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ABSTRACT Accurate prediction of software energy consumption is of great significance for the sustainable
development of the environment. In order to overcome the limitations of a single prediction method and
further improve the prediction accuracy, a combined prediction energy model of adaboost algorithm and
RBF (radial basis function) neural network at software architecture level is proposed. Firstly, three kinds
of energy prediction models are established by polynomial regression, support vector machine and neural
network respectively. Secondly, the RBF neural network is used to nonlinear combine the predicted values of
the above three models. Finally, RBF integrated by adaboost algorithm is used as high-precision prediction
of energy consumption. Experimental results show that the prediction accuracy of the combined prediction
model is higher than that of the single model.

INDEX TERMS Green computing, energy consumption prediction, Adaboost algorithm, RBF neural
network, combined prediction model.

I. INTRODUCTION
ICT (information and communication technology) industry is
an important driving force for social development and world
economic growth in the 21st century. Its energy consumption
accounts for 10% of the total global power consumption [1];
its total carbon emissions reach 2% ∼ 2.5% of the total
global carbon emissions, which is more obvious in developed
countries, reaching 10% [2]. According to a research report
from the European Union, if the temperature rise is to be
controlled below 2◦C in 2020, the carbon emission must be
reduced by 15%-30% [3]. With the continuous investment in
ICT industry in the world, its scale will continue to grow, and
its energy consumption will also continue to grow. In order
to promote the sustainable development of ICT industry,
green computing [4], [5] has become the consensus of global
researchers. To implement green computing, the first task is
to measure energy consumption.

To measure the energy consumption, it is necessary to
understand the execution process of the software running in
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the computer. In order to execute the software in computer
system, the corresponding instructions (data processing and
transmission instructions, program control instructions, input
and output instructions, etc.) will be converted first, while
the underlying hardware will change the state of different
circuits to achieve the corresponding functions, and then
generate different energy consumption. Based on this, from
the perspective of software, the main function of software
is to complete its corresponding functions, and in this pro-
cess, it will generate additional ‘‘by-products’’ called energy
consumption. From the perspective of energy consumption,
the energy consumption is generated by hardware, and the
amount is determined by software. In order to better under-
stand, manage and control the energy of computer system,
the producers, researchers and designers have carried out
researches from many aspects. For example, at the bottom
of the hardware, saving energy are conducted by improving
the manufacturing process, optimizing the circuit structure.
At instruction level, the instructions optimized by com-
piler, instruction conversion and rearrangement, and loop
structure optimization [9]–[13] are used for energy man-
agement; in the source code layer, code expression change,
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data representation and program structure rearrangement are
optimized, and redundant calculation is eliminated, and data
storage space are compressed [14]–[20]; at process level,
the process level energy management [21]–[23] are used; at
architecture layer, macro-modeling, system structure selec-
tion, transformation and simplification [24]–[26] are used.

To manage and optimize the power consumption of soft-
ware, the measurement and estimation of power consump-
tion is the first work. At present, this work is mainly
carried out at several levels. At the hardware level, the power
consumption is measured by power meter and power sen-
sor [6]–[8]; at the instruction level, the energy consumption
is mainly obtained by statistical method, that is, the energy
of software is obtained by accumulating the energy of each
instruction or each kind of instructions, instruction pairs,
pipeline or cache and other hardware structures during the
execution [9]–[13]; at the source code level, the energy con-
sumption of single line code is mainly obtained by linear
regression, and then the energy consumption of software
is obtained by accumulating the energy of each single line
code [14]–[20]; at the process level, the relationship between
the resource utilization rate and energy of the process is
established, and then, it accumulates time to obtain energy
consumption of process [21]–[23]; at the architecture level,
the relationship between software high-level features and
energy consumption is explored to predict software energy
consumption [24]–[26]. Generally, software can be consid-
ered as a complex system, and then its architecture can be
represented by complex network to study different charac-
teristics of software [28]–[30]. Li et al. [27] have studied
the power consumption model at architecture level from this
point of view. Inspired by the above researches and related
theories of power model, this article studies the accuracy of
power model of complex network representation at software
architecture level.

