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ABSTRACT In practical applications, the failure of large-scale complex equipment is often caused by the
simultaneous degradation of multiple components. It is necessary to predict the remaining useful life (RUL)
of the equipment with multiple degradation indicators. This article proposes a new joint-RUL-prediction
method in the presence of multiple degradation indicators based on parameter correlation. The stochastic
process model is established for each degradation indicator, and the model parameters are estimated by
kernel smoothing particle filter (KS-PF) andmaximum likelihood estimation (MLE).Meanwhile, to facilitate
the dependencies between multiple degradation indicators, correlations of the degradation model parameter
between multiple degradation indicators are established in KS-PF. In addition, optimal tuning (OT) is
introduced to choose the best kernel parameter. A case study on the Commercial Modular Aero-Propulsion
System Simulation (C-MAPSS) dataset is applied to verify the proposed method, the experiment shows that
the proposed joint-RUL-prediction method based on parameter correlation possesses a superior prediction
performance compared with that by using a single degradation indicator.

INDEX TERMS RUL prediction, particle filter, multiple degradation indicators, parameter correlation,
kernel smoothing.

I. INTRODUCTION
As an essential part of prognostics and health management
(PHM), remaining useful life (RUL) prediction can effec-
tively help to improve the reliability of equipment, avoid the
huge loss caused by equipment failure, and reduce the cost of
equipment maintenance. The failure of large-scale complex
equipment is often caused by the simultaneous degradation
of its multiple components [1], [2]. Themultiple degradations
of different components are identified asmultiple degradation
indicators, and the RUL prediction based on multiple degra-
dation indicators is expected to capture the health status of
equipment effectively.

The RUL prediction method can be classified into physics
model-based methods, empirical model-based methods, arti-
ficial intelligent (AI) methods, and hybrid methods [3]. The
empirical model-based methods are the most popular one
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among the four categories and have been widely used in
recent years. When the empirical model-based methods are
used for RUL prediction, an empirical model describing the
degradation process of equipment is established first, and
then the model parameters and degradation states are updated
using the degradation measurements, consequently deriving
the RUL. Stochastic process-based models such as Wiener
process, Gamma process, and Markov chain-based method
are commonly used [4], [5] as the degradation models and
they are more interpretable compared with other models
[6]–[9]. The Bayesian filter methods such as Kalman fil-
ter (KF) and particle filter (PF) are widely used for model
updating in recent years [10]–[17]. However, most of the
existing empirical model-basedmethods only involve a single
degradation indicator, which is insufficient for characterizing
the complex degradation process of equipment in most cases.
Consequently, the empirical model-based RUL prediction
involving multiple degradation indicators should be devel-
oped necessarily for practical applications.
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For equipment with multiple performance characteristics,
or the systems which have multiple components, the multiple
performance characteristics or components usually degrade
simultaneously when the equipment or system degenerate,
and the multiple indicators can be identified to indicate the
degradation degree of different performance characteristics
or components. And there may be dependencies between
these indicators since they contain the information of the
same degenerate equipment or system. Here the failure def-
inition of the series systems is considered in this article,
i.e., for equipment with multiple degradation indicators,
the first hitting time when any degradation indicator exceeds
the corresponding failure threshold is regarded as the End-
of-Life (EoL) [1], [18], [19]. Based on this idea, this article
intends to use the stochastic process model and PF to realize
the RUL prediction of equipment with multiple degradation
indicators. A multivariate degradation model needs to be
established first, and the challenging part is how to char-
acterize the dependencies between the multiple degradation
indicators reasonably.

The dependencies are established on the stochastic term of
the degradation process in some literature [1], [4], [18]–[20].
Peng et al. [1] established multivariate degradation mod-
els with copula functions and multiple stochastic pro-
cesses, where the copula functions were used to establish
the dependencies on the increments of degradation states.
Rodriguez-Picon et al. [20] established different multivari-
ate degradation models considering copula functions and
different combinations of stochastic processes as marginal
distributions, the dependencies were established on the degra-
dation states, and then the product reliability under hetero-
geneous models was studied on the crack propagation data.
Fang et al. [18] proposed a bivariate stochastic processmodel,
with the dependencies establishing on the degradation states,
and the Bayesian method was used for parameter estimation.
Xi et al. [19] characterize the dependencies among different
degradation indicators using a diffusion coefficient matrix,
and a multivariate degradation model for multiple indicators
was established. Then the Monte Carlo simulation method
was used to predict the RUL. In addition to the abovemethods
in which the dependencies are established on the multivariate
degradation models for multiple indicators, Sun et al. [21]
directly established the dependencies onmultiple RUL proba-
bility distributions estimated in terms of different degradation
indicators.

