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ABSTRACT Detecting pill defection remains challenging, despite recent extensive studies, because of the
lack of defective data. In this paper, we propose a pipeline composed of a pill detection module and an
autoencoder-based defect detectionmodule to detect defective pills in pill packages. Furthermore, we created
a new dataset to test our model. The pill detection module segments pills in an aluminum-plastic package
into individual pills. To segment pills, we used a shallow segmentation network that is then divided into
individual pills using the watershed algorithm. The defect detection module identifies defects in individual
pills. It is trained only on the normal data. Thus, it is expected that the module will be unable to reconstruct
defective data correctly. However, in reality, the conventional autoencoder reconstructs defective data better
than expected, even if the network is trained only on normal data. Hence, we introduce a patch division
method to prevent this problem. The patch division involves dividing the output of the convolutional encoder
network into patch-wise features, and then applying patch-wise encoder layer. In this process, each latent
patch has its independent weight and bias. This can be interpreted as reconstructing the input image using
multiple local autoencoders. The patch division makes the network concentrate only on reconstructing local
regions, thereby reducing the overall capacity. This prohibits the proposed network reconstructing unseen
data well. Experiments show that the proposed patch division technique indeed improves the defect detection
performance and outperforms existing deep learning based anomaly detection methods. The ablation study
shows the efficacy of patch division and compression following the concatenation of patch-wise features.

INDEX TERMS Pill defect detection, deep neural network, convolutional autoencoder, unsupervised
learning.

I. INTRODUCTION
In the manufacturing process, there can be defects in products
that should be detected before they are packaged. Defective
products on the market can cause problems that can lead
to human casualties. Until recently, many companies relied
on human inspectors that can induce excessive labor cost.
With the development of deep learning, some companies are
attempting to replace human inspectors with automatic test-
ing systems. Defect detection is a task for detecting defects on
data. Defect detection can be applied to various products such
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as fabric, metallic surface, pill, and so on. This is quite dif-
ferent from object detection which is a task for detecting and
localizing predefined classes of objects. First of all, collecting
defective data is very challenging, because we cannot antic-
ipate all the types of defects in advance. Moreover, defects
mostly appear as a part of the object of interest, which makes
it hard to distinguish between a normal sample and a defective
one. Accordingly, defect detection methods require an ability
to handle the problem under the scarcity of annotated data.
This paper studies the defect detection algorithm for pills
using deep learning, to decrease the waste of human resources
and increase the accuracy of defect detection. There are
mostly three types of pill packages, i.e., bottle, bagged, and
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aluminum-plastic packages. In this paper, we focus on pills
in aluminum-plastic packages, which are easily accessible
in pharmacies. Due to their complicated production process,
defective pills are inevitably produced in aluminum-plastic
packages [15].

There are various defect detection algorithms [15], [17],
[35] based on Bayes classifier, support-vector machine, and
mixtures of dynamic textures [5], [8], [9]. However, these are
based on conventional machine learning techniques and their
performance is rather limited. Recently, some deep learning-
based methods have been proposed in various products, such
as the detecting defects on fabric, metallic surfaces [19],
[34], images and videos [4], [12], [23], [24], [30], [31], [37].
Especially, [19], [34] proposed autoencoder-based anomaly
detection methods. An and Cho [2] introduced a varia-
tional autoencoder (VAE)-based anomaly detection method.
Unlike the autoencoder-based anomaly detection method,
which identifies anomalies with reconstruction errors, the
VAE-based method identifies anomalies using reconstruc-
tion probabilities. There are also the generative adversar-
ial network (GAN) based [3], [13], [25] anomaly detection
methods [1], [18], [32]. Schlegl et al. introduced anomaly
GAN (AnoGAN) using anomaly scores to detect anomalies in
medical images. Following AnoGAN [33], Zenati et al. [36]
introduced a model based on BiGAN [10] that learns an
encoder network, along with a generator and a discrimina-
tor during training, that maps the input sample to a latent
representation and evaluated the detection performance.
Furthermore, there are adversarial learning-based anomaly
detection methods that use the adversarial loss of GAN
to detect anomalies without a generator [28], [29]. Above
methods have proposed a new way of detecting defects or
anomalies in a data, however, they are not appropriate for pill
data. The main reason is that these methods are not suitable
for training low variance data, which the pill data is. Fur-
thermore, adversarial learning-based methods need to train
an additional network to detect and localize the anomalies
and have too high capacity for pill data. On the other hand,
Du et al. have proposed a change detection algorithm for
remote sensing images [11]. The problem that they deal with
is somewhat similar to the anomaly/defect detection problem
but has a fundamental difference: Their problem is to find the
difference between two inputs of data samples, while ours
is to distinguish the defective samples from a set of non-
defective samples. In other words, the non-defective samples
are not unique and these samples also form a distribution in
the image space.