Although there has power model at architecture level,
the prediction accuracy is still not ideal. Therefore it is nec-
essary to do further research on improving the prediction
accuracy. Therefore, this article proposes a combined predic-
tion method based on adaboost idea and RBF (radial basis
function) neural network. First of all, three single prediction
models are optimized, including polynomial regression pre-
diction model, SVR (support vector regression) prediction
model and BP (back propagation neural network); then, RBF
is used to optimize the prediction values of three single
prediction models. Finally, according to the prediction results
of each single prediction model and adaboost RBF algorithm,
the weight coefficient of three single predictors is updated
through multiple iterations; after getting the best weight coef-
ficient, the output values of the three single predictors are
fused by RBF and the best weight coefficient to get the
high-precision prediction values at the architecture level. The
experimental results show that the Root Mean Square Error
of adaboost RBF power consumption model is 0.9362, which
shows that our model is reasonable and effective. Thus our
contributions in this article are:

(1) This article presents an architecture level software
power model of adaboost RBF, which can estimate the
software power consumption with small error and meet
the requirements of high-level software power consumption
modeling.

(2) We verify the adaboost RBF power model on the actual
computer platform, and the results show that the model is
reasonable and effective.

(3) Experiments show that software power consumption
can be analyzed from a high level, which is of great signif-
icance to the architecture design of low-power software.

II. RELATED WORK
Researchers and scientists have proposed many software
power models to achieve the energy. These methods are
working at different levels, therefore, they can be divided into
different categories as shown in table 1. The following is the
brief introduction of these approaches.

A. DEVICE-BASED LEVEL
In this level, power are usually got by power meters [6],
special designed power devices [7] and hardware with inte-
grated power sensors [8]. The direct way to get power is using
power meters, which uses the relationship between power
consumption and voltage and current in Physics. This way is
simple and it can give researchers the intuitive understanding
the power dissipation of devices or the full system, but it is not
convenient to control the process ofmeasurement or difficulty
to place the meter in space-limited device. Therefore, the
integrated power sensor is invented to get the power more
convenient and can be integrated into the device to monitor
the power consumed and obtain power consumption data
without additional power meter. Although we can get power
information accurately by hardware, this method requires
additional power meter and special operation knowledge to
ordinary users.

B. INSTRUCTION LEVEL
The essence of software execution is instruction execution.
Based on this simple idea, Tiwari et al. [9] has proposed
the instruction-level model to get the power and gives the
concept of software power consumption firstly. He points
that total power consumption Ep of the program p has three
parts, which is the base power cost of instruction, power con-
sumption caused by circuit state switch between instructions,
and the power consumption caused by other effects between
instructions. Therefore, the theoretical basis of this power
model can be expressed as equation (1).

Ep =
∑

m
Bm × Nm +

∑
m,n

Om,n × Nm,n +
∑

q
Eq (1)

In (1), p is the program; Ep is the energy consumption
of program p; Bm and Nm are respectively the base power
cost of instruction and execution time of the instruction m;
Om,n and Nm,n respectively represent the power consumption
caused by circuit state switch between instruction m and
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TABLE 1. Different approaches of energy measurement.

instruction n and the number of occurrences in the program;
Eq is the power consumption in other case between instruc-
tions, such as pipeline stalls, Cache miss, etc., which are
determined by corresponding hardware circuit. Especially,
Nm and Nm,n are determined by program execution path
and can be obtained by dynamic analysis of the program.
Equation (1) points out the energy composition of instruction
level and defines the direction of instruction level energy con-
sumption modeling. It is applied to two types of processors
(intel 486dx2 and Fujitsu sparse 934). Based on equation (1),
Bazzaz et al. [10], Tan et al. [11], Lee and Ro [12] and
Ashouri et al. [13] have proposed fine-grained approach for
power consumption analysis and prediction, and also put
forward new methods for low power applications.