Since the model parameters can affect the long-term
degradation trend of indicators, we consider establishing the
dependencies on the model parameters in this article, and
the long-term dependencies among different indicators are
expected to be characterized accordingly. With the establish-
ment of correlations of model parameters, the degradation
states of indicators which are estimated using model param-
eters can capture the long term dependencies among differ-
ent indicators effectively. Therefore, a joint-RUL-prediction
method based on the stochastic process model and PF is pro-
posed in this article, characterizing the dependencies between

multiple degradation indicators as the correlations between
parameters of the models built for the corresponding indica-
tors. The long-term dependencies among different indicators
are taken into consideration using the correlation between
parameters, and the multivariate degradation modeling in the
proposedmethod can consequently provide accurate informa-
tion of dependencies for RUL prediction.

In the proposed method, parameters in the degradation
model can be divided into 1) the parameters of degrada-
tion trajectory and 2) the fluctuation parameters, according
to their physical implications. Maximum likelihood estima-
tion (MLE) is used on the training units to estimate the fluc-
tuation parameters offline. Then kernel smoothing particle
filter (KS-PF) [22], [23] is used to estimate the degrada-
tion trajectory parameters as well as the degradation states
simultaneously online. In addition, optimal tuning (OT) [24]
is adopted in KS-PF, i.e., OTKS-PF to obtain the optimal
kernel parameters at each monitoring time when the degra-
dation state and the parameters are estimated. To charac-
terize the dependencies between multiple degradation indi-
cators, the correlations between the model parameters are
introduced to generate the degradation trajectory parameters
in OTKS-PF. Then the joint probability distribution of the
multidimensional degradation state of indicators is estimated,
and the RUL can be consequently predicted with the pre-
specified failure thresholds. The respective RUL predicted
based on a single degradation indicator and multiple degra-
dation indicators are comprehensively compared by using the
Commercial Modular Aero-Propulsion System Simulation
(C-MAPSS) dataset for the illustration of the effectiveness
and superiority of the proposed method.

The remainder of this article is organized as follows.
Section II describes the establishment of the marginal
degradation models for each degradation indicator and the
estimation method for fluctuation parameters. OTKS-PF is
introduced in section III, to simultaneously estimate the
degradation states and model parameters on a single degra-
dation indicator. The joint-RUL-prediction method based on
parameter correlation with multiple degradation indicators is
proposed in section IV. Section V performs a case study on
the C-MAPSS dataset, and the RUL predicted based on a sin-
gle degradation indicator and multiple degradation indicators
respectively are compared. Section VI gives a conclusion.

II. DEGRADATION MODELING AND FLUCTUATION
PARAMETERS ESTIMATION
A. MARGINAL DEGRADATION MODEL
The uncertainty of the degradation processes is mainly caused
by four sources of variability, i.e., the temporal variabil-
ity, the unit-to-unit variability, the nonlinear variability, and
the measurement variability [8]. The temporal variability
denotes the inherent uncertainty of the degradation process.
The unit-to-unit variability represents the heterogeneity of
degradation processes of different units. The nonlinear vari-
ability means that the degradation rate can change over time.
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The measurement variability represents the uncertainty
caused by measurement error. Therefore, the following
stochastic process models are established for each marginal
degradation process:

Xk (t) = µk (θk , t)+ σkB (t) , (1)

Yk (t) = Xk (t)+ εk , εk ∼ N
(
0, ν2k

)
, (2)

where k = 1, 2, . . . ,K represents the kth degradation indi-
cator. Xk (t) is the degradation state of the kth degradation
indicator at time t . µk (θk , t) is the mean function of the
stochastic process Xk (t), and σkB (t) is the stochastic term of
Xk (t). µk (θk , t) is a differentiable and monotonical function
which is defined as the degradation trajectory, and it may be
nonlinear. θk = [ak , bk , · · · ]T is a vector of the degradation
trajectory parameters, which determines the degradation rate
of different units. Therefore, µk (θk , t) describes the nonlin-
ear variability of the degradation process, and θk character-
izes the unit-to-unit variability by specifying the degrada-
tion trajectories of different equipment. B (t) is a standard
Brownian motion process and σk is the volatility parameter.
σkB (t) has normal increments, i.e., σk (B (t1)− B (t2)) ∼
N
(
0, σ 2

