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ABSTRACT In this paper, we propose a floating-gate-based synaptic transistor with two independent
control gates that implement both offline and online learning. Unlike previous research on double-gated
synaptic transistors, the proposed device is capable of online learning without facing a fan-out problem.
Basic operation of the device was verified and a program/erase scheme based on Fowler-Northeim tunneling
is suggested for the multi-conductance utilization of the synaptic device. With the proposed P/E scheme,
an offline-trained single-layered hardware-based spiking neural network was simulated for MNIST clas-
sification, resulting in 87.37% classification accuracy with 10% conductance variation. To alleviate this
performance degradation, the online learning method is applied on the offline-trained SNN by reusing 3,000
training images. The effectiveness of the proposed method is also verified under existence of the synaptic
weight variance. As a result, up to 86.89% of the performance degradation is alleviated.

INDEX TERMS CMOS, flash memory, synaptic device, neuromorphic system, offline learning, online
learning.

I. INTRODUCTION
Neuromorphic systems are rising candidates for the next
generation computing system due to their massively parallel
data processing capability and minimal power consump-
tion [1]–[8]. Various researchers have implemented neuro-
morphic systems using their unique methods and performing
machine learning tasks such as pattern recognition or image
denoising [9]–[13]. Neuromorphic systems consist of neuron
circuits and synaptic devices, and their implementation dif-
fer depending on the specific combination of incorporated
circuits and devices. The most widely used neuron circuits
include integrate-and-fire (IF) neurons, a simplified model
of a biological neuron that integrates current in a membrane
capacitor and generates an action potential when the mem-
brane voltage exceeds the threshold [14]–[19]. IF neurons
receive and transmit a signal in various forms such as left-
justified encoding or Poisson encoding [20]–[22]. Behavior
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of IF neurons are proven to be equivalent to rectified lin-
ear unit (ReLU) activation function of non-SNNs, making
offline learning possible by weight transfer from weights
that are calculated from an external computer. Candidates
for synaptic devices include a flash memory as well as
emerging memory devices such as resistive random-access
memory (RRAM), phase change random access memory
(PCRAM), and ferroelectric tunnel junction (FTJ) [23]–[30].
Both gradual switching devices and abrupt switching devices
are used as synapses. Although it is more effective to use
gradual switching synaptic devices, which represent continu-
ous synaptic weight in single memory cell, it is also possible
to implement one synaptic weight with multiple single-bit
devices [31]–[33]. There were studies that implemented a
neuromorphic system with widely used flash memory as
synaptic devices [34]–[37]. Such studies include fabricating
a hardware-based neural network, which conducts vector-
matrix-multiplication in a NOR flash array or implement-
ing a binarized neural network by conducting an XNOR
operation on a NAND flash [38], [39]. However, there is
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FIGURE 1. (a) 3-dimensional structure of the proposed double gate
synaptic device and its (b) cross-sectional view, (c) enlarged view of
gate2 region and (d) enlarged view of gate1 region.

a downside in using conventional flash arrays since require
complex external controllers to implement online learning.
For this reason, some researchers devised a double-gated
synaptic transistor to easily implement online learning such
as spike timing-dependent plasticity [15], [40]. The double-
gated synaptic transistor mentioned above can realize online
learning and lifelong learning, which are the major advan-
tages of hardware-based neuromorphic systems. However,
they induce problems in system operation. Conventional
double-gated synaptic devices use output pulse of presynaptic
neuron as current source to prevent drain current flowing
when only teaching signal is given. However, this method
makes the presynaptic neuron to drive an excessive amount
of current, causing a fan-out problem [37]–[42]. For example,
transmitting spike to one thousand synaptic devices which
operate at 1uA each, will require the presynaptic neuron to
drive 1mA of current.

Therefore, in this research, we propose a double-gated
synaptic transistor capable of online learning without facing
a fan-out problem. We handle the fan-out problem by con-
necting the drain to voltage source. We also prevent the drain
current flowing at teaching signal pulse by adopting asym-
metrically shaped gates. In the following sections, we analyze
the basic operations of the proposed device and the results for
neuromorphic system operations when the device is used as a
synapse. Moreover, a new learning technique which utilize
both online and offline learning is proposed to minimize
performance degradation of the neuromorphic system.

