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ABSTRACT Many of the previous investigations predicted wind speed by directly using wind speed data,
which rarely considered physical characteristics of wind speed and was difficult to improve prediction
accuracy further. Therefore, a novel self-adaptive wind speed prediction model considering atmospheric
motion and fractal feature is developed in this paper. Lorenz-Stenflo (LS) equation is employed to describe
the disturbances and chaos effect caused by atmospheric motion on wind speed. One-dimension LS motion
series obtained by LS equation is adopted to improve the decomposition effect of wind speed by ensemble
empirical mode decomposition (EEMD). The fractal feature of wind speed series is primitively adopted to
determine the key parameter in LS equation. Then back propagation (BP) neural network model optimized
by genetic algorithm (GA), as a fundamental prediction model, is used for prediction. Eight groups of
wind speed series on different time scales from two wind farms are tested and evaluated. The proposed
model effectively overcomes the disturbances of atmospheric motion and achieves promising prediction
accuracy. Meanwhile, the criterion based on fractal feature ensures accurate selection of the key parameter

in atmospheric motion equation according to different features of sampled wind data.

INDEX TERMS Wind speed prediction, atmospheric motion, LS equation, EEMD, fractal feature.

I. INTRODUCTION

With the depletion of traditional fossil fuels and increasingly
serious environmental problems, wind energy has been highly
valued by countries in the world [1], [2]. According to the
data released by the Global Wind Energy Council (GWEC),
the cumulative installed capacity of the global wind power
market exceeded S00GW [3]. However, wind energy is char-
acterized by randomness and volatility etc. Large-scale wind
power integration brings great volatility to grid and hampers
safe and stable operation of the grid [4]. Accurate prediction
to wind speed can timely achieve grid dispatch and enhance
stability of grid, which is a simple and economic way [5], [6].
So improving wind speed prediction accuracy is an effective
measure to availably utilize wind energy and enhance safety
and stability of grid.
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Many scholars have focused on the research of wind speed
prediction. Several prediction models have been developed
in the past decades. In general, wind speed prediction mod-
els can be mainly classified into physical models, statistical
models, artificial intelligence models and hybrid models [7].

Physical models mainly adopt the numerical weather pre-
diction (NWP) data to forecast the wind speed of the con-
sidered site [8], [9]. They can obtain regional and global
forecasts by using NWP data to solve the complex numerical
systems. However, the NWP data cannot be easily obtained
and have a long renewal period. They cannot meet the require-
ment of short term wind speed prediction and are often
adopted for long term wind speed prediction.

Statistical models establish the functional model among
time series data based on recursive theory [10]. They
can easily capture the relationship according to historical
data and are suitable for short term wind speed predic-
tion. Autoregressive (AR) [11] and autoregressive moving
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average (ARMA) [12] were widely applied for predicting
wind speed, and narrower width of intervals and better
performance were obtained compared with those of per-
sistence model. But they are restricted in application for
non-stationary time series. Autoregressive integrated mov-
ing average (ARIMA) [13] was developed for predicting
non-stationary time series. The effectiveness of ARIMA was
proven by predicting hour-ahead wind speed series in litera-
ture [14]. However, statistical models cannot always facilitate
the competitive results for nonlinear patterns.

Artificial intelligence models developed rapidly recently
for wind speed prediction due to their strong nonlinear fitting
ability. The core parts in artificial intelligence models are
artificial neural network (ANN), mainly including back prop-
agation (BP) [15] and radial basic function (RBF) [16], recur-
rent neural network (RNN) [17] and so on. Several artificial
intelligence models were applied for forecasting short term
wind speed series in literature [18], and forecasting perfor-
mances under different structures of networks were studied.
ANN can capture the complex and key features hidden in
wind speed series and derive nonlinear relationship among
wind speed series. However, local minima and overfitting
state are often caused [19] so that the prediction accuracy
is limited. Least squares support vector machine (LSSVM)
and Gaussian process were developed for forecasting
wind speed series to overcome the above drawbacks in
literature [20], [21]. And the results showed that LSSVM
exhibited better performance than persistence model, Gaus-
sian process was proven superior to RBF for estimating the
upper and the lower bounds of wind speed. But the prediction
accuracy of LSSVM and Gaussian process depend on the
selection of the kernel function and parameters of kernel
function in the model [22].

Owing to the complex characteristics of wind speed series
and the limitation of single prediction model, many hybrid
prediction models have been developed to enhance prediction
accuracy of wind speed. The hybrid model based on ARIMA
and ANN was established to forecast wind speed in litera-
ture [23], and the results show the superior prediction results
were obtained compared with single ARIMA and ANN.
With the development of intelligent search algorithm, such as
genetic algorithm (GA) and practical swarm algorithm (PSO)
and so on, the drawback of local optimization for many ANNs
could be improved by combing intelligent search algorithm.
The literature [24] combined GA and BP neural network to
forecast 10-min and 1 h wind speed series, and the better
forecasting performance was obtained compared with single
BP neural network.