Although various studies have been conducted on defect
detection, detecting pill defects remains a challenge and has
many issues to handle. As mentioned earlier, the defective
pills should be detected before they are released into the
market. In the process, each pill should be inspected. How-
ever, in the manufacturing system, several pills are pack-
aged together in a single package. To detect defects in pills,
a cropped image containing a single pill should be extracted
from the image of a package. A naïve method would be to

simply segment the pills by thresholding the pixel values and
applying mathematical morphology to the result. However,
this process might not be successful when the color of the
pill is similar to that of the package. To resolve this problem,
we introduce a pill detection module in this paper.

After separating the images of individual pills, a defect
detection method must be applied to find defects. How-
ever, as mentioned earlier, existing autoencoder-based defect
detection networks is not the best choice for this purpose.
For more accurate results, we introduce the patch division
method in this paper. If we align a cropped pill image
accurately, the aligned images have low variance. However,
most autoencoders are usually too complex for reconstructing
these data, which end up being capable of reconstructing
unseen (defective) data. Hence, we propose a spatially variant
convolutional autoencoder based on the newly introduced
patch division method that is designed to be trained only on
normal data so that it can only reconstruct the normal pills.
We apply the patch division method on the patch-wise fea-
tures extracted from the output of the convolutional encoder
network. These features are encoded using the respective
patch-wise encoders, which have independent weights and
biases for different patches, hence the name spatially variant
autoencoder. The proposed network can have lower capacity
due to this patch-wise structure, which enforces the network
to largely focus on local information. Furthermore, the com-
putational complexity of the patch division method is com-
parable to a regular convolution. Therefore, adding the patch
division method to an autoencoder or a VAE is not too much
of a burden. The spatially variant autoencoder learns normal
data with the patch division method and detects pill defects
successfully.

The overall structure of the proposed method consists
of the pill detection module and the defect detection mod-
ule, i.e., the spatially variant autoencoder. The pill detec-
tion module estimates the pill segments using a deep
network. The distance transform [22] and the watershed algo-
rithm [20] are then used to divide the package image into
individual pill images. The defect detection module, i.e., the
proposed spatially variant autoencoder, is based on conven-
tional autoencoder-like structures but has additional layers
for patch division, which make the network largely focus
on reconstructing local regions. The proposed networks are
based either on a convolutional autoencoder or a variational
autoencoder (VAE); however, we expect that other genera-
tive models can also be used here. Our pill defect detection
method does not need annotated data.Moreover, the proposed
network doesn’t need any additional network to train the over-
all algorithm, unlike the adversarial methods. Figure 1 shows
the overall pipeline of the proposed method. Furthermore,
in this paper, we also introduce a new dataset to evaluate our
networks. The experiments show that the proposed networks
have better performance than the other autoencoder-based
baseline methods. Furthermore, we compared our method
with the existing deep-learning based anomaly detection
methods and show that the proposed methods outperform
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FIGURE 1. Overall pipeline of the proposed method.

the anomaly detection methods. We also conducted ablation
studies to demonstrates that the patch division method indeed
improves the defect detection performance.

Our contributions can be summarized as follows:
• We propose a pipeline that automates the pill defect
detection process based on the pill detection module and
defect detection module.