k (t1 − t2)
)
(for 0 ≤ t2 ≤ t1), and it describes the

temporal variability by representing the inherent uncertainty
of degradation process (1). Yk (t) is the measurement of the
kth degradation indicator. εk is a zero-mean Gaussian random
variable with the variance ν2k , which can be seen as the
measurement noise representing the measurement variability.
Then the marginal degradation models are established for
each degradation indicator and the models can characterize
all the categories of uncertainty that may exist in equipment
degradation processes.

It is considered that σ 2
k and ν2k are only related to the

operating conditions and measuring conditions of equipment.
In other words, σ 2

k and ν2k are the same and θk is different
for different equipment which runs under a single operating
condition. Therefore, σ 2

k and ν2k are defined as fluctuation
parameters which are different from θk , and they are esti-
mated using different methods in this article.

Let xk,j = Xk (tj), yk,j = Yk
(
tj
)
and 1t = tj − tj−1, where

0 ≤ j ≤ M , and M is the number of measurements. Consid-
ering the kth degradation indicator, the marginal models (1)
and (2) can be transformed into the state transition equation
combined with the measurement equation for PF:

State transition equation f
(
xk,j | xk,j−1

)
:

xk,j = xk,j−1 +1µk
(
tj
)
+ ωk,j,

1µk
(
tj
)
= µk

(
θk , tj

)
− µk

(
θk , tj−1

)
,

ωk,j = σk
(
B
(
tj
)
− B

(
tj−1

))
∼ N

(
0, σ 2

k1t
)
.

(3)

Measurement equation h
(
yk,j | xk,j

)
:{

yk,j = xk,j + εk ,
εk ∼ N

(
0, ν2k

)
.

(4)

When (3) and (4) are used on multiple degradation indi-
cators, let xj =

[
x1,j, · · · , xK ,j

]T denote the states of all

degradation indicators at time tj, and yj =
[
y1,j, · · · , yK ,j

]T
denote the measurements. Then the state transition equation
and the measurement equation are converted to f

(
xj | xj−1

)
and h

(
yj | xj

)
respectively. For equipment with K degrada-

tion indicators, if the kth degradation indicator Xk (t) exceeds
its failure threshold Hk first, and that time is regarded as the
failure time. The estimated RUL at time tj is defined as

RUL = inf{τ : X1
(
tj + τ

)
≥ H1 or · · ·

or XK
(
tj + τ

)
≥ HK | x1,1:j, · · · , xK ,1:j}. (5)

B. ESTIMATION OF FLUCTUATION PARAMETERS
The parameters θk , σ 2

k , and ν
2
k in (3) and (4) for each degrada-

tion indicator need to be estimated. For parameter estimation,
the fluctuation parameters σ 2

k and ν2k are estimated offline
using MLE based on the training units. Then PF is used to
estimate θk and the degradation state Xk (t) online simultane-
ously for each testing unit. The RUL prediction result based
on the kth degradation indicator can be obtained after the two-
step parameter estimation. The estimation of the fluctuation
parameters is described in detail as follows.

Here the superscript ’∗’ is used to represent the variables
for the training units. Let X∗k = [x∗k,1, · · · , x

∗
k,M ]T , Y∗k =

[y∗k,1, · · · , y
∗
k,M ]T , andu∗k =

[
µk
(
θ∗k , t1

)
, · · · , µk

(
θ∗k , tM

)]T
represent the states, measurements, and degradation trajecto-
ries of the kth degradation indicator respectively for training
units. Then the distributions of X∗k and Y∗k can be derived by
using the properties of standard Brownian motion:

X∗k ∼ N
(
u∗k , σ

2
kQ
)
, (6)

Y∗k ∼ N
(
X∗k , ν

2
k IM

)
, (7)

where Q =
[
min

{
ti, tj

}]
1≤i,j≤M and IM is an identity matrix

of order M .
The log-likelihood functions of the fluctuation parameters

are expressed as follows:

L
(
σ 2
k | X

∗
k , θ
∗
k

)
= −

M
2

ln (2π)−
1
2
ln
∣∣∣σ 2
kQ
∣∣∣

−
1
2

(
X∗k − u∗k

)T (
σ 2
kQ
)−1 (

X∗k − u∗k
)
, (8)

and

L
(
ν2k | Y

∗
k ,X
∗
k

)
= −

M
2

ln (2π)−
1
2
ln
∣∣∣ν2k IM ∣∣∣

−
1
2

(
Y∗k − X∗k

)T (
ν2k IM

)−1 (
Y∗k − X∗k

)
. (9)

The measurements in Y∗k of each training unit are col-
lected, while the degradation states inX∗k are usually implicit.
In order to estimate the fluctuation parameters, the degrada-
tion state X∗k can be distinguished through some appropriate
methods first, such as the simple moving average (SMA), the
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weighted moving average (WMA), exponential moving aver-
age (EMA), etc, and then ν2k can be estimated by maximizing
the log-likelihood function (9). After a proper functional
expression µk (·) is used to characterize the degradation tra-
jectory, the least-squares method is used to fit the degradation
state X∗k of training units to obtain the estimated θ∗k as well
as the degradation trajectory. σ 2

k can be finally estimated by
maximizing (8).

III. SIMULTANEOUS ESTIMATION OF STATE AND
PARAMETER WITH OTKS
To present the proposed method clearly, the RUL prediction
with a single degradation indicator is discussed in this section
first, and OTKS-PF is introduced. When the kth degradation
indicator is used for RUL prediction, after the fluctuation
parameters σ 2

k and ν2k are estimated, θk and Xk (t) are jointly
updated according to the new measurements using KS-PF.
Moreover, the kernel parameter that is used in KS-PF is
optimized online by introducing OT. Then the RUL can be
predicted based on the estimated parameters and states.

A. PARTICLE FILTER
PF is a Bayesian method for state estimation. Let xj be the
state of equipment at time tj that needs to be estimated in
PF, and yj be the measurement at time tj. After establishing
the state transition equation and the measurement equation
for equipment, the posterior probability p

(
xj | y1:j

)
can be

obtained through two steps: prediction and update. For pre-
diction,

p
(
xj | y1:j−1

)
=

∫
p
(
xj | xj−1

)
p
(
xj−1 | y1:j−1

)
dxj−1.

(10)

and for update,

p
(
xj | y1:j

)
=
p
(
yj | xj

)
p
(
xj | y1:j−1

)
p
(
yj | y1:j−1

) , (11)

where the normalizing constant is

p
(
yj | y1:j−1

)
=

∫
p
(
yj | xj

)
p
(
xj | y1:j−1

)
dxj. (12)

Since the integral needs to be calculated in (10) and (12), it
is difficult to implement the above optimal Bayesian filtering
algorithms for nonlinear and non-gaussian systems. To solve
the problem, the Monte Carlo sampling is introduced into
PF to represent the probability distribution by particles that
sampled from it, so the posterior probability of xj can be
estimated as a set of weighted particles (samples) {x ij ,w

i
j}
N
i=1,

where i = 1, · · ·N and N is the number of particles. x ij is
the ith particle of xj and wij is the weight associated with it.
The posterior probability distribution of xj is estimated as

p
(
xj | y1:j

)
≈
∑N

i=1 w
i
jδ
(
xj − x ij

)
, where δ(·) is the Dirac

delta function.

B. KERNEL SMOOTHING
The degradation state xk,j and the degradation trajectory
parameter θk,j can be jointly updated according to the mea-
surement yk,j, where θk,j =

[
ak,j, bk,j, · · ·

]T are the esti-
mated parameters of θk at time tj. Here the most commonly
used approach is the augment PF, in which the parameter
θk,j and the system state xk,j are all considered as the hidden
states which are estimated in PF, and the artificial evolution
is introduced to realize the evolution of parameters in the
particles. However, this approach will increase the variance
of particles, and the convergence of PF will be delayed [22].