Almost wind speed prediction models mentioned above
establish prediction model by directly using historical data.
However, wind speed is influenced by atmospheric motion
in reality, which brings certain disturbances and chaos char-
acteristics to wind speed [25], [26], so atmospheric motion
brings obstacles to accurate wind speed prediction. The
literature [27] proposed that chaos characteristic is existed
in short time wind speed time series, so the prediction
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accuracy of wind speed prediction model considering the
chaos characteristics has been improved. For complex and
nonlinear features of wind speed, many nonlinear analy-
sis tools were developed. Decomposition-based methods,
including wavelet transform (WT) [28], empirical mode
decomposition (EMD) [29], and variational mode decompo-
sition (VMD) [30] etc., were widely applied to pre-process
wind speed data and obtain relatively stable subseries. The
literature [31] adopted WT to preprocess wind speed series
and build prediction model for separate components, but
the effectiveness of WT depends on the empirical selection
for wavelet basis function. EMD can adaptively decompose
raw series into a series of relatively stable subseries, but the
literature [32] pointed out that mode mixing occurs in decom-
position process of EMD, so hybrid prediction model based
on EMD is restricted. Ensemble empirical mode decomposi-
tion (EEMD) is a noise assisted data analysis method. Mode
mixing existed in EMD can be effectively improved by using
assisted Gaussian white noises. But the decomposition effect
of EEMD is related to the amplitude and ensemble times
of white noises. And there is no specific criterion for the
selection to the amplitude and ensemble times of white noises
at present [33]. VMD was applied to decompose raw wind
speed series in literature [34], but the determination to the
number of modes for VMD has no uniform criterion. The
Lorenz equation and VMD are adopted in wind speed predic-
tion model in literature [35], and the wind speed prediction
accuracy has been improved. However, the Lorenz equation
cannot describe the disturbance comprehensively and there
isn’t concrete criterion to the parameter selection of Lorenz
equation to ensure the prediction accuracy. Thus, for predict-
ing wind speed, the physical characteristics of actual wind
speed need to be scientifically studied further. In addition,
the prediction model based on decomposition method still
have room to enhance.

Based on the above, a novel self-adaptive hybrid wind
speed prediction model considering atmospheric motion and
fractal feature is proposed in this paper. Firstly, physical
characteristics of atmosphere motion on wind speed series
is analyzed and described by Lorenz-Stenflo (LS) equation.
By employing the optimization effect of one-dimension LS
motion series, the effects of atmosphere motion are weakened
during the process of EEMD decomposition to wind speed.
Then the key parameter of LS equation is determined based
on the Fractal Dimension (FD) of wind speed, which achieves
the adaptivity to different wind speed series. The optimization
mechanism considering atmosphere motion is analyzed from
the distributions of extreme points and envelope curves of
wind speed series. Finally, back propagation (BP) neural
network is used for prediction. To conquer the drawback
of falling into local optimum and over-fitting for BP neu-
ral network, BP neural network optimized by genetic algo-
rithm (GA-BP) is adopted. Eight groups of wind speed data
on different time scales (10-min interval, 30-min interval,
1-h interval and 2-h interval) from two wind farms of
Abbotsford in Canada and Kansas in US are selected to test
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and evaluate. The superiority and universality of proposed
prediction model are verified compared with various predic-
tion models.

The structure of this study is organized as follows:
Section 2 introduces the theories of LS equation, EEMD,
decomposition method considering atmospheric motion and
GA-BP neural network. Section 3 introduces the key parame-
ter in LS equation selection principle and mechanism analysis
of decomposition method considering atmospheric motion.
Section 4 compares and analyzes the prediction results of
eight groups of wind speed data on different time scales
among the proposed method and other benchmark models.
Section 5 makes the conclusion and outlook.

Il. RELATED METHODOLOGIES

A. DESCRIPTION OF ATMOSPHERIC MOTION-LS

MOTION SERIES

In reality, atmospheric motion influences wind speed and
brings certain disturbances and chaos characteristics to wind
speed, so that wind speed series exhibits the features of
uncertainty and volatility. Atmospheric system is the
deterministic dynamic system, which can be described by
deterministic equation. In this paper, for the disturbances and
chaos effect caused by atmospheric motion on wind speed
series, the LS equation is adopted to describe the character-
istics of atmospheric motion. Lorenz equation is a simple
differential equation to describe atmospheric fluid motion,
it can capture the periodic and aperiodic chaos characteristics
based on the deterministic equation [36]. The LS equation
is developed from the Lorenz equation considering the rota-
tion of airflow [37], which can be employed to describe the
characteristics of atmospheric fluid motion more comprehen-
sively. LS equation is shown as formula (1):

Xx=aly—x)+yw
y=x(r—z—y
z=xy — Bz
Ww=—x—aw

ey

where, x, y, z, w respectively represent the convection motion
intensity, the temperature difference between upflow and
downflow, the deviation of vertical gradient of average tem-
perature, the rotation of airflow. « is the Prandtl number, r is
the Rayleigh number, 8 is the geometrical parameter, y is the
rotation number. The LS equation remains unchanged under
the transformation M: (x, y, z, w) — (—x, —y, —z, —w) and
has symmetry about the z axis. In general, when LS is used
to describe atmospheric system, «, B, y have little effect on
nonlinear system described by LS equation and are usually
set to fixed values(e = 10,8 = 8/3,y = 1) [38], [39].
The value of r has a great effect. The atmospheric motion
characteristics described by LS equation in different r are
shown in table 1 [40].