• We propose the patch division method to lower the
capacity of a defect detection network, because the low
variance of the data poses challenges in learning only the
information of normal data. As a result, it improves the
defect detection performance.

The remainder of this paper is organized as follows: In
Section II, we present the background of this work, i.e., the
autoencoder and VAE. In Section III, we explain the pill
detection module. In Section IV, we introduce the archi-
tecture of the defect detection module. Section V presents
the implementation details of our model. Section VI and
Section VII detail the experimental results and ablation stud-
ies, respectively. The conclusion follows in Section VIII.

II. BACKGROUND
The proposed method is based on autoencoders and VAEs.
In Sections II-A and II-B, we explain the concepts of an
autoencoder and a VAE, respectively.

A. AUTOENCODER
In this paper, we use autoencoders to differentiate defective
data from normal data. The goal of using autoencoders is to
train them so that they are only capable of reconstructing the
normal data.

Autoencoders are a particular structure of neural networks
that are used in many problems such as image reconstruction
and information encoding. They are often used to learn a
meaningful latent representation from input data. An autoen-
coder consists of an encoder network and a decoder net-
work. The encoder learns the mapping between the input

data and a multi-dimensional latent space. On the other hand,
the decoder network learns to reconstruct the original input
image from the learned feature map of the encoder network.
The loss function of an autoencoder is the difference between
the original input data and the reconstructed data.

z = h(x) (1)

x̂ = g(z) = g(h(x)) (2)

L = ||x − x̂||2 (3)

The equation (1) maps an input vector x to a latent variable
h using the encoder network. The equation (2) maps the latent
variable h to the reconstructed vector x̂. An autoencoder is
usually trained tominimize (3), which is called reconstruction
error. No label is required in this learning process, so it is
called unsupervised learning.

B. VARIATIONAL AUTOENCODER
A VAE is a generative model that approximates a posterior
density using variational inference [16]. It is based on an
autoencoder-like structure and the latent variable is assumed
to be a random variable. Let us consider a dataset
X = {x(i)}

N
i=1 consisting of N i.i.d. samples of some continu-

ous or discrete random variable x. The marginal likelihood of
data to be maximized is the sum of the marginal likelihoods
of individual data:

log pθ (x(1), . . . , x(N )) =
N∑
i=1

log pθ (x(i)) (4)

Let us introduce a known model qφ(z|x), i.e., an approxima-
tion to the unknown model pθ (z|x). The marginal likelihood
of each data can be represented as follows:

log pθ (x(i)) = DKL(qφ(z|x(i))||pθ (z|x(i)))

+Eqφ (z|x)[− log qφ(z|x)+ log pθ (x, z)] (5)
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FIGURE 2. Data pre-processing pipeline.

Because the KL divergence term is greater than or equal to
zero, the equation (5) can be rewritten as follows:

log pθ (x(i)) ≥ L(θ, φ; x(i))

= Eqφ (z|x)[− log qφ(z|x)+ log pθ (x, z)]

= −DKL(qφ(z|x(i))||pθ (z))

+Eqφ (z|x(i))[log pθ (x
(i)
|z)] (6)

Now, the optimal parameter can be found by solving the
problem:

(θ∗, φ∗) = argmax
θ,φ

L(θ, φ; x(i)), (7)

To train a VAE, the loss function should be differentiable.
However, the last term of the right-hand side in the equa-
tion (6) is not differentiable, because the sampling is not a
differentiable operation. Kingma andWelling [16] introduced
the reparameterization trick to make the model to be deter-
ministic (differentiable) by making qφ(z|x) = N (µ(x), σ (x))
if we choose Gaussian. Then, z can be expressed as z =
µ(x) + 6(x)1/2 · ε, where ε ∼ N (0, I ). Finally, z becomes
differentiable with respect to (w.r.t.) the parameter (µ,6).