II. SIMULATION RESULTS FOR SYNAPTIC DEVICE
A. DEVICE STRUCTURE
Fig. 1 presents three-dimensional and cross-sectional views
of proposed double-gated synaptic transistor. Gate 1 length
(LG1), gate 2 length (LG2), and floating-gate length (LFG)
are set to be 1.5 µm, 0.25 µm, and 0.8 µm, respectively.
Gate1 and gate2 are separated by 0.25µmof separating oxide

TABLE 1. Parameters for the proposed synaptic device.

(LSO). The gate-to-S/D overlap length (Lov) is 0.36 um for the
drain region and 0.16µm for the source region, which ensures
effective channel control. The thickness of the tunneling-
oxide (Tox) and the gate dielectric oxide are fixed to 5 nm and
15 nm, respectively. Doped poly-silicon is used for gate1 and
gate2 for effective program/erase and online learning. The
doping concentration is 5 × 1020 cm−3 of phosphorus in
the S/D region and 1 × 1017 cm−3 of boron in the silicon
box, and the graded doping profile is adopted to account
for the realistic fabrication conditions. All of the structural
parameters are specified in Table 1.

B. SIMULATION CONDITION
We analyzed the device characteristics through simulation.
To increase the accuracy of simulation, we carefully cali-
brated the entire simulation conditions using measurement
data from previous studies. Device simulation was con-
ducted using Synopsys Sentaurus 3D technology computer-
aided design (TCAD) simulation. Referring [47], all of the
physics and parameters are calibrated to implement the actual
program/erase (PGM/ERS) of a memory device and the
operation of a complementary metal–oxide–semiconductor
(CMOS) device (Fig. 2). Bandgap narrowing as well as
Shockley-Read-Hall (SRH) recombination models are used
and the mobility properties are also considered by using
Philips and Lombardi models. Quantum potential and Fermi-
Dirac models are included to consider the density gradient
quantization and carrier density. The hydrodynamic carrier
transport model is adopted as a carrier transport model.
We can check that the simulation results, performed with the
above physics, fits well with the data from [48]. To simu-
late the memory characteristics, we calibrated the electron
tunneling mass of 5 nm tunneling-oxide using [49]–[51] as
reference. The electron tunneling mass is tuned to 0.35 m0,
which shows a well matched threshold voltage (Vth) shift.

C. DEVICE OPERATION AND PGM/ERS CHARACTERISTICS
Synaptic transistors require two or more gates to perform
online learning. Online learning is implemented using poten-
tial difference between the input signal and the feedback
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FIGURE 2. Simulated transfer curves of parameters calibrated using
measurement data. (a) Parameter and physics calibration process data
from [44]. (b) Memory characteristic calibration process data
from [45]–[47].

FIGURE 3. Diagram illustrating operation of conventional and proposed
double-gated synaptic transistor.

signal. However, malfunction may occur if a channel is
formed by a feedback signal. Therefore, Vin and Vdd are
connected to ensure that drain current flow only when input
signal is given as shown in Fig. 3. However, in this case, out-
put spikes of presynaptic neurons operate as current sources
inducing extreme fan-out problems. In neuromorphic sys-
tems, this problem becomes even more serious as numerous
synaptic devices are connected in parallel since RL becomes
far lower than Rout (Fig. 4).
In the proposed device, the role of gate 1 and gate 2 are

different. Coupling ratio between gate 1 and the floating-gate

FIGURE 4. Schematic of neuron circuit considering each impedance.