As shown in table 1, the value of r has a great effect on
atmospheric motion characteristics described by LS equa-
tion, so r is the key parameter. In addition, LS equation can
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TABLE 1. The atmospheric motion characteristics described by LS
equation in different r.

Value of » atmospheric fluid motion
0<r<l Heat conduction
1<r<13.97 Convection motion
13.97<r<24.74 Transient chaos
r>24.74 Chaos

represent the aperiodic and periodic chaos characteristics of
the atmospheric system in different », which is consistent
with the characteristics that short term wind speeds have
different chaos degrees on different time scales. That is
different wind speed series show different fluctuation char-
acteristics, which can be approximatively demonstrated by
LS equation. And when the parameters of LS equation
are set as some values, solve the LS equation, and the
four-dimensional motion series x,y, z, w can be obtained,
then normalize the four-dimensional motion series with
formula (2):

-~ X — Xmin
X = —

Xmax — Xmin
~ Y~ Ymin
7y Vi

max — Jmin 2
~ Z — Zmin @
1=

Zmax — Zmin
~ W — Wmin
W= ———

Wmax — Wmin

where, x,y,z, w are the four-dimensional motion series,
Xmax»> Ymax» Zmax> Wmax aNd Xmin, Ymin, Zmin» Wmin are respec-
tively maximums and minimums of x, y, z, w, X, y,Z, w are
the normalized four-dimensional motion series. Assume
that r is equal to 30 and the initial value of the sys-
tem [xg, Yo, 20, wo] is equal to [0.01, 0.01, 0.01, 0.01]. The
motion characteristics of the attractor is shown in figure 1.

FIGURE 1. The motion characteristics of the attractor in r = 30.

As shown in figure 1, the motion of the attractor has
large deviation compared with the initial value, which has

VOLUME 8, 2020



J. Jin et al.: Novel Self-Adaptive Wind Speed Prediction Model Considering Atmospheric Motion and Fractal Feature

IEEE Access

the uncertainty but varies within certain limits. The motion
characteristics of the attractor in r = 30 exhibits the chaos
characteristics. So the motion of the attractor in proper r
can capture the chaos and transient chaos information of
short term wind speed series. Because wind speed series is
one-dimensional time series, so we map four-dimensional
motion series into one-dimensional motion series by using
Manhattan Distance method in formula (3) so that the
one-dimensional motion series contain the information of
X, y, Z, w, and better describe the effect of atmospheric motion
on wind speed. Figure 2 shows the one-dimensional LS
motion series d s in 7 = 22 and r = 45. As shown in figure 2,
the trend of the one-dimensional LS equation motion series
all have a large deviation from the initial value, which reflects
certain disturbances and chaos characteristics. According to
Table 1, it reflects the transient chaos characteristics in r = 22
for the one-dimensional LS motion series di s. And the chaos
characteristics is reflected in r = 45 for dig. So the distur-
bances and chaos effect of atmospheric motion on wind speed
can be described by the characteristics of the one-dimensional
LS motion series d s.

dis = |x —Xol + 1y —Jol + 12— 20l + 1w —wol  (3)

where, Xg, Yo, Zo, Wo are normalized initial value of the sys-
tem, dis is one-dimensional LS equation motion series.

0 400 800 1200 0 400 800 1200
t(s) t(s)

(a) (b)

FIGURE 2. The one-dimensional LS motion series d|g.(a) r = 22;
(b) r =45.

B. EEMD

EMD [41] is an adaptive signal decomposition method for
nonlinear and nonstationary time series by Huang et al. It can
decompose the time series into a number of intrinsic mode
functions (IMFs) and a residue. The IMFs and residue reflect
different time scales in the original time series. However,
mode mixing may easily occur for EMD, which will cause
EMD to be limited in applications.

EEMD [42] is a noise assisted data analysis method.
By using assisted white noises, EEMD can smooth pulse
disturbances, noises and other abnormal events, maintain
the distribution of extreme points of the time series more
uniform, which can improve mode mixing problem of EMD.
Because the white noises added to time series have charac-
teristics of zero mean, the result of ensemble mean is the
decomposition result of the time series. The details can be
seen in [42].
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C. DECOMPOSITION OF WIND SPEED BY EEMD
OPTIMIZED WITH LS EQUATION

Although EEMD has improved the mode mixing effect of
EMD to some extent, the IMFs of wind speed time series
obtained by directly using EEMD still cannot reflect the
true time scales due to the effect of atmospheric motion.
The high-frequency IMFs obtained by EEMD have cer-
tain chaos and poor regularity so that the prediction accu-
racy of wind speed based on EEMD can’t be improved
effectively. To solve the problem, the one-dimension LS
motion series dps is adopted to describe chaos informa-
tion in wind speed and improves the decomposition pro-
cess of wind speed by EEMD, which is called LS-EEMD.
The concrete process of LS-EEMD is: set the initial value
and parameters of LS equation, solve the LS equation and
obtain one-dimension LS motion series df s; then subtract the
one-dimensional LS motion di g series from the wind speed
series, decompose the new series by EEMD and then add
the one-dimensional LS motion series to the residue of the
EEMD so that the decomposition result is still the decompo-
sition result of the original wind speed series. Because the
disturbances and chaos effect existed in wind speed can be
weakened before decomposition by LS-EEMD, the IMFs that
better reflect the true time scales in wind speed series can be
obtained.