In this article, kernel smoothing (KS) is introduced into
PF to solve the problem. The evolution of parameters in the
particles θ ik,j | θ

i
k,j−1 is achieved by two steps: shrinkage and

perturbation. For the shrinkage,

θ̃
i
k,j =

√
1− s2θ ik,j−1 +

(
1−

√
1− s2

)
θ̄k,j−1, (13)

and for the perturbation,

θ ik,j = θ̃
i
k,j + ξ , ξ ∼ N

(
0, s2V k

j−1

)
, (14)

where θ ik,j = [aik,j, b
i
k,j, · · · ]

T is the ith particle of θk at

time tj, and θ̃
i
k,j is the shrinkage of θ ik,j. {θ

i
k,j−1,w

i
k,j−1}

N
i=1

is the particle set of θk with the particle weights at time tj−1.
θ̄k,j−1 and V k

j−1 are the mean and variance of θk,j−1 based
on {θ ik,j−1,w

i
k,j−1}

N
i=1, where θ̄k,j−1 = [āk,j−1, b̄k,j−1, · · · ]T ,

and V k
j−1 = diag(V k

a,j−1,V
k
b,j−1, · · · ) is a diagonal matrix

in which the entries outside the main diagonal are all zero.
s ∈ [0, 1] is the kernel parameter.
After the shrinkage, each particle of parameters shrinks

towards the mean of the parameters’ particles at the previous
moment. The larger the kernel parameter s is, the greater the
volume of the shrinkage is. When s = 1, each particle of
parameters will shrink to the mean and all the particles will
be the same, so the variance of the particles will decrease due
to the shrinkage. Then the artificial random walk is added
to ensure the diversity of particles in the perturbation step.
Finally, the variance of particles keeps unchanged and the
diversity of particles is also kept after the shrinkage and
perturbation. Let q =

√
1− s2, and the state transition

equation (3) then can be deduced as

xk,j = xk,j−1 +1µk
(
tj
)
+ ωk,j,

θ ik,j | θ
i
k,j−1

∼ N
(
qθ ik,j−1 + (1− q) θ̄k,j−1,

(
1− q2

)
V k
j−1

)
,

1µk
(
tj
)
= µk

(
θk,j, tj

)
− µk

(
θk,j−1, tj−1

)
,

ωk,j ∼ N
(
0, σ 2

k1t
)
.

(15)

Using the sequential importance resampling (SIR) frame-
work with the state transition equation (15) and the measure-
ment equation (4), Xk (t) and θk are jointly estimated online
by the following steps:

1. Initialization:
Let j = 0, and the initial distributions are set as p(xk,0) and

p(θk,0).
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2. State estimation:
Let j = j + 1. If the measurement yk,j exists, perform the

following steps, otherwise terminate this procedure.
1) Prediction: the particles {x ik,j|j−1, θ

i
k,j|j−1,w

i
k,j|j−1}

N
i=1

are sampled from the proposal distributions p(xk,j|xk,j−1) and
p(θk,j|θk,j−1), and the prior probability of xk,j and θk,j can be
represented by the weighted particles.

2) Update: the weights of the particles are updated accord-
ing to the measurement yk,j at time tj:

w̃ik,j = wik,j|j−1 · p
(
yk,j | x ik,j|j−1

)
, (16)

and the weights are normalized as

ŵik,j =
w̃ik,j∑N
i=1 w̃

i
k,j

. (17)

3) Resampling: the number of effective particles is approxi-

mated asNneff ≈ 1/
∑N

i=1

(
ŵik,j

)2
. IfNneff is less than a given

threshold, the resample method is implemented, otherwise
resampling is not performed. After the particle resampling,
the updated particles are obtained as {x ik,j, θ

i
k,j,w

i
k,j}

N
i=1, and

the posterior probability distribution of xk,j and θk,j can be
consequently represented by the weighted particles.

4) Iteratively perform Steps 2-3.

C. OPTIMAL TUNING
The value of the kernel parameter s affects the scale of shrink-
age and perturbation of the particles, so it is important to
select an appropriate value for s. s is usually set as a constant
in the present literature [1], [22]. Instead, we adopt OT here,
to select the optimal kernel parameter sj at each monitoring
time tj.

The estimation accuracy of PF is related to the proposal
distribution. The optimal proposal distribution should min-
imize the variance of the updated weights of particles, and
it can also be interpreted that a good proposal distribution
should make the prior distribution p

(
xj|y1:j−1

)
as similar as

possible to the posterior distribution p
(
xj|y1:j

)
[24], [25].

KL divergence is an index to measure the matching degree
of two probability distributions, so the optimal sj is chosen in
OT to make the KL divergence between the prior distribution
and the posterior distribution minimal [24].