III. PILL DETECTION MODULE
In the manufacturing process, several pills are packaged in a
single aluminum package. Then, many of these pill packages
are carried on conveyor belts before it is packed in paper
boxes. Unfortunately, there can be defects in these products.
Thus, before they are on the market, it should be examined if
there is a defective pill in each pill package. Even if there is
only one defective pill in an aluminum package, the entire
package should be abandoned. The images of the package
on the conveyor belts can be easily obtained with a camera,
so using computer vision and deep learning techniques to

detect those defects can be a cost-efficient way for han-
dling this problem. In order to realize this system, we first
divide the image of a single package into cropped images
containing individual pills so that we can concentrate on
each pill.

The pre-processing procedure for preparing the training
data is three-fold. The pipeline of the data pre-processing
part is shown in Figure 2. First, we align the pill pack-
age using the principal component analysis (PCA) algorithm
(Section III-A). Second, we annotate the pills in the aligned
results. Then, we train a segmentation network to segment
the pills (Section III-B). Finally, we separate individual pills
using the segmentation result (Section III-C).

A. PACKAGE ALIGNMENT WITH PCA
We used similarity transforms to align packages, because the
manufacturing environment restricts the experiment condi-
tions such as camera angle and location of the camera. The
package alignment makes the pill segmentation easier. It has
been a popular technique to apply PCA to the coordinates
of positive points in mask images in order to find similarity
transformations and align images. For example, Mudrová
and Procházka described two applications of PCA in image
processing. One is image compression and the other is image
rotation [21]. Recently, Rehman and Lee used PCA to align
medical images [26].

We applied PCA to the coordinates of the edges detected
by the Canny edge detector [7] to find the principal axes.
Then, the input images are aligned based on the principal
components of the coordinates. Furthermore, to obtain more
accurate principal components, we applied a median filter to
denoise the detected edges. Then, edges inside of the package
region are discarded by examining each edge pixel whether it
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FIGURE 3. Alignment results for the three data.

is the left-most, right-most, top-most, or bottom-most among
the edge pixels in the same row or column.

B. SEGMENTATION NETWORK
We built a simple segmentation network to separate a package
into individual pills. The training data are the alignment
result of the pill packages and the labels have been annotated
manually. The network is composed of two convolutional
layers and a ReLU layer. The output of the segmentation
network is the mask of the detected pills in the input image.
Because the data is quite simple, two convolutional layers are
sufficient to detect pills in package images. The dimensions
of the convolutional layers are 128 and 1, respectively, and
the kernel size is 3.

C. DISTANCE TRANSFORM AND WATERSHED ALGORITHM
To divide a package image into individual pill images,
we applied the distance transform [22] and the watershed
algorithm [20] to the mask. Then, the mask is separated for
each pill. We again applied PCA to the coordinates of the
mask of each pill to find their principal axes to align each pill
image. From the center of each pill, we crop the 160×160×3
pill image, considering the principal axes.

Figure 3 shows the result of the pill alignment. After
the alignment, the normal pills are aligned with the center.
However, the defective pills with cracks or peeled surfaces are
often not perfectly aligned, because themasks of the defective
pills are usually unbalanced.

IV. DEFECT DETECTION MODULE BASED ON AN
AUTOENCODER WITH PATCH-WISE FEATURES
The proposed spatially variant autoencoder is trained only
on normal images. We assume that the network is only
trained on normal data and is therefore unable to reconstruct
defective pills correctly. However, if the network has a good
generalization performance, even if the network is trained
only on the normal images, the defective pills would be
reconstructed correctly as well. This may be attributed to the

high capacity of a deep neural network (DNN). The proposed
method effectively minimizes the capacity of the network
while maintaining its ability to represent the normal samples
accurately, which makes it a good fit for unsupervised defect
detection.

In the proposed method, the convolved features are divided
into patch-wise features and then they are applied to the
patch-wise encoders. This method is hereafter referred to the
patch division method. The patch division method effectively
suppresses the capacity of the network, compared to when
only the plain fully connected layers are used, because the
patch division method reduces the number of parameters by
approximately N 2

p times where Np is the number of patches.
The patch division method enforces the network to con-
centrate on local areas rather than the global area, thereby
effectively degrading the generalization ability of the linear
layers in the network.