C. SOURCE CODE LEVEL
Previous studies at source code level overlook cache storage
analysis and overheads due to concurrent program execution
at runtime. From this view, Ahmad [14] has put forward
an enhanced static-code-analysis-based lightweight energy
estimation framework that has considered overheads asso-
ciated with the application runtime execution environment,
cache storage analysis, and the application inactivity period
for energy estimation of applications. Ralph et al. [15] has
showed that reducing the energy consumption of software
systems though optimizations techniques such as code-
change can efficiently improve the energy efficiency of soft-
ware systems. Then, they propose joint code modifications
which can produce a greater effect compared with that of
accumulatingmodification operators with hard constraint and
approximation. Shan et al. [16] has studied the offloading
decision problem by code receiving and executing energy cost
to determine each tasks whether to offload task data or load
task code blocks. Banerjee et al. [17] has developed a frame-
work that uses a combination of static and dynamic code
analysis techniques to detect, validate and repair energy bugs
in Android apps, which generates repair expressions to fix the
validated energy bugs. Based on the trace of energy usage and
the timestamps of programs execution events, Wei et al. [18]
has presented a lightweight function-level profiling tool for
measuring the energy consumption of program code called
FPowerTool which measures energy by sampling the value
of hardware counters built in the CPU and the sampled
value is associated to the corresponding code segments by
offline analysis. Li et al. [19] has analyzed the resources
occupied by CUDA source program. Then, machine learning
is used to correlate resources and energy consumption, and
a source code level energy prediction model is proposed.
Mukhanov et al. [20] has presented a novel fine-grained

energy profiling tool based on probabilistic analysis for fine-
grained energy accounting, which associates energy informa-
tion effectively with source code at a fine-grained level.

D. PROCESS LEVEL
The energy estimation method at process level is mainly
associates the process ID and the resource utilization rate
with the energy, and obtains the energy of process through
the cumulative time. Based on this idea, a process level power
analysis tool, Energy guard, is proposed to obtain the running
information, resources and utilization ratio of each process
through the daemons running in the kernel space, and then
provide the real-time information of the power consumed
by each process [21], which is used to eliminate the energy
consumed by the application’s abnormal behavior. Colmant
et al. [22] has focused on the energy estimation of VM-
based systems and has proposed a fine-grained monitoring
middleware called BitWatts. It provides real-time and power
estimation of software processes running at any level of
virtualization in the system, which can automatically learn
an application-agnostic power model to estimate the power
consumption of applications. The experiments demonstrates
that BitWatts performs well both in number of monitored
processes and virtualization levels. Lu and Yao [23] has
presented a thread-voting dynamic voltage and frequency
scaling (DVFS) technique for many core networks-on-chip to
save energywhich uses runtime performance indicatives from
either network-level or thread-level to guide DVFS decisions.
It allows each thread to ‘‘vote’’ for a V/F level in its own
performance interest, and a region-based V/F controller make
dynamic per-region V/F decision according to the major vote.

E. ARCHITECTURE LEVEL
Wu et al. [24] has proposed a generally applicable energy
estimation methodology for accelerators that allows design
specifications comprised of user-defined high-level com-
pound components and user-defined low-level primitive com-
ponents, which can be characterized by third-party energy
estimation plug-ins. Jagroep et al. [25] has proposed an
energy perspective on software architecture as a means to
provide insight and enable analysis on the architectural ele-
ments that are the actual drivers behind the energy consump-
tion. After getting potential quality attribute, they provides
a means to quantify energy consumption aspects related
to software. Horcas et al. [26] has pointed that different
configurations of quality attributes in software architecture
influenced energy efficiency. They represented the variability
of quality attributes, as well as the energy efficiency and
performance experiment results as a constraint satisfaction
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problem to help software developers to build more energy
efficient software. Li et al. [27] has explored architecture
level software power consumption model through complex
network, extracts software architecture level parameters and
obtains software power consumption through a prediction
model. Although the single prediction model can get the
prediction results, its accuracy is still not ideal. Therefore,
based on [27], this article improves the energy consumption
prediction effect at the architecture level through the combi-
nation prediction model of Adaboost RBF method.

III. EXISTING POWER MODEL
The current research on predicting model can be divided
into single predicting model and combined predicting model.
They are described as follows.

A. SINGLE PREDICTING MODEL
The predicting method of energy described in related works
section is mainly dependent on the single prediction method,
and the specific description of this model is as follows.

1) POLYNOMIAL REGRESSION
The polynomial regression method is based on the premise
that the datameet a certain fixed rule. It analyzes the historical
data and finds the mathematical model to predict the data
trend. Polynomial regression method is a commonly used
model in prediction, which can be expressed as equation (2).