D. D GA-BP NEUTRAL NETWROK

Back propagation (BP) neutral network is one of the most
commonly used artificial neural network models, which
consists of input layer, hidden layers and output layer.
It concludes two parts: forward propagation and error back
propagation. The inputs are passed layer by layer by for-
ward propagation. The outputs go back to the input layer by
error back propagation if a large error occurs between the
output value and expected value. The details can be seen in
literature [29]. BP neural network may easily enter the state
of falling into local optimum and over-fitting in predicting
wind speed series. Genetic algorithm (GA) can be adopted to
improve the drawback of BP neural network due to its global
optimization ability. The initial weights and threshold values
of BP neutral network can be optimized by GA. The GA-BP
model is shown in figure 3.

Ill. SELECTION TO THE KEY PARAMETER IN LS-EEMD
AND MECHANISM ANALYSIS FOR FD-LS-EEMD

A. FD-LS-EEMD

When LS-EEMD is used to improve the decomposition pro-
cess of wind speed by EEMD, «, §, y have little effect on
the decomposition effect of LS-EEMD and are set to fixed
values. The value of r has a great effect on decomposition
effect of LS-EEMD. Different wind speed series contain
different degrees of atmospheric disturbances and chaos.
So LS-EEMD needs to adaptively select the value of r
according to effect degrees of atmospheric disturbances and
chaos on wind speed series. So r is the key parameter.
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Determine the topology structure
of BP neural network

v

Determine the parameters and
Initialize genetic code for GA

Decode and get weights and
threshold values

Get mew
genetic code

Output weights and threshold
values

FIGURE 3. The structure of GA-BP neural network model.

Fractal dimension is a mathematical method to reveal the
distribution characteristics and complexity of elements in
different scales [43]. Fractal dimension is related to chaos
and can have a quantitative analysis to the randomness and
irregularity of the signal. The fractal dimension is sensitive
to variation of time series. Meanwhile, the calculation of
fractal dimension needs less parameters and does not need
the process of the phase space reconstruction. So we try to
adopt the fractal feature of wind speed series to select the
key parameter in LS-EEMD, and the optimized LS-EEMD
by calculation fractal dimension is called FD-LS-EEMD.
Box-counting dimension algorithm is a classical method
to calculate fractal dimension [44]. The Hurst index H is an
important parameter in box-counting dimension method. The
relationship between fractal dimension D and H is:

D=2-H 4)

where, D is the fractal dimension; H is the Hurst index.
H can be calculated according to the equation (5):

2
H— lim IgN(At) _ lim N(At)/ At 5)
At—0 At At—0 1g(1/Af)
n—1
N(AD =) If (i + Ab) — f (1) At 6)
i=0

where, f(t;) is the value of time series at #;; N(At) is the
rectangle area; n is the data number in At.
So D can be denoted as formula (7):

lg N(A?
D= lim (2 ENAD
At—0 At

2
V- pim ENV@D/AD)
ar—0  1g(1/At)

Figure 4 shows the process of calculating its fractal
dimension for an arbitrary signal. After selecting a specific
time interval At, |f(t; + At) — f(¢;)| reflects the fluctuation
degree of the time series, N (At) reflects the rectangle’s cov-
erage degree of the time series in time interval Ar.

To verify the quantitative analysis role to the random-
ness and irregularity of the series by the fractal dimension,
10-min interval wind speed series from 301 to 450 in
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FIGURE 4. Arbitrary signal covered by rectangles with a specific time
interval in calculating fractal dimension.

Abbotsford wind farm is adopted for analysis as it contains
different degrees of volatility and complexity of wind speed
series. Figure 5 shows the distribution of 10-min interval wind
series from 301 to 450.

6 L 4
Group A Group B

@ 4r 1
g
>

2 [ -

Group C
900 350 400 450
t (10 min)

FIGURE 5. The distribution of 10-min interval wind series from 301 to
450 in Abbotsford wind farm.

The 150 points in figure 5 are divided into three groups for
easy analysis: Group A from 301 to 350; Group B from 351 to
400; Group C from 401 to 450. There are only 50 points for
every group so that the degree of volatility and complexity
of every group can be intuitively observed. As can be seen,
Group A and Group B are relatively close in data complexity.
They have stronger volatility compared with Group C. And
data of Group A have slightly stronger variation compared
with those of Group B. The data of Group C has stronger
correlation and weaker complexity. Despite of larger ampli-
tudes, the data of Group C changes more slowly and has
better correlation among data. As the time interval A¢ should
be set as small as possible in calculating fractal dimension,
the time interval At is set as 1 here. The fractal dimensions of
three groups of data are calculated by using the box-counting
dimension algorithm, and the results are shown in table 2.