Figure 4 shows our network’s architecture. The network is
basically an autoencoder. The encoder consists of three parts,
i.e., the convolutional part, the patch-wise part, and the global
part. Likewise, the decoder has corresponding parts that are
inverted versions of the above parts.

The input size of the proposed network is 160 × 160 × 3,
the same as the pill image extracted in Section III. An input
image passes through five convolution layers to become a
80 × 80 × 16 feature map. These convolution layers are
the convolutional part mentioned above. The convolutional
part learns the low-level features of the normal data. Then,
we divide the convolved features into 400 disjoint patches.
Let us consider a feature map F ∈ RW×H×C that is divided
into patches {Pij ∈ Rm×n

}. The pixels of Pi can be a derived
from F as follows:

Pij(x, y) = F(x + n(j− 1), y+ m(i− 1))

for 1 ≤ x ≤ n, 1 ≤ y ≤ m. (8)

In the patch-wise encoding layer, each patch has its own
weight and bias. This can be viewed as applying a fully
connected layer to each patch. The encoded patch-wise
features are then vectorized and concatenated. The con-
catenated feature vector passes through the global encod-
ing layer to further compress the concatenated features
into latent features. Note that, because the patch-wise fea-
tures have been already compressed by individual patch-
wise encoding layers, this global encoding layer has to only
deal with the dimension-reduced versions of the features,
which can greatly reduce the capacity of the overall encoder
structure.

The decoder has a similar structure to the encoder. The
latent features pass through the global decoding layer, and
they are reshaped again into patch-wise features to which
the patch-wise decoding layer is applied. The decoded patch-
wise features are reshaped to form a 80 × 80 × 16 feature
map and pass through five deconvolution layers, i.e., the
convolutional decoding layers, and one sigmoid layer.
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FIGURE 4. Architecture of the proposed defect detection module based on the pill reconstruction network.

TABLE 1. Kernel sizes and strides of the layers in the proposed autoencoder (Autoencoder with patch division). The VAE with patch division has a similar
structure with the autoencoder except for an additional Gaussian inference. We refer to the spatially variant fully connected layer as SVFC. SVFC
1 corresponds the patch-wise encoder and SVFC 2 the patch-wise decoder.

V. IMPLEMENTATION DETAILS
In this section, we will explain the implementation details
of our network and experimental settings. We conducted
experiments on an Nvidia Titan Xp GPU. We used the binary
cross-entropy loss instead of the mean squared error, because
the latter can cause blurry outputs. Further, we used the Adam
optimizer where the learning rate and the weight decay were
both fixed as 10−4. All the activation functions were set to
leaky ReLU. The size of the mini-batch was five. The number
of training epochs was 200. Table 1 shows our network. The
size of the input image is 160× 160× 3. By passing through
the convolutional encoding layers, the dimension of the input
features becomes 80 × 80 × 32. The kernel size was seven
for all convolutional layers, and the strides were one for from
Conv 1 (Deconv 2) to Conv 4 (Deconv 5) and two for Conv 5
(Deconv 1). The number of patches were 400 and the width

and height of each patch were both set to four, which achieved
the best performance as shown in Figure 6. After vectorizing
each patch-wise feature, there were 512 channels; these were
then encoded into 256 channels by the patch-wise encoding
layer. These 400 256-channel vectors were then concatenated,
and further encoded into a 64-channel vector. The decoder
has a similar inverted structure to reconstruct a 160×160×3
image.