ŷ = b0 + b1x1 + b2x2 + b3x3 + · · · bnxn (2)

where ŷ is the dependent variable; x1, x2, x3, . . . , xn are
the independent variable; b1, b2, b3, . . . , bn is the regression
coefficient, which are determined by the least square method;
that is, selecting b1, b2, b3, . . . , bn minimizes equation (3).∑

(yactual−ŷ)2=
∑

[yactual−(b0+b1x1+b2x2+b3x3+· · · bnxn)]2

(3)

2) SUPPORT VECTOR MACHINE METHOD
Support vector machine (SVM) [31] is to realize the trans-
formation between linear and nonlinear problems through
spatial variable dimension mapping, and to solve the optimal
hyperplane in high-dimensional feature space. SVR is the
application of SVM in dealing with regression problems. For
training samples {(x1, y1), (x2, y2), . . . (xi, yi), . . . (xn, yn)},
SVR is to find the function f (x) = ωTx + b, where x is the
independent variable vector of the training sample set, ω is
the optimal weight vector, b is the optimal bias, so that the
difference between its output and the preset output yi is less
than or equal to ε, and the curve of function f (x) is as stable as
possible, that is to solve the following optimization problems
in equation (4).

min
1
2
‖ω‖2 + C

l∑
i=1

(ξi + ξ∗i )

s.t. yi − f (xi) < ε + ξi

f (xi)− yi < ε + ξ∗i

ξi ≥ 0

ξ∗i ≥ 0 (4)

In equation (4), the constant C is the adjustment factor
of the equilibrium f (x) stationarity and the elastic range ε
of the error condition; f (xi) is the optimal function value
corresponding to the ith training sample set; ξi and ξ∗i are the
relaxation variables introduced to relax the error condition.

3) NEURAL NETWORK METHOD
BP neural network [32] is an artificial neural network model
trained by error back propagation algorithm. BP neural net-
work is composed of many neurons, which can express
any complex nonlinear function. The training process of BP
neural network includes the forward transmission of signal
and the reverse transmission of error. When the signal is
transmitted forward, the signal enters from the input layer
and passes to the output layer after the nonlinear operation
of multiple hidden layers. When the error is returned in the
reverse direction, the network adjusts the network weight and
threshold according to the deviation between the output value
and the expected output value, so that the output tends to the
expected value in the near future.

B. COMBINED ENERGY MOEDL
For the accuracy of single prediction method, the combined
predicting methods have been studied gradually which are
entropy weight combined prediction model and optimization
algorithm-based combined model.

1) ENTROPY WEIGHT COMBINED PREDICTION MODEL
Entropy weight method is one of the representative combined
prediction methods. Information entropy is a description of
the degree of system irregularity. The idea is to determine the
combination coefficient of each single model in the combined
prediction model according to the degree of error variation of
the single model prediction.

Take the absolute value of the error between the predicted
value of a single prediction model at the current b sampling
points and the actual energy consumption as the row vector,
then the evaluation matrix E = (eij)a×b is obtained, where eij
represents the prediction error at j time of the ith prediction
model. Then the evaluation matrix E is normalized by row
to get the normalized matrix P = (Pij)a×b, and the informa-
tion entropy of the i prediction model can be calculated by
equation (5).

Hi = −
1
ln b

b∑
j=1

pij lnpij (5)

The larger the information entropy of a single prediction
model is, the less useful information it contributes to the
combined prediction model, then its weight coefficient in
the final model should be small, otherwise the larger the
weight coefficient. Therefore, the weight of the single model
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in the final combined prediction model can be calculated by
equation (6).

wi =
1− Hi

a−
a∑
i=1

Hi

(6)

2) OPTIMIZATION ALGORITHM-BASED COMBINED
PREDICTION MODEL
Tian [33] has proposed a short-term traffic flow prediction
approach based on combination model fusion. After getting
the prediction results of improved extreme learning machine,
seasonal auto regressive integrated moving average and auto
regressive moving average, the fruit fly optimization algo-
rithm is proposed to optimize the weight coefficient of the
combinationmodel. The fitness value of fruit fly optimization
algorithm is chosen as the root square mean error (RMSE)
between actual and prediction value which can be expressed
as equation (7).

min(RMSE) = min(

√√√√ 1
N

k+n+1∑
i=1

(yi(t)− ωiy∧(t))2

s.t. ωi ∈ [ωmin, ωmax] (7)

where ŷ(t) is the predictive value of each prediction model,
ωi is the weight coefficient of each prediction model, k is
the number of improved extreme learning machine (ELM)
models, n is the number of seasonal autoregressive integrated
moving average (SARIMA) models, the length of traffic flow
time series is N .