As shown in table 2, the fractal dimensions of Group A and
Group B are close and the fractal dimension of Group C is the
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TABLE 2. Fractal dimensions of three groups of data.

Wind speed D
Group A 1.3926
Group B 1.3831
Group C 1.1861

smallest. This indicates that the smaller the fractal dimension
is, the stronger the correlation among data points is. The
random fluctuation of group A and group B is stronger, and
the correlation among data is weaker so that they have larger
fractal dimensions. By comparing the data of Group A and
Group B, the data of Group A vary slightly quickly at about
322-333 so that the fractal dimension of the data of Group A is
slightly larger than that of the data of Group B. Therefore, the
fractal dimension can be used to quantificationally describe
the degree of volatility and complexity of wind speed series.
The wind speed series with stronger volatility have weaker
correlation among data so that they have larger fractal dimen-
sion. The wind speed series with weaker volatility tend to
have stronger correlation among data points so that they have
smaller fractal dimension.

According to the correlation of fractal dimension and the
volatility and complexity of wind speed series, the frac-
tal feature of wind speed can be developed to determine
the key parameter of LS equation. Thus, FD-LS-EEMD
solves the problem of selection to the fixed key parame-
ter r of LS-EEMD and is more adaptive than LS-EEMD.
And FD-LS-EEMD realizes the effectiveness to different
wind speed series based on the fractal feature. The main
process for FD-LS-EEMD is: set the initial value and «, 8, y
of LS equation, set r as a small value (As known in Table 1,
r needs to exceed 13.97). When the wind speed series that
subtracted the one-dimension LS motion series has been
decomposed by EEMD, calculate the fractal dimensions of
IMFs. The decomposition process for FD-LS-EEMD is fin-
ished if the fractal dimensions of IMFs obtained by FD-LS-
EEMD are less than that by EEMD. Or else increase the
value of r until the condition is met. Because the prediction
errors by EEMD are mainly existed in high-frequency IMFs,
the first three IMFs are required to meet the condition to
reduce calculation time. The wind speed decomposition by
FD-LS-EEMD is shown in figure 6.

B. MECHANISM ANALYSIS FOR FD-LS-EEMD

EMD decomposes wind speed series by finding the extreme
points of the series and sieving mean envelope curves. For
actual wind speed series, the abnormal extreme points are
existed in wind speed series due to the atmospheric distur-
bances and noises. The overshoot and undershoot of envelope
curves will occur so that the IMFs cannot maintain the true
time scales, which caused the mode mixing problem [45].
EEMD can improve the distribution of the extreme points of
the wind speed series by using assisted white noises, but there
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new series

¥

Calculate the fractal
dimensions of high-frequency
components of LS-EEMD

No
<]

| Add d; s to the remainder |

v

| Output subsequences results |

FIGURE 6. The wind speed decomposition by FD-LS-EEMD.

is still no specific basis about the selection to the amplitude
and ensemble times of white noises. The abnormal extreme
points are still existed. The decomposition effects are unsatis-
factory so the prediction accuracy is limited. The disturbances
and chaos effects caused by atmospheric motion on wind
speed are considered for FD-LS-EEMD, it can weaken atmo-
spheric motion effects on the wind speed series. Based on
the fractal feature of wind speed, FD-LS-EEMD can maintain
the distribution of extreme points more uniform and improve
the problem of overshoot and undershoot of envelope curves
of EMD and EEMD for different wind speed series. So
FD-LS-EEMD can obtain IMFs that better maintain the true
time scales of wind speed series. To illustrate the superiority
of FD-LS-EEMD compared with EMD and EEMD, the upper
envelope curves respectively obtained with EMD, EEMD
and FD-LS-EEMD for 10-min interval wind speed series in
Abbotsford wind farm are shown in figure 7.

As shown in figure 5, the distribution of extreme points is
very nonuniform and the problem of overshoot of envelope
curve occurs at about 534-538 and 548-555 for EMD, and
the abnormal extreme point occurs at 540. So the envelope
curve isn’t very smooth and has the problem of overshoot
of envelope curve with EMD. The problem of over-
shoot of envelope curve occurred at about 534-538 and
548-555 is improved by EEMD. And the abnormal extreme
point occurs at 540 is eliminated. However, white noises
may cause abnormal extreme points, such as the 559th point.
So EEMD can improve the distribution of extreme points with
assisted white noises, but the envelope curve still isn’t enough
smooth. Due to weakening disturbances and noises caused by
atmospheric motion, the problem of overshoot of envelope
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Abnormal
extreme point

15F ,;" |
Do

— By FD-LS-EEMD

820 540 560 580
t (10 min)

FIGURE 7. Distribution of upper envelope curves obtained with three
decomposition methods for 10-min interval wind speed.

curve occurred at about 534-538 and 548-555 is obviously
improved, the problem of unsmooth envelope curve caused
by abnormal extreme point at the 559th point is solved mean-
while. So FD-LS-EEMD can obtain IMFs that better maintain
true time scales.