According to PF, the prior distribution of the state of the
kth degradation indicator at time tj is estimated as

Qk,j = p
(
xk,j | yk,1:j−1

)
≈

N∑
i=1

wik,j|j−1δ
(
xk,j − x ik,j|j−1

)
, (18)

and the posterior distribution is

Pk,j = p
(
xk,j | yk,1:j

)
≈

N∑
i=1

wik,jδ
(
xk,j − x ik,j

)
. (19)

The KL divergence between the prior distribution and the
posterior distribution is

KL
(
Qk,j ‖ Pk,j

)
=

∫
p
(
xk,j | yk,1:j−1

)
× log

p
(
xk,j | yk,1:j−1

)
p
(
xk,j | yk,1:j

) dxk,j. (20)

We can directly derive to (21) by substituting (11), (12),
and (18) into (20) using the sifting property of the Dirac delta
function.

KL
(
Qk,j ‖ Pk,j

)
=

N∑
i=1

wik,j|j−1

× log

∑N
i=1 w

i
k,j|j−1p

(
yk,j|x ik,j|j−1

)
p
(
yk,j|x ik,j|j−1

) . (21)

Substitute (16) into (17), and the following equation can be
derived:∑N

i=1 w
i
k,j|j−1p

(
yk,j|x ik,j|j−1

)
p
(
yk,j|x ik,j|j−1

) =
wik,j|j−1
ŵik,j

, (22)

therefore, substitute (22) into as (21) as

KL
(
Qk,j ‖ Pk,j

)
= −

N∑
i=1

wik,j|j−1 log

(
ŵik,j

wik,j|j−1

)
. (23)

Finally, the optimal kernel parameter for the kth degradation
indicator at monitoring time tj is derived as

sk,j = arg min
sk,j∈[0,1]

[
−

N∑
i=1

wik,j|j−1 log

(
ŵik,j

wik,j|j−1

)]
. (24)

IV. RUL PREDICTION WITH MULTIPLE DEGRADATION
INDICATORS BASED ON PARAMETER CORRELATION
To characterize the dependencies between multiple degrada-
tion indicators, we establish the correlations between param-
eters of the state transition equation, and the dependencies are
also taken into consideration in OTKS-PF for state estimation
of multiple indicators.

The commonly used RUL prediction methods with
multiple degradation indicators establish the dependen-
cies on the stochastic term of the degradation process,
i.e., it is considered that there are correlations between
σ1B1 (t) , · · · , σKBK (t) in (1) which cause the dependencies
between X1(t), · · · ,XK (t). Here we consider that the hidden
dependencies between different degradation indicators are
caused by the correlations between θ1, · · · , θK , and the RUL
prediction method with multiple degradation indicators based
on parameter correlation is proposed.

The state estimation based on any single degradation indi-
cator using OTKS-PF has been introduced in section III,
and then the RUL prediction can be conducted based on the
estimated states and parameters. Consider the RUL prediction
method with multiple degradation indicators, the prediction
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framework is still the same as that with a single indica-
tor. After the establishment of marginal degradation mod-
els and the estimation of fluctuation parameters, the proper
multivariate state transition equation and the measurement
equation can be established according to the marginal degra-
dation models. Then OTKS-PF can be expanded consid-
ering the correlations between θ1, · · · , θK for the case of
multiple indicators, specifically, the correlations are intro-
duced in the generating process of parameters’ particles
in the kernel smoothing step. The parameters θ1, · · · , θK
and the system states X1(t), · · · ,XK (t) are jointly estimated
online using OTKS-PF, and the joint probability distribution
p
(
x1j, · · · , xKj

)
of the degradation state xj is obtained. At the

prediction stage, the last obtained particles (the joint probabil-
ity distribution) are propagated using the state transition equa-
tion f

(
xj | xj−1

)
until equipment fails, i.e., any propagated

indicator exceeds its corresponding failure threshold. Finally,
the probability distribution of RUL can be obtained and the
joint RUL prediction with multiple degradation indicators
based on OTKS-PF is consequently derived.