A. COMPUTATIONAL COMPLEXITY AND
PROCESSING TIME
In this section, we compare the computational complexities
between a regular convolution and the patch division method.
Let us consider a feature map F ∈ RW×H×C . If we apply
a convolution to the feature with a k × k kernel whose
output channel size is C ′, the computational complexity of
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TABLE 2. Processing time (sec) of the proposed methods.

the convolution is O(WHCC ′k2). On the other hand, if we
apply the patch division method with patch size m × n,
the number of patches becomes (WH )/(mn), and the fully-
connected operation for each patch takes O(mnCD) where
D is the dimension of output vectors. Accordingly, the com-
putational complexity of the patch division method becomes
O(WHCD). Depending on the value of D, the computational
complexity and the output size of the patch-wise layer can be
different: If D = C ′k2, the complexity is the same as that
of the previous convolution. However, the size of the output
will become (WH )/(mn)×C ′k2 = WHC ′× k2/(mn), which
is WHC ′ for the previous convolution, so the output size of
the patch-wise layer is either larger or smaller depending on
the ratio between k2 and mn. If D = mnC ′, on the other
hand, the output size becomes (WH )/(mn)×mnC ′ = WHC ′,
which is the same as that of the convolution. In this case,
the complexity becomesO(WHCC ′mn), which is again either
larger or smaller than that of the convolution depending on
the ratio between k2 and mn. k , m, and n are usually small
positive integers around three to seven, thus we can say that
both the operations have comparable complexities.

Table 2 shows the processing time of the proposed meth-
ods. As shown in the table, all the training took around one
hour. Here, we refer to the patch division as PD. Note that
the plain autoencoder (or VAE) had a similar structure to
that described in Table 1, replacing the SVFC layers with
convolutional layers with the same output sizes. k was set
to seven and both m and n were set to four, so the compu-
tational complexities of the SVFC layers were about three
times smaller. However, the above table shows that the plain
autoencoder (or VAE) was faster, and we conjecture that this
has to do with the convolution operation being optimized on
GPUs with CUDA.

VI. EXPERIMENTS
A. DATASET AND EVALUATION METRIC
1) DATASET
We controlled the image acquisition process to have identical
conditions for illumination, focal length, and the distance
between the pills and the camera. For the convenience of
segmentation, the background of the data was set to a black-
colored paper. We selected three different types of pills to
demonstrate the efficacy of our networks for diverse data.
Data 1 was the easiest one. The difference between normal
and defective data was very distinctive, because the pill was
white inside and green outside, as shown in Figure 3. Data
2 was the hardest one in terms of defect detection, as shown
in Figure 3, because there was major light reflection on the

package unlike the other datasets. Data 3 was the hardest data
for the segmentation task, because the colors of the pack-
age and pills were very similar. To produce defective pills,
we manually repackaged some pills after breaking them with
hands. Each dataset had 2000 segmented normal pill images
that were used to train the spatially variant autoencoder.
Additional 500 normal and 500 defective images were used
for validation and test. These sets were randomly sampled and
fixed, and cross-validation was not used in the experiments.
We compared the performance of our networks with that
of a plain autoencoder and a plain VAE. Although the pill
dataset is quite small compared towhat is usually used in deep
learning, but the variance in the pill data is also small due
to the restricted data acquisition process. Therefore, it was
enough to learn the features of the pill data using the patch
division method.

2) EVALUATION METRICS
The receiver operating characteristic (ROC) curve and area
under the curve (AUC) were used for evaluation. To find the
optimal parameters, such as the number of patches, the num-
ber of channels, and the kernel size, we conducted a random
search on a few dozen cases. Following the random search,
we chose a few parameters that had high detection perfor-
mance and conducted narrow tuning around them to identify
the best parameters.

B. QUANTITATIVE RESULTS
Table 3 shows the AUC values for each data and the exper-
iments are conducted on AE, VAE, AE with PD, and VAE
with PD. The values in the table are the average AUC
values and standard deviations of five trials. Here, (A) indi-
cates that the same hyper-parameters were used for all data,
while (O) means that different optimal hyper-parameters
were selected for each data. When we compared AE (A) with
AE with PD (A), the smallest increase in the AUC value was
2.21% on Data 1, and the greatest increase in the AUC value
was 4.1% on Data 2. Moreover, note that AEwith PD (A) was
not less effective than AE (O), even though AE (O) was much
more finely tuned. Similarly, the AUC values of VAEwith PD
(A)were greater than those of VAE (A). The smallest increase
in the AUC value was 0.69% on Data 1, and the greatest
increase in theAUCvaluewas 5.07%onData 2. Furthermore,
VAEwith PD (A) demonstrated better performance than VAE
(O), although VAE (O) was much more finely tuned. The
table shows that the proposed method does not show much
increase in performance for Data 1 as for the other datasets.
This is because Data 1 is the easiest data for detecting defects
as mentioned in Section VI-A. Accordingly, defects in Data
1 can be easily detected even though the patch division is not
used.