IV. CASE STUDY

A. DATA SETS

As the accuracy of wind speed prediction is influenced by
different wind farms. Eight groups of wind speed data on
different time scales from Abbotsford wind farm and Kansas
wind farm are selected for analysis in this paper. There
are 1200 wind data for every group. The first 1100 wind speed
data are used to train model and the last 100 wind speed data
are tested and evaluated.

B. PREDICTION MODEL AND EVALUATION INDICES
Considering the disturbances and chaos effects caused
by atmospheric motion on wind speed, FD-LS-EEMD is
employed to pre-process wind series, then GA-BP neural
network is adopted to predict every IMF and residue. So a
wind speed prediction model based on FD-LS-EEMD and
GA-BP neural network is developed.

To effectively evaluate the effectiveness of the pro-
posed prediction model, Mean Absolute Percentage Error
(MAPE), Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) are used for analysis. Smaller values
of MAPE, MAE and RMSE correspond to better prediction
performance of the model. The evaluation indices are shown
as follows:

n
lp()—c@I
,Z% (i)

MAPE = = % 100% (8)
n
> le@) = p()]
MAE == 9)
n
> (pli) — )
RMSE — |=L (10)

n
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where, p(i) is the prediction value, c(i) is the actual value, n
is the number of data.

In addition, to exhibit the effectiveness of various predic-
tion models, the improvement relative to the persistent model
is analyzed between the persistent model and other models
from MAPE, MAE and RMSE. The improvement indices can
directly reveal the superiority degree of various prediction
models. The improvement is:

El persistent — EI

x 100% (11
EIL persistent

Improvement =
where Elpepsistens and EI respectively stand for values of error
indices got by persistent model, and values of error indices
got by other models considered in this paper.

C. NUMERICAL RESULTS AND ANALYSIS

To verify the superiority of the proposed prediction model,
GA-BP neural network, EEMD-GA-BP neural network and
LS-EEMD-GA-BP neural network are firstly established for
comparison. Due to strong randomness and volatility for most
wind speed series, chaos characteristics are mainly existed in
wind speed series, so 7 is set as 25 for LS-EEMD-GA-BP
neural network here.

Figure 8 and figure 9 respectively show the prediction
results of wind speed for the two wind farms. As shown
in figure 8 and figure 9, all of the original wind speed series
represented with blue curve have the characteristics of volatil-
ity and non-stationary, which reflect the actual wind speed
is affected by atmospheric motion. The prediction results
generated by GA-BP neural network lag behind the actual
values for some wind data, so the prediction values and actual
values have the large deviations. The three decomposition-
based prediction models have obviously improved prediction
effect of GA-BP neural network. Compared with EEMD-
GA-BP neural network and LS-EEMD-GA-BP neural net-
work, the proposed prediction model gets the least deviations
between prediction values and actual values. This is because
FD-LS-EEMD can adaptively select the one-dimension LS
motion series d1s, which can effectively improve the decom-
position process of wind speed by EEMD, weaken the dis-
turbances and chaos effect caused by atmospheric motion on
wind speed and enhance the smooth degree of IMFs. So the
prediction results are more reliable by the proposed model
compared with other models.

Aside from prediction effect figures, error indices could
have a quantitative analysis to prediction model. Persistent
model, LSTM and DWT-GA-BP neural network are also
introduced for comparison. Table 3 shows error indices and
run time (T) generated by seven prediction models for two
wind farms. The prediction errors generated by GA-BP neural
network and LSTM are obviously less compared with those
by persistent model. Although GA-BP neural network has
larger prediction errors generally, it needs less run time so
that it is more suitable for hybrid models. For decomposition-
based prediction models, EEMD-GA-BP neural network
has better prediction effects compared with those obtained
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FIGURE 8. The wind prediction result for Kansas wind farm; (a) 10-min interval; (b) 30-min interval; (c) 1-h interval; (d) 2-h interval.

by DWT-GA-BP neural network in general. Due to the
fixed r for LS-EEMD, LS-EEMD-GA-BP neural network has
different prediction effects on different wind series. For
example, the MAPEs of EEMD-GA-BP neural network and
LS-EEMD-GA-BP neural network for 10-min interval wind
in Abbotsford farm are respectively 13.02% and 10.36%.
However, the MAPEs of EEMD-GA-BP neural network and
LS-EEMD-GA-BP neural network for 1-h interval wind in
Kansas farm are respectively 11.09% and 11.81%, which
verifies the importance of the key parameter r in LS equation.
And the best prediction effects are generated by the proposed
model for two wind farms.

For the run time, owing to the prediction to every
subsequence for decomposition-based models, several
decomposition-based prediction models need more time
compared with that of GA-BP neural network. They have
close run time for EEMD-GA-BP neural network and
LS-EEMD-GA-BP neural network, this is because the opti-
mization to EEMD by the fixed one-dimension LS motion
series drs needs little time. The proposed model needs
slightly more time compared with other two hybrid models
due to the search for the key parameter r, but the cost

VOLUME 8, 2020

can be tolerated considering the obvious enhancement of
the prediction accuracy since the calculation time can still
meet the requirement of short term wind speed prediction in
practice.