References [34]–[39] also use combined prediction
method with optimization algorithm to get high-precision
results. The difference is that they use different fitness func-
tion and different optimization algorithm, such as particle
swarm optimization, genetic algorithm, artificial bee colony
algorithm, firefly algorithm.

IV. PROPOSED COMBINED POWER MODEL
Our proposed energy prediction model is to build a strong
predictor based on the three single predictors. Its specific
structure is shown in figure 1. The left side of figure 1 is the
three single predictors and the right side is the structure of
RBF. The output of three single predictors are the input of
the RBF, the output of RBF is the output of the combined
power model. The combined power model is to get suitable
weight of input of RBF.

RBF adopts multi-dimensional space interpolation tech-
nology, which is simple in structure, simple in training and
fast in learning convergence. It can approach any nonlinear
function, and is widely used in pattern recognition, nonlinear
control and other fields. It is usually composed of input
layer, hidden layer and output layer. The basic idea is that
RBF, as the ‘‘base’’ of the hidden element, constitutes the
hidden layer space, so the input vector can be directly mapped
to the hidden layer space without weight connection. The
hidden layer transforms the input vector, and transforms the

FIGURE 1. The structure of adaboost RBF combined prediction energy
model.

input data of low-dimensional mode into high-dimensional
space, so that the problem of linear non-separability in
low-dimensional space can be linearly separable in high-
dimensional space. The output of the network is the linear
weighted sum of the output of the hidden element. The map-
ping of network from input to output is nonlinear, while the
output of network is linear for adjustable parameters. The
weight of the network can be directly solved by the linear
equations, thus speeding up the learning speed and avoiding
the local minimum problem.

If the input dimension of RBF is ni, the output dimension
is no, and the number of samples in the training sample set
is m, then there are ni neurons in the input layer of RBF, that
is, the number of neurons in the input layer is consistent with
that of the input sample dimension; the number of neurons
in the hidden layer is determined by the expected training
objectives; there are no neurons in the output layer. Therefore,
the structure of RBF can be determined according to training
samples and training objectives.

The combined estimation method of adaboost RBF is
mainly divided into three steps. First, select several single
power prediction models; second, use RBF to acquire and
optimize its nonlinear parameters with the best performance;
thirdly, use the best parameters of RBF to get the result of
training samples. Fourthly, the adaboost algorithm [40] is
used to adjust the weight distribution of training samples in
RBF several times. Finally, three single predictors are fused
into a strengthened combination predictor by getting best
weight distribution of RBF to obtain high-precision predic-
tion value. The specific steps are as follows.
Step 1: normalize the feature of architecture level {xp} to

get the normalized series {x̄p}.
Step 2: polynomial regression model, SVR model and

BP neural network model are used to predict {x̄p} respec-
tively, and the results are ŷ1p, ŷ2p and ŷ3p respectively, p =
1, 2, · · · , n.
Step 3: take ŷ1p, ŷ2p and ŷ3p as the input of RBF, and the

actual energy value yp as the output of RBF to form the
sample set T = {(ŷ11, ŷ21, ŷ31, y1), (ŷ12, ŷ22, ŷ32, y2), · · · ,
(ŷ1n, ŷ2n, ŷ3n, yn)}, which is divided into training sample set
T1 which has n1 samples and test sample set T2 which has n2
samples, n = n1 + n2.
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Step 4: initialize the training sample set T1, and the
weight distribution Qm can be expressed as Qm =

{w11,w12, . . .w1i, . . .w1n1},m = 1.
Where: Qm is the weight distribution of T1 in the mth RBF

training; w1i is the weight of the ith training sample, which
can be expressed as w1i =

1
n1
.

Step 5: training network method is as follows.
(1) The RBF is trained by the training sample set

T1 with weight distribution Qm, and the single predictor
Rm(ŷ11, ŷ21, ŷ31) is obtained;
(2) The maximum error of Rm on training sample set T1 is

calculated as follows:

Em = max |yi − Rmi(ŷ1, ŷ2, ŷ3)|, i = 1, 2, . . . , n1

where: yi is the actual energy corresponding to the ith train-
ing sample; Rmi(ŷ1, ŷ2, ŷ3) is the prediction result of Rm
(ŷ1, ŷ2, ŷ3) for the ith training sample. The linear relative error

of each training sample is emi =
|yi − Rmi(ŷ1, ŷ2, ŷ3)|

Em
.