Figure 5 shows the ROC curve for each data on all the
proposed methods. The defectiveness of the result obtained
using the plain VAE is measured either based on the recon-
struction error or the norm of the latent features. If the norm
of the latent features is close to 0, it can be interpreted to
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TABLE 3. AUC table. (A) means that the same hyperparameters are used for all data. (O) means that different optimal hyperparameters are selected for
each data, i.e., hyperparameters are tuned for each data.

FIGURE 5. ROC curves for the three datasets. The orange, blue, green, red,
and violet lines show the performances of the proposed autoencoder
with the patch division method, the plain autoencoder, the plain VAE,
the VAE with the patch division method, and defect detection based on
the norm of the latent variable of the plain VAE, respectively.

mean that the input image is normal, because the network is
trained on normal data and the latent features of a VAE are
supposed to be standard Gaussian. For all the other networks,
the reconstruction error was used. Figure 5(a) and Figure 5(c)
shows that the detection performance of the proposed net-
works was better, compared to the other networks, on all
datasets. The ROC curves on all the data show that using the

FIGURE 6. Performance for different sizes of patches on each dataset.
The blue, orange, green, and red lines indicate the ROC curves when the
patch sizes are two, four, six, and eight, respectively.

norm of the latent variable in VAE is also useful for detecting
defects. When the latent variable (ẑ) of the whole training
data follows N (µ̂, σ̂ ), and the latent variable (z) of a given
test image follows N (µ, σ ), we can translate the center of
the latter distribution to zero by subtracting µ̂. As shown
in Figure 5, measuring the norm of VAE can be used
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FIGURE 7. Performance for different numbers of channels on each
dataset. The blue, orange, and green lines indicate the ROC curves when
the channel sizes are four, eight, and 16, respectively.

for detecting defects on pills but shows lower detection
performance than measuring the reconstruction error.
We conjecture that the distribution of the latent variable
may not be exactly Gaussian even if it is enforced during
training, because it can be hard to produce a perfect Gaussian
distribution.

Figure 6 to 8 show the quantitative experiments of hyper-
parameter tuning on the patch, channel, and kernel sizes.
These experiments were conducted only on the autoencoder
with the patch division method. The parameters that are
finally selected are shown in bold. Figure 6 shows the
performance of the proposed network on different patch
sizes. We compared the patch size from 2 × 2 to 8 × 8.

FIGURE 8. Performance for different kernel sizes on each data. The blue,
orange, green, and red lines indicate the ROC curves when the kernel
sizes are three, five, seven, and nine, respectively.

The performance was similarly good when the patch size
was either four or six; however, we chose four, because
the average performance was at its best when the patch
size was four. Figure 7 shows the performance of the pro-
posed network on different number of channels. Note that
the numbers of channels of Conv 5 and Deconv 1 were set
as twice as those of the other convolutional layers for all
the cases. As shown in the figure, the higher the number
of channels, the better the performance become. We tested
up to 16 channels due to the memory limitation. Figure 8
shows the performance on different sizes of kernels, which
were three, five, seven, and nine. Although the performances
were similar for all the kernel sizes on Data 1 and Data 3,
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FIGURE 9. Ablation study. The orange, green, and blue lines indicate the
ROC curves of the proposed network, that without the global
encoding-decoding part, and that without patch division and global
encoding-decoding, respectively.

it achieved the best performance when the size of kernels was
seven on Data 2.