Meanwhile, table 4 shows the improvements of other
prediction models with respect to the persistent model.
As shown in table 4, all of the prediction models achieve
different improvement levels relative to the persistent model
for eight groups of wind speed series in two wind farms.
Taking 10-min wind speed series in Abbotsford wind farm
for example, the MAPE improvements of LSTM, GA-BP
neural network, DWT-GA-BP neural network, EEMD-GA-
BP neural network, LS-EEMD-GA-BP neural network and
proposed model relative to the persistent model respec-
tively are 42.24%,39.66%, 63.36%, 66.43%, 73.29% and
75.27%. The MAE improvements respectively are 25.30%,
22.21%, 63.41%, 65.39%, 67.70% and 69.59%. Through
the improvements of different prediction models relative
to persistent model for the eight cases, the proposed pre-
diction model exhibits the greatest improvement compared
to other models. It is demonstrated that the proposed pre-
diction model has better ability of capturing the complex
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FIGURE 9. The wind prediction result for Kansas wind farm; (a) 10-min interval; (b) 30-min interval; (c) 1-h interval; (d) 2-h interval.

features and better prediction effectiveness for wind speed
series.

To further reveal the reason of the perfect performance for
the proposed prediction model, the selected one-dimension
motion series and characteristics of obtained high frequency
IMFs by proposed FD-LS-EEMD are analyzed. Taking
wind speed series in Abbotsford wind farm for example,
figure 10 shows the selected one-dimension motion series
dis for four groups of wind series in Abbotsford wind
farm by FD-LS-EEMD. As shown in figure 10, FD-LS-
EEMD selects the different one-dimension motion series
dis that is suitable for every group of wind speed series.
It is demonstrated that different wind series contain different
degrees of atmospheric disturbances and chaos for actual
wind speed, so that they exhibit different degrees of volatility
and non-stationary. Based on the role of quantitative analy-
sis of fractal feature to the randomness and irregularity of
the wind series, FD-LS-EEMD can adaptively select proper
one-dimension motion series dis and achieve the effective-
ness for different wind speed series. So FD-LS-EEMD is
self-adaptive to wind speed. Then figure 11 shows the fractal
dimensions of high-frequency IMFs obtained by EEMD and

215900
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FIGURE 10. The injected one-dimension d\ s motion series for wind

series in Abbotsford wind farm by FD-LS-EEMD; (a)10-min interval;
(b)30-min interval; (c)1-h interval; (d)2-h interval.

FD-LS-EEMD for four groups of wind series in Abbotsford
wind farm. As shown in figure 11, for every decomposition
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TABLE 3. Prediction errors generated by several models for two wind farms.

Wind Abbotsford wind farm Kansas wind farm

speed Model MAPE MAE RMSE T MAPE MAE RMSE T
(%) (m/s) (m/s) (s) (%) (m/s) (m/s) ()

Persistent 38.78 0.8740 1.1603 <1 10.31 0.8042 1.0644 <1

LSTM 22.40 0.6529 0.8591 62 7.09 0.6523 0.8988 59

10-min GA-BP 23.40 0.6799 0.8680 17 7.26 0.6744  0.9282 16
interval DWT-GA-BP 14.21 0.3198 0.4100 118 3.89 0.2748  0.4140 110
EEMD-GA-BP 13.02 0.3025 0.3982 136 2.84 0.2388  0.3284 120
LS-EEMD-GA-BP 10.36 0.2823 0.3622 136 2.89 0.2253 0.3065 121
Proposed model 9.59 0.2658 0.3530 142 2.40 0.2157  0.2918 132

Persistent 18.72 0.8446 1.1053 <1 18.46 1.1693 1.1358 <1

LSTM 13.36 0.5715 0.7027 60 17.53 1.0966 1.0188 60

30-min GA-BP 14.81 0.6623 0.8830 16 18.10 1.0943 1.0115 16
interval DWT-GA-BP 8.17 0.3515 0.4027 113 7.11 04217  0.5359 111
EEMD-GA-BP 9.63 0.3600 0.4222 134 7.71 0.4562  0.5595 131
LS-EEMD-GA-BP 9.82 0.3650 0.4323 136 7.22 0.4481 0.5626 132
Proposed model 7.67 0.3258 0.3629 138 6.58 0.4163 0.5145 140

Persistent 39.69 0.6351 0.8551 <1 29.12 1.3193 1.9324 <1

LSTM 29.23 0.5343 0.6816 62 24.12 1.0071 1.4632 61

1-h GA-BP 30.21 0.5478 0.6999 16 23.74 0.9876 1.4568 17
interval DWT-GA-BP 18.54 0.2808 0.3515 117 11.84 0.5413 0.7311 116
EEMD-GA-BP 16.83 0.2450 0.3072 130 11.09 0.4484 05714 130
LS-EEMD-GA-BP 16.27 0.2307 0.2894 130 11.81 0.4535 0.5746 130
Proposed model 16.02 0.2258 0.2800 140 8.52 0.3760  0.4968 145

Persistent 39.59 0.9317 1.1792 <1 31.73 1.9295  2.4061 <1

LSTM 31.29 0.8076 0.9693 61 25.04 1.4199 1.8320 61

2h GA-BP 33.50 0.8569 1.0135 17 30.08 1.5590  2.0995 17
interval DWT-GA-BP 18.76 0.4452 0.4752 117 17.06 0.9196 1.1576 117
EEMD-GA-BP 17.40 0.4116 0.4275 125 14.18 0.7761 0.9785 134
LS-EEMD-GA-BP 17.44 0.4105 0.4302 127 13.94 0.7420  0.9698 134
Proposed model 16.45 0.4032 0.3975 142 11.81 0.6949  0.9084 150

TABLE 4. Improvement relative to the persistent model for other prediction models.