FIGURE 5. Energy band diagrams along the source-channel-drain with
respect to different gate2 bias. 0V is applied to gate1 and 2V is applied to
drain. Note that source-side energy barrier remains constant disregarding
changes in gate 2 bias.

is larger than that of gate 2 and the floating-gate. Therefore,
gate 1 dominantly controls the on/off operation of the device.
Due to the different coupling ratio, the voltage across silicon
dioxide between gate 2 and the floating-gate is larger than that
of gate 1 and the floating-gate. Therefore, gate 2 becomes
the charge source for programming on the floating-gate by
Fowler-Nordheim (FN) tunneling. One important character-
istic of the proposed device is that the drain current does not
flow with a feedback signal even if the drain is connected
to a voltage source. The reason for this is the existence of
an area under gate 1, which maintains a source side energy
barrier regardless of the voltage applied to gate 2 (Fig. 3).
It can be verified in Fig. 5, which is the energy band diagrams
of the channel with respect to different gate 2 voltages. The
characteristics explained above play an important role in
preventing a malfunction in online learning, where a signal is
given to both gate 1 and gate 2. Without such a characteristic,
the neuron will fire at an excessive rate when a large feedback
signal is given to gate 2.

The PGM/ERS operation of the proposed device utilizes
FN tunneling across silicon oxide between gate 2 and the
floating gate. Before diving into online learning, we first
analyze basic PGM/ERS characteristics for utilizing the
proposed device as a multi-conductance synaptic device
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FIGURE 6. Program/Erase characteristics of the proposed device.
(a) Pulse P/E bias scheme, (b) changes in floating-gate charge and
(c) conductance are presented.

for offline learning. Fig. 6(a) presents the bias condition
of PGM/ERS for offline learning. Rectangular pulses are
applied to gate 2 of the device, and gate 1 and the drain
are biased as 0 V during the learning process. For PGM,
an individual PGMpulse is applied to gate 2 for 10µs with the
magnitude of−6.1 V. When the PGM pulse is applied to gate
2, most of the voltage is applied to the tunneling-oxide formed
between gate 2 and the floating-gate since the coupling ratio
between gate 1 and the floating-gate is larger than that of
between gate 2 and the floating-gate. For this reason, the FN
tunneling of electron between gate 2 and the floating-gate
occurs, changing the charge stored in floating-gate. It can

be seen that the amount of charge decreases as the pulse is
applied. However, as the PGM pulse is applied repeatedly,
the charge of the floating-gate lowers the potential of the
floating-gate, which degrades the PGM efficiency. Therefore,
the change rate of the charge reduces as the pulse number
increases.

Transfer curves were verified for each of the PGM/ERS
states. Gate 2 and drain are biased at 0 V and 2 V respec-
tively. Then, gate 1 is set as the control gate as mentioned
above. During gradual PGM, as the pulse number of PGM
increases, the reduced charge in the floating-gate causes the
threshold voltage (Vth) of the device to increase. In contrast,
with a repeatedly applied ERS pulse, Vth decreases due to the
accumulated charge in the floating-gate. This results in 0.65V
and 0.4 V of memory window (MW) for PGM and ERS,
respectively. The conductance values are extracted in each of
the states at a read voltage condition of 1.5 V, which ensures a
stable operation of the proposed synaptic device. The amount
of conductance decreases with the PGM states. However,
the conductance change rate becomes smaller because the
sufficiently discharged floating-gate depresses the tunnel-
ing of additional electrons. In the case of the ERS states,
the opposite tendency of conductance is shown, but the same
tendency of the conductance change rate is also verified
due to the sufficiently charged floating-gate. This shows the
same tendency with the charge change of the floating gate as
illustrated in Fig. 6(c).

D. SYSTEM LEVEL SIMULATION OF SYNAPTIC DEVICE
In order to analyze the system-level performance of the
proposed device, an offline-trained hardware-based SNN is
simulated. A single-layered hardware-based SNN is trained
to classify the modified National Institute of Standards and
Technology (MNIST) dataset, which exhibited 92.06% of
classification accuracy on ideal non-SNN.

Fig. 8(a) presents a schematic of a synaptic array using
a proposed double-gated device. V pre

1...i are input voltage to
synaptic array, V post

1...j are postsynaptic spikes, and V fb+
1...j /V

fb−
1...j

are feedback signals for online learning. One synaptic weight
is represented by a pair of two synaptic devices, denoted by
G+ and G−, respectively [52]–[55]. G+ injects a current to
the membrane capacitor of a postsynaptic neuron, which is
responsible to the positive part of a weight. On the other hand,
G− withdraws current from the membrane capacitor, which
is responsible to the negative part of a weight.