Then the error of Rmi(ŷ1, ŷ2, ŷ3) on the training sample set

T1 is em =
n∑
i=1

wmiemi.Where, wmi is the weight of the ith

training sample in the mth training.
(3) Calculate the coefficient αm of Rm(ŷ1, ŷ2, ŷ3) as αm =

1
2
ln 1−em

em
.

(4) Update the weight distribution of training sample set
T1 by equation (8) to obtain a training sample set with weight
distribution Qm+1, which is used for the next training.

Qm+1 = {wm+1,1,wm+1,2, ...wm+1,i, ...wm+1,n1}

wm+1,i =
wmi
Zm

α1−emim (8)

where: wm+1,i is the weight of the ith training sample in
the m + 1 training; Zm is the normalization operator, which
ensures that the weight ratio of the samples is consistent and
the sum of the weights is 1.

(5) Judge the relationship between m and M , where M is
the maximum number of training. If m < M , let m = m+ 1,
repeat steps (1)∼(4), after training RBF M times, obtain M
single predictors; if m ≥ M , carry out step 6.
Step 6: combine theM single predictors into the enhanced

predictor, and use the model to predict the test sample set T2.
The enhanced predictor can be expressed as f (ŷ1, ŷ2, ŷ3) =
M∑
m=1

αm
M∑
m=1

αm

Rm(ŷ1, ŷ2, ŷ3)

In conclusion, the flow chart of Adaboost RBF combina-
tion prediction method is shown in figure 2.

V. EXPERIMENT
A. EXPERIMENTAL PLATFORM
In order to verify the proposed software power model,
the accuracy of the model is tested by a test set com-
posed of open source games, media players and general soft-
ware. The test programs include Italc, UniversalMediaServer,
Jabref, Docfetcher, YOYOPlayer, TripleA, jbubblebraker,

FIGURE 2. The flow chart of adaboost RBF combination energy model.

JIExplorer, Universal password manager, Ftpserver, Free-
Cell and Jajuk. For the convenience of description, we use
the abbreviations Ita, UMS, Jab, Dof, YOP, TrA, jbb, JIE,
Upm, Fts, FRC and Jaj instead of the above test procedures
respectively. The five features of the test set are shown in
table 2. In the experimental environment, the configuration
of the hardware and software platform is shown in table 3;
the measurement of the instantaneous power consumption
and cumulative power consumption of the software adopts
the Hoiki3334 multi-function power measurement. Since the
sample size is relatively small, we use the LOOCV (Leave-
One-Out-Cross-Validation) method to evaluate the prediction
performance of the model.

B. EVALUATION INDEX
In this article, the eRMSE(root mean square error), the eMAPE
(mean absolute percentage error), eRRMSE(relative root mean
square error), eMAE(mean absolute error), eSSE(square sum
error) and the R2(R square) are selected as the evaluation
indexes of the prediction model, and these indexes can be
calculated by equation (9).

eRMSE =

√√√√ 1
N

n∑
t=1

(yt − ŷt )2

eMAPE =
1
N

N∑
t=1

|
yt − ŷt
yt
| × 100%

214570 VOLUME 8, 2020



J. Li et al.: Combined Prediction Energy Model at Software Architecture Level

TABLE 2. Characteristic values of the test programs.

TABLE 3. Software and hardware experiment platform.

eRRMSE =

√√√√ 1
N

N∑
t=1

(
yt − ŷt
yt

)2

eMAE =
1
N

N∑
t=1

|yt − ŷt |

eSSE =
N∑
t=1

(yt − ŷt )2

R2 = 1−

N∑
t=1

(yt − ŷt )2

N∑
t=1

(yt − ȳt )2
(9)

where: n is the number of estimation; yt is the actual energy
consumption value of the tth program; ŷt is the predicted
energy consumption value of the tth program.

C. ACQUISITION OF PROGRAM FEATURES
Li et al. [27] has showed the characteristics at the architecture
level and detailed the calculation process. Therefore, these
characteristics are used in this article, namely, number of
nodes, number of direct edges, average path length, clustering
coefficient, average degree. Their specific calculation meth-
ods are listed in table 4.