Wind Model Abbotsford wind farm Kansas wind farm
speed MAPE MAE RMSE MAPE MAE RMSE
LSTM 42.24 25.30 25.96 31.23 18.89 15.56
GA-BP 39.66 22.21 25.19 29.58 16.14 12.80
10-min DWT-GA-BP 63.36 63.41 64.66 62.27 65.83 61.10
interval EEMD-GA-BP 66.43 65.39 65.68 72.45 70.31 69.15
LS-EEMD-GA-BP 73.29 67.70 68.78 71.97 71.98 71.20
Proposed model 75.27 69.59 69.58 76.72 73.18 72.59
LSTM 28.63 32.33 36.42 5.04 6.22 10.30
GA-BP 20.89 21.58 20.11 1.95 6.41 10.94
30-min DWT-GA-BP 56.36 58.38 63.57 61.48 63.94 52.82
interval EEMD-GA-BP 48.56 57.38 61.80 58.23 60.99 50.74
LS-EEMD-GA-BP 47.54 56.78 60.89 60.89 61.68 50.47
Proposed model 59.03 61.43 67.17 64.36 64.40 54.70
LSTM 26.35 15.87 20.29 17.17 23.66 24.28
GA-BP 23.89 13.75 18.15 18.48 25.14 24.61
1-h DWT-GA-BP 53.29 55.79 58.89 59.34 58.97 62.17
interval EEMD-GA-BP 57.60 61.42 64.07 61.92 66.01 70.43
LS-EEMD-GA-BP 59.01 63.68 66.16 59.44 65.63 70.26
Proposed model 59.64 64.45 67.26 70.74 71.50 74.29
LSTM 20.96 13.32 17.80 21.08 26.41 23.86
GA-BP 15.38 8.03 14.05 5.20 19.20 12.74
2-h DWT-GA-BP 52.61 52.22 59.70 46.23 52.34 51.89
interval EEMD-GA-BP 56.05 55.82 63.75 55.31 59.78 59.33
LS-EEMD-GA-BP 55.95 55.94 63.52 56.07 61.54 59.69
Proposed model 58.45 56.72 66.29 62.78 63.99 62.25

method, the fractal dimensions of IMFs gradually decrease speed series. This is because the volatility degree of IMFs

with the declining of frequency for the four groups of wind gradually reduces and the smooth degree of IMFs gradually
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FIGURE 11. The fractal dimensions of high-frequency IMFs obtained by
FD-LS-EEMD and EEMD for the four groups of wind series in Abbotsford
wind farm. (a)10-min interval (r = 27); (b)30-min interval (r = 23);
(c)1-h interval (r = 32); (d)2-h interval (r = 48).

enhances with the declining of IMFs’ frequencies, which
confirms the quantitative analysis role to the randomness and
irregularity of the series by fractal dimension. Furthermore,
the fractal dimensions of all high-frequency IMFs obtained by
FD-LS-EEMD are less than those obtained by EEMD for
the four groups of wind speed series, which indicates the
superiority of FD-LS-EEMD compared with EEMD. There-
fore, FD-LS-EEMD can effectively weaken disturbances and
chaos effect of atmospheric motion from the raw wind series
and facilitate the more regular subsequences. So the proposed
prediction model can exhibit the promising prediction effect.

V. CONCLUSION AND OUTLOOK

The atmospheric motion system is a complex and nonlinear
system, which brings disturbances and chaos effect to actual
wind speed. To enhance accuracy of wind speed prediction,
it is very valuable to predict wind speed considering its
physical characteristics. Therefore, the wind speed prediction
model based on FD-LS-EEMD and GA-BP neural network
was proposed in this paper. LS equation was employed to
describe the disturbances and chaos effect caused by atmo-
spheric motion on wind speed, which could capture chaos and
transient chaos information from wind speed series. Owing to
improved distribution of extreme points of wind speed series
by using one-dimension LS motion series, FD-LS-EEMD
effectively weakened the effect of atmospheric motion on
wind speed. The criterion based on fractal feature ensured
the accurate selection of the key parameter in atmospheric
motion equation according to different features of sampled
wind data. Finally, the proposed prediction model achieved
promising prediction accuracy by evaluating eight groups of
wind speed series in two wind farms.

However, there are still some issues to be discussed further.
So we will focus on the following aspects in the future work.
(1) The initial value of LS equation is set to fixed value in
this paper, and the influence of initial value of LS equation
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in the practical application needs to be discussed. (2) The
four groups of wind speed series on different time scales are
tested, and wind speed series on more time scales need to be
researched to decide whether the proposed model is suitable
to wind speed series on any time scale. (3) The optimization to
the calculation time of the proposed model needs the further
research.
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