Weight values are calculated externally from a non-spiking
optimized neural network using a stochastic gradient descent
with minimum square loss and transferred into our SNN after
weight quantization. For a pair of synaptic devices repre-
senting a positive weight, G− is programmed to its lowest
conductance. For a pair representing a negative weight, G+

is at its lowest conductance.
As illustrated in Fig. 8(b), pixel values of input images

fromMNIST was represented using a Poisson-encoded spike
train, where the spiking rate is proportional to the input pixel
value. The maximum of 255 spikes are used for a single pixel
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FIGURE 7. Transfer curves of the proposed device with (a) increasing
PGM pulse and (b) increasing ERS pulse. Each transfer curve corresponds
to a conductance presented in Fig. 6(c).

since the MNIST dataset are 8-bit grayscale images. Using
the synaptic device as described above yielded a classification
accuracy of 91.64%.

III. ONLINE LEARNING
A. IMPLEMENTATION OF ONLINE LEARNING ON DEVICE
In this session, we maximize the performance of a neuro-
morphic system by utilizing both offline and online learning.
Offline learning is effective in the way that it adopts opti-
mal synaptic weight values computed from an external
computer. However, it is prone to performance degrada-
tion from problems including variance, limited fan-in, and
overflow [56]–[58]. In other words, computer weights are
optimal for the ideal neural network, but they are sub-
optimal for hardware-based neural networks. Therefore,
in this paper, we apply online learning on a neuromorphic
system trained offline proceeding in order to maximize the
performance. Similar to previously researched double-gated
synaptic devices [14], [15], the proposed device utilizes the
overlapping input and teaching signal for online learning.
The teaching signal nor the input signal provide enough volt-
age for change in floating gate electron density. Therefore,
changes of the floating gate charge and the threshold voltage
upon the online programming scheme must be analyzed.

FIGURE 8. (a) Schematic of hardware-based single layer neural network
with excitatory and inhibitory synapses. 7280 pairs of devices are used to
formulate single-layered perceptron used in this paper. (b) Diagram of
generating input signals for one MNIST image.

As presented in Fig. 9(a), a bipolar input pulse with an
amplitude of 1.5V and a duration of 600 ns is applied to gate 1
for the reading and current summation. The feedback pulse is
applied to gate 2 for an online depression and potentiation,
and the voltage and duration of which differs depending on
the target polarity and magnitude of the conductance change.
In the case of online depression, a −5.9 V feedback pulse
is applied to gate 2, which causes a maximum potential
difference between gate 2 and gate 1 to become−7.4 V. This
is a sufficient potential difference for FN tunneling of the
electron from gate 2 to the floating gate. For online poten-
tiation, an applied gate 1 input pulse is the same as the online
depression, and the feedback pulse is applied with a positive
5.1 V pulse as opposed to the online depression. In this case,
the potential maximum difference between gate 2 and the
floating gate becomes 6.6V,which causes FN tunneling of the
electron from the floating gate to gate 2. The resulting charge
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FIGURE 9. (a) Programming pulse scheme for on-line learning and
(b) conductance change rate in each off-line trained state. Conductance
change as response to potentiation/depression pulse of (a) differs
depending on the initial device conductance.

change amount is less than 10% of the offline learning charge
change amount. The amount of Vth shift differs depending
on the conductance of the synaptic device before receiving
a signal, and the conductance change (1S/S) on the online
depression and potentiation are presented in Fig. 9(b).