In table 4, Vi is node i and its initial value is 1. WMCi is
the WMC (Weighted Methods per Class) value of class i. eij
is edges between node i and node j.Wij is the total number of
methods in node i dependent on node j. N is the number of
nodes in the network. dij is the short path between two nodes
Vi and Vj.Ei is the existing links connecting to other nodes of
node i, and ki ∗ (ki − 1) is the maximum possible number of

TABLE 4. Calculation of the characteristics.

such links of node i. Ci is clustering coefficient of node i. C is
the clustering coefficient of the whole network. More details
about these characteristics can be found in [27].

D. ESTIMATION RESULTS AND COMPARATIVE ANALYSIS
1) ESTABLISH POLYNOMIAL REGRESSION MODEL
The original energy consumption data is normalized, and
then the regression coefficient is solved by the least
square method. The regression coefficient (−0.0011, 0.0006,
0.0069, −4.0814, 2.3046) with the larger square of the
correlation coefficient is taken as the final fitting model.
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TABLE 5. Comparison with single prediction model.

Finally, the data are de-normalized to get the final energy
consumption data.

2) ESTABLISH SVR MODEL
We use support vector regression method with precomputed
kernel function, and the penalty factor c and width function g
are cross calculated twice by grid search method. The optimal
parameter pair is c = 1.6782, g = 1.8769.

3) ESTABLISH BP MODEL
Because the single hidden layer BP neural network has a
good fitting effect, the single hidden layer BP neural network
structure is adopted. The network structure is set as 5-6-1,
the feature of program is taken as the input of network, and
the corresponding energy consumption value is taken as the
output of network. The prediction error and training time
of the network are weighed through repeated experiments.
The excitation functions of hidden layer and output layer
are tansig function and purelin function respectively. The
maximum number of network training is 200, the training
target is 0.00004, and the learning rate is 0.02.

4) ENTROPY WEIGHT COMBINATION PREDICTION METHOD
After getting the results of three single prediction model,
we calculate the absolute value of error, and generate eval-
uation matrix. We use equation (5) to obtain the entropy
information of the each predictionmodel, after that theweight
of each single prediction model can be calculated by equation
(6). In this model, a is 3, b is 11.

5) PSO COMBINATION MODEL
For PSO algorithm, the most important thing is to estab-
lish the fitness function. Our fitness function also minimizes

the error between actual and prediction value which can be
expressed by RMSE shown by equation (10). After that,
we should also set the parameter of c1, c2, max generations
times (maxgen), size of population (sizepop), and velocity
range (velran) and value range of population (popvalran).
The optimal parameter pair is c1 = 1.3467, c2 = 1.4678,
maxgen = 50, sizepop = 100, velran is between 0 and 1, and
popvalran is between 0 and 1.

min(RMSE) = min(

√√√√ 1
N

N∑
i=1

(yi(t))−
3∑

k=1

ωiy∧(t))2

s.t. ωi ∈ [0, 1] (10)

6) COMPARATION WITH THE SINGLE PREDICTION MODEL
The evaluation indexes of error for the above three prediction
models are using equation (9) and the compared results with
that of adboost RBF under the test set samples are shown
in table 5. For better evaluating the effects, we divided test
program into five groups which are used the LOOCVmethod.

It can be seen from table 5 that the prediction errors of
each single prediction model are large compared with that
of the adaboost RBF. In group 1, group 4 and group 5,
the value of evaluation index of BP are the better than that
of polynomial regression and SVR and the effect of adaboost
RBF are best among that of BP, polynomial regression and
SVR. In group 2 and group 3, the value of evaluation index
of SVR are the better than that of polynomial regression
and BP and the effect of adaboost RBF are better than that
of BP, polynomial regression and SVR. From the average
of the five groups of experimental data, we can see that
adaboost RBF has the best effect, followed by BP, SVR, and
finally polynomial regression. Figure 3 shows the comparison
among the predicted value of adaboost RBF, actual energy
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FIGURE 3. Compared with single prediction model.

