‘‘A generalization of the senator–bapat
method for certain strongly nonlinear oscillators,’’ Phys. Lett. A, vol. 341,
nos. 1–4, pp. 164–169, Jun. 2005.

[23] W. P. Sun, B. S. Wu, and C. W. Lim, ‘‘A modified Lindstedt–Poincaré
method for strongly mixed-parity nonlinear oscillators,’’ J. Comput. Non-
linear Dyn., vol. 2, no. 2, pp. 141–145, Apr. 2007.

[24] S.-J. Liao, ‘‘An analytic approximate approach for free oscillations of self-
excited systems,’’ Int. J. Non-Linear Mech., vol. 39, no. 2, pp. 271–280,
Mar. 2004.

[25] J. H. He, ‘‘Homotopy perturbation method: A new nonlinear analytical
technique,’’ Appl. Math. Comput., vol. 135, no. 1, pp. 7–73, 2003.

[26] M. Gärgöze and H. Erol, ‘‘Dynamic response of a viscously damped
cantilever with a viscous end condition,’’ J. Sound Vib., vol. 298, nos. 1–2,
pp. 132–153, Nov. 2006.

[27] H. M. Sedighi, K. H. Shirazi, and A. Noghrehabadi, ‘‘Application of
recent powerful analytical approaches on the non-linear vibration of can-
tilever beams,’’ Int. J. Nonlinear Sci. Numer. Simul., vol. 13, nos. 7–8,
pp. 487–494, Jan. 2012.

[28] H. M. Sedighi and F. Daneshmand, ‘‘Nonlinear transversely vibrating
beams by the homotopy perturbation method with an auxiliary term,’’
J. Appl. Comput. Mech., vol. 1, no. 1, pp. 1–9, 2014.

[29] C. Kattiyapirak andW.Khovidhungij, ‘‘An approximate analytical solution
of the two-dimensional KdV-burgers equation by the homotopy analysis
method,’’ in Proc. Chin. Control Decis. Conf. (CCDC), Shenyang, China,
Jun. 2018, pp. 3152–3154.

[30] N. Fatima, ‘‘New homotopy perturbation method for solving nonlin-
ear differential equations and Fisher type equation,’’ in Proc. IEEE Int.
Conf. Power, Control, Signals Instrum. Eng. (ICPCSI), Chennai, India,
Sep. 2017, pp. 1669–1673.

[31] Y. S. Hamed, H. Alotaibi, and E. R. El-Zahar, ‘‘Nonlinear vibrations
analysis and dynamic responses of a vertical conveyor system con-
trolled by a proportional derivative controller,’’ IEEE Access, vol. 8,
pp. 119082–119093, 2020.

[32] R. E. Mickens, ‘‘Construction of a perturbation solution to a mixed parity
system that satisfies the correct initial conditions,’’ J. Sound Vib., vol. 167,
no. 3, pp. 564–567, Nov. 1993.

[33] B. S. Wu and C. W. Lim, ‘‘Large amplitude non-linear oscillations of a
general conservative system,’’ Int. J. Non-Linear Mech., vol. 39, no. 5,
pp. 859–870, Jul. 2004.

[34] W. P. Sun and B. S. Wu, ‘‘Accurate analytical approximate solutions to
general strong nonlinear oscillators,’’ Nonlinear Dyn., vol. 51, nos. 1–2,
pp. 277–287, Oct. 2007.

[35] Y. Zhou, B. Wu, C. W. Lim, and W. Sun, ‘‘Analytical approximations
to primary resonance response of harmonically forced oscillators with
strongly general nonlinearity,’’ Appl. Math. Model., vol. 87, pp. 534–545,
Nov. 2020.

[36] B. S. Wu andW. P. Sun, ‘‘Construction of approximate analytical solutions
to strongly nonlinear damped oscillators,’’Arch. Appl.Mech., vol. 81, no. 8,
pp. 1017–1030, Aug. 2011.

W. P. SUN was born in Changchun, China,
in 1978. He received the B.S. degree in theoretical
and applied mechanics, the M.S. degree in fluid
mechanics, and the Ph.D. degree in engineering
mathematics from Jilin University, China, in 2001,
2004, and 2007, respectively.

From 2008 to 2015, he was an Associate Profes-
sor with the School of Mathematics, Jilin Univer-
sity, and later he was promoted to a Full Professor
in 2016. His research interests include the devel-

opment of analytical approximate methods in engineering vibration, funda-
mentals of vibration control of structures, among others. He has published
more than 20 technical articles with a total of more than 500 independent
citations.

Dr. Sun received the Excellent Postgraduate Scholarship of Jilin Uni-
versity Award (2001–2004) and (2004–2007). He is a Reviewer of various
international journals, including Physics Letters A, Journal of Sound and
Vibration, Archive of Applied Mechanics, and so on.

C. W. LIM was born in Batu Pahat Johor,
Malaysia, in 1965. He received the B.Eng. degree
in mechanical engineering, specializing in aero-
nautical engineering, from the University of Tech-
nology of Malaysia, in 1989, and the M.Eng.
and Ph.D. degrees in mechanical engineering
from the National University of Singapore and
Nanynag Technological University, in 1991 and
1995, respectively.

From 1995 to 2000, he held research positions
at The University of Queensland and University of Hong Kong. In 2000,
he joined the City University of Hong Kong as an Assistant Professor, and
was later promoted to Associate Professor in 2003 and a Full Professor
in 2013. He is the author of one book, more than 300 research articles,
three patents, and one software invention. His research interests include
vibration of plates and shells, nonlinear dynamical systems, nanomechanics,
piezoelectric structures, metamaterials, thermo-acoustics, and symplectic
elasticity.

Dr. Lim is a Fellow of the ASME, ASCE, EMI, and HKIE. He holds
editorial positions for more than ten research journals. He is a Joint-Editor
for JoMMS; the Managing Editor for JVET; the Subject Editor for AMM,
an Associate Editor for IJBC, AAMM; the Contributing Editor for MAMS;
and editorial board member for more than ten research journals. He was
recently awarded the prestigious 2020 JN ReddyMedal as a recognition ‘‘for
significant and original contributions to vibration of plates and shells, smart
piezoelectric structures, nanomechanics, and symplectic elasticity.’’

VOLUME 8, 2020 214901