B. SYSTEM-LEVEL SIMULATION FOR ONLINE LEARNING
In actual implementation of hardware neural networks, per-
formance degradation occurs due to the device conductance
variation. Therefore, the performance gap between the ideal
non-SNN and the hardware-based SNN can be mitigated
by fine conductance modulation, which can be achieved by
applying online learning on offline-trained SNN of Fig. 8.
By applying a teaching signal with a certain rule on the
double-gated synaptic device, we can emulate a gradient
descent in updating the synaptic weight. First, consider a
single-layered perceptron:

Y = Relu(WX ) (1)
Y = [y1, y2, · · · , yn]T (2)
X = [x1, x2, · · · , xm]T (3)

L =
1
n

∑
j
(yj − tj)2 (4)

FIGURE 10. (a) Flowchart for online learning scheme for single-layered
perceptron represented by Fig. 7 and equations (1)-(4). An example
corresponding to flowchart (a) applied to the neural network of Fig. 7 is
presented in (b) and (c). (b) presents voltages when an input signal is
given, and (c) presents voltages when the same input signal is given
again with feedback voltage. Pulse duration T is proportional to number
of target spikes and output spikes. Conductance change occurs in time
marked with red dotted circle.

where X is the input vector, Y is the output vector, W
is the weight matric, and L is the loss function. Minimiz-
ing the mean square error (L) with the gradient descent yields
the following equation:

1wij = −η
dL
dwij
= −ηsign(wijxi)(yj − tj)xi (5)

To emulate this equation on hardware, we update the con-
ductance of G+ and G− with teaching signals and input
signals. Since decreasing G− by 1G yields the same result
as increasing G+ by 1G, we only use the online depression
upon online learning for reducing the overall current level
and power consumption. For weights connected to the output
neuron corresponding to the label, we decrease G− since
the weight must increase, and for the others, we decrease
G+. According to Fig. 8(b), conductance change of the
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FIGURE 11. MNIST classification accuracy of SNN with synaptic weight
variance.

synaptic transistor occurs at the presence of a presynaptic
spike overlapping with the teaching signal. Therefore, with
rate-coded data, 1wij is proportional to the expected num-
ber of input spikes, overlapping with the teaching signal.
If the teaching signal with duty proportional to

∣∣yj − tj∣∣ is
given to gate 2, 1wij becomes proportional to (yj − tj)xi,
successfully emulating a weight update by a gradient descent.
A step-by-step flowchart for online learning is presented in
Fig. 10(a). During the online learning procedure, we fur-
ther reduce training loss by reusing training images. If the
hardware SNN operates as desired, only the output neuron
corresponding to the target class should fire at the target speed
and the others should remain silent. Therefore, if a neuron
fired less than the target firing rate, the synaptic weights con-
nected should increase, and if it fired more, synaptic weights
should decrease. An example for node voltages is presented
in Fig. 10(b)-(d). As illustrated in Fig. 10(d), a weight change
occurs whenV pre

−V fb becomesmaximum. Since duration of
teaching signal V fb is proportional to the difference between
the number of target output spikes and the actual number of
output spikes, it can be seen that the larger the output error,
the more the conductance change occurs.

The conductance variance of nonvolatile memory is
inevitable. There always exists a mismatch between tar-
get conductance and programmed conductance. To verify
the effect of conductance variation on SNN performance,
we assumed an ideal synaptic device with continuous con-
ductance states and a log-normal distribution of conductance
variation is also considered. As the variance increases, the
system accuracy becomes lower since the synaptic weights
are not at its local optimum anymore. Applying the online
learning method, we can set the synaptic weights to become
closer to the local optimum, increasing the performance,
reducing up to 87% of the performance degradation. The pro-
posed online learning method shows significant performance
enhancement and this additional online learning method
should be performed without a fan-out problem. Classifica-
tion accuracy of the hardware-based SNN before and after
applying online learning with respect to weight variance is
presented in Fig. 11.

IV. CONCLUSION
In this paper, we analyzed the device characteristics and
the system level operation of a floating-gate-based synap-
tic device with two control gates. The proposed device is
programmed to 16 different conductance levels by applying
a pulse at one of two control gates, thus designating it as
a qualified synaptic device candidate for a hardware-based
spiking neural network. Through an effective online learning
method, the performance of the hardware neural network is
maximized and variation immunity is achieved. The proposed
synaptic transistor and its training strategy enable efficient
lifelong learning of a neuromorphic system.
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