TABLE 6. Comparison with combination prediction model.

value, the predicted value of BP, the predicted value of SVR
and the predicted value of polynomial regression. From the
figure 3, we can see the predicted value of adaboost RBF
model proposed in this article are closer to the actual energy
value than those of each single prediction model. It can be
seen from table 5 that R2 of adaboost RBF has the big-
ger value than that of three single prediction model, which
shows that the prediction value of adaboost RBF has the
highest fitting degree with the actual curve. The eRMSE ,
eMAPE , eRRMSE , eMAE , and eSSE of the adaboost RBF model
are significantly smaller than those of other single prediction
models. Compared with polynomial regression model, SVR
prediction model and BP neural network prediction model,
adaboost RBF improves the accuracy of eRMSE by 38.87%,
31.12% and 26.04% on average respectively, eMAPE by
39.44%, 31.16% and 27.94% on average respectively, eRRMSE
by 48.24%, 26.20% and 35.26% on average respectively,

eMAE by 34.50%, 31.72% and 23.49% on average respec-
tively, eSSE by 61.81%, 51.63% and 44.50% on average
respectively, which shows that the method proposed in this
article can effectively combine several prediction methods
and significantly improve the prediction accuracy.

Table 6 shows the effect among combined prediction
model. In group 1, group 2, group 3 and group 4, the eRMSE ,
eMAPE , eRRMSE , eMAE , and eSSE of the adaboost RBF model
are significantly smaller than those of other combined predic-
tion models (entropy weight combination model and PSO)
and the R2 of adaboost RBF has the bigger value than that
of two combined prediction models. This shows adaboost
RBF has the better accuracy. In group 5, the eMAPE , eRRMSE
and eMAE of adaboost RBF are smaller than that of other
combined predictionmodel and the eSSE and eRMSE are bigger
that of adaboost RBF. The R2 of adaboost RBF has the
smaller value than that of two combined prediction models.
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FIGURE 4. Compared with combined prediction model.

This shows that adaboost RBF behaves worse than that of
two combined predictionmodel in this group. On average, the
eRMSE , eMAPE , eRRMSE , eMAE , and eSSE of the adaboost RBF
model are significantly smaller than those of other combined
prediction models and the R2 of adaboost RBF has the bigger
value than that of two combined prediction models. This
shows that adaboost RBF has the higher accuracy in most
cases. Figure 4 shows the comparison among the predicted
value of adaboost RBF, actual energy value, and the predicted
value of entropy weight combination model and the predicted
value of PSO combined model. From the figure, we can see
the predicted value of adaboost RBF model proposed in this
article are closer to the actual energy value than those of each
combined prediction model. It can be seen from figure 4 and
table 6 that the R2 of adaboost RBF are bigger than that of
two combined model which shows that adaboost RBF has
the highest fitting degree with the actual curve. Compared
with entropy weight combined model and PSO combined
model, adaboost RBF improves the accuracy of eRMSE by
16.53% and 20.36%on average respectively, eMAPE by 9.68%
and 30.91% on average respectively, eRRMSE by 19.10% and
37.78% on average respectively, eMAE by 9.71% and 19.85%
on average respectively, eSSE by 28.63% and 34.67% on
average respectively, which shows that the method proposed
in this article can effectively combine several prediction
methods and significantly improve the prediction accuracy.
Through the analysis of the experimental data, we can draw
the following conclusions: (1) the architecture level software
power consumption model based on complex network is
effective. Through the comparison of test sets, the average
value of eRMSE , eMAPE , eRRMSE , eMAE , and eSSE of our model
are significantly reduced, which proves the effectiveness of
our proposed method. (2) As an approach tool, adaboost RBF
combined estimation method can solve this problem well and

effectively reflect the nonlinear relationship. (3) It is verified
that there is a certain correlation between software features
and software power consumption, and the impact of each
feature on software power consumption is different again.

VI. CONCLUSION
Energy consumption prediction is a very important prob-
lem. The current single prediction method cannot ensure the
best prediction results in all task objects. In order to make
full use of the regular pattern between features, integrate
the advantages of each single prediction model, and further
improve the accuracy of energy consumption prediction, this
article proposes a combined energy prediction method named
adaboost RBF. By using RBF to combine several single pre-
diction models for nonlinear optimization to build prediction
model, the advantages of each method are complementary,
and the robustness effect of prediction model is significantly
improved. Combined with adaboost algorithm to train RBF,
the combination form of each single prediction model can
be adjusted adaptively according to the characteristics of
the analysis object, which greatly improves the prediction
accuracy and scope of application. Through the verification
of the measured data, the adaboost RBF will provide impor-
tant clues for the research of energy consumption prediction,
energy saving scheduling and resource allocation. In addition,
the model can also be used as a general prediction model,
which has broad application prospects in the fields of stock
index prediction, traffic flow prediction, network flow predic-
tion and logistics index prediction.
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