Table 4 shows a comparison with the existing anomaly
detection networks. The defect detection performance of
f-AnoGAN [32] is lower than 0.6, which indicates that it is
not an appropriate algorithm for detecting defects in pills
since detecting defects performance is nearly random (0.5).
Adversarially learned one-class classifier for novelty detec-
tion method (ALOCC) [28] did somewhat better than
f-AnoGAN but shows much lower detection performance
than the proposed methods. These generative-model-based
methods are designed for general data such as CIFAR-10,
SVHN, and KDD99. Accordingly, these methods are not
appropriate for learning the pill data which has very low vari-
ance. On the other hand, the proposed methods with the patch

TABLE 4. Quantitative comparison with existing anomaly detection
methods. The unit of AUC values are percentage.

TABLE 5. Reconstruction results of the proposed autoencoder for three
data.

TABLE 6. AUC table (without vs with segmentation network).

division method learns spatially variant features from the pill
data with minimum capacity, which, as result, succeeds in
detecting defective samples.

C. QUALITATIVE RESULTS
Table 5 shows the data samples and reconstruction result of
each sample. As mentioned earlier, the proposed network was
only trained on normal data; therefore, it was unable to recon-
struct the defective data correctly. Because we trained only on
normal data, our method yielded almost perfect reconstruc-
tion results when the input imagewas normal. However, when
the input image was of a defective pill, the output was quite
blurry and more similar to normal data.

VII. ABLATION STUDIES
The most important parts of the spatially variant convolu-
tional autoencoder are the pill detection module and the
defect detection module, and the most essential parts of each
module are the segmentation network and the patch division
method, respectively. In this section, we demonstrate the
effects of the segmentation network and the patch division
method. Thus, we conducted ablation studies to check the
importance of the segmentation network and each part of spa-
tially variant autoencoder i.e., global encoding layer, global
decoding layer, and patch division layer.
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A. SEGMENTATION NETWORK
In this paper, we used the segmentation network to detect
pills in a package. Table 6 shows the defect detection perfor-
mance for both when the data input packages were segmented
with the segmentation network and when they were not.
Without the segmentation network, the packages were sim-
ply segmented by thresholding the color values of the pills,
and then applying mathematical morphology to the result.
The detection performance without the segmentation network
on Data 1 was 51.51%. However, with the segmentation
network, the detection performance was 97.40%. Similarly,
the differences in the detection performance between using
the segmentation network or not on Data 2 and Data 3 were
34.23% and 15.52%, respectively. The average improvement
of the detection performance was 32.19%. Thresholding was
not very effective, because it was too simple to detect pills.
For example, for Data 3, it was hard to separate the pills
from the package, because they had similar colors. The other
segmentation methods, such as GrabCut [27] and GraphCut
[6], [14], can be used instead of thresholding and applying
mathematical morphology; however, they require user input
during the test phase. Because the purpose of this paper is to
build a complete system for pill defect detection, we consider
these as out of its scope.

B. PATCH DIVISION
We conducted an ablation study on three cases, to verify the
effectiveness of the patch division method. Figure 9 shows
the pill defect detection performance under different con-
ditions. Compared to our network, the performance of the
network without patch division deteriorated. Furthermore,
the performance of the network without global encoding-
decoding also deteriorated. This experiment shows that global
encoding-decoding is also important as well. With the global
encoding-decoding part, our network can learn some addi-
tional global information that is helpful for detecting defects.
Furthermore, patch division makes the network learn local
information, which can reduce the overall capacity of the
network.

VIII. CONCLUSION
In this paper, we introduced the pill detection module and the
defect detection module based on the newly proposed spa-
tially variant autoencoder.We demonstrated that the proposed
patch division method could improve the defect detection
performance. We experimented with different parameters,
such as kernel, channel, and patch sizes, and selected the
best hyper-parameters. Although we conjecture that larger
channels would result in better performance, due to the lack
of memory space, the largest channel size we could afford
was 16. We only tested the patch division method on an
autoencoder and a VAE, but we expect that the patch division
method can also improve the detection performance on GAN.
We will explore this further in future work.
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