A. JOINT STATE ESTIMATION OF MULTIPLE DEGRADATION
INDICATORS BASED ON PARAMETER CORRELATION
It is considered that the θ1, θ2, · · · , θK in (1) are linearly
correlated with each other, and these correlations cause the
dependencies between different degradation indicators when
equipment degrades. And it should be noted that the linear
or nonlinear correlations between multiple degradation indi-
cators X1(t),X2(t), · · · ,XK (t) can be characterized using a
combination of the linearly correlated parameters and the
mapping relationship between θk and Xk (t) defined in (1).
Therefore, compared with the RUL prediction method with a
single indicator, the proposed joint estimation method needs
to estimate ont only the parameters θk , σ 2

k , and ν
2
k , but

also needs to estimate the Pearson correlation coefficients
between θ1, θ2, · · · , θK . Assume that the models for all
degradation indicators are set as µk (θk , t) = ak exp (bk · t),
where θk = [ak , bk ]T . The Pearson correlation coefficients
between ak1 and ak2 , i.e., ρ

a
k1,k2

and that between bk1 and bk2 ,
i.e., ρbk1,k2 can be estimated on the training units respectively,
where 1 ≤ k1, k2 ≤ K
To characterize the correlations between parameters, this

approach generates the parameters’ particles of different indi-
cators from a multivariate Gaussian distribution directly to
realize the evolution of parameters. This multivariate Gaus-
sian distribution is the proposal distribution of the parameters
with the correlations between each component.

Let 1uj =
[
1µ1(tj), · · · ,1µK (tj)

]T and ωj =[
ω1,j, · · · , ωK ,j

]T . And let aij = [ai1,j, · · · , a
i
K ,j]

T , bij =
[bi1,j, · · · , b

i
K ,j]

T , and xij = [x i1,j, · · · , x
i
K ,j]

T be the ith
particle of parameter a, parameter b and the state of
multiple degradation indicators x at time tj, respectively,
where a = [a1, · · · , aK ]T , b = [b1, · · · , bK ]T , and
x = [X1(t), · · · ,XK (t)]T . The state transition equation
f
(
xj | xj−1

)
of the proposed joint estimation method with

multiple indicators is

xj = xj−1 +1uj + ωj,

aij | a
i
j−1∼ N

(
qaij−1 + (1− q) āj−1,

(
1− q2

)
Va,j−1

)
,

bij | b
i
j−1∼ N

(
qbij−1 + (1− q) b̄j−1,

(
1− q2

)
Vb,j−1

)
,

1µk (tj) = µk
(
θk,j, tj

)
− µk

(
θk,j−1, tj−1

)
,

ωk,j ∼ N
(
0, σ 2

k1t
)
,

(25)

where

Va,j−1

=


V 1
a,j−1 · · · ρa1,K

√
V 1
a,j−1V

K
a,j−1

...
. . .

...

ρaK ,1

√
VK
a,j−1V

1
a,j−1 · · · VK

a,j−1

 ,
Vb,j−1

=


V 1
b,j−1 · · · ρb1,K

√
V 1
b,j−1V

K
b,j−1

...
. . .

...

ρbK ,1

√
VK
b,j−1V

1
b,j−1 · · · VK

b,j−1

 ,
āj−1 = [ā1,j−1, · · · , āK ,j−1]T , b̄j−1 = [b̄1,j−1, · · · , b̄K ,j−1]T .
{xij−1, a

i
j−1, b

i
j−1,w

i
j−1}

N
i=1 are the particles of x, a and b

with the corresponding weights estimated at time tj−1. āk,j−1
and V k

a,j−1 are the mean and variance of ak,j−1 based on
{aik,j−1,w

i
j−1}

N
i=1. b̄k,j−1 and V

k
b,j−1 are the mean and variance

of bk,j−1 based on {bik,j−1,w
i
j−1}

N
i=1. It should be noted that

there is no correlation between aij and b
i
j in (25).

It can be seen that when particles aij and b
i
j are generated

from the proposal distributions in the KS step, the proposal
distributions are two multivariate Gaussian distributions with
non-zero covariance, i.e., ρak1,k2 and ρ

b
k1,k2

which represent the
correlations between indicators are contained in the covari-
ance matrices of the multivariate Gaussian distributions. In
this way, there are correlations of the parameters’ particles
between different indicators that are sampled from the pro-
posal distribution, and then the weights of particles can be
updated based on the newly collected measurements.

When the state transition equation (25) and the measure-
ment equation (4) are used to estimate the degradation states
and the parameters simultaneously with OTKS-PF, the steps
are still the same as that in the section III-B, while the
difference is that the update equation (16) is derived as

w̃ij = wij|j−1 ·
K∏
k=1

p
(
yk,j | x ik,j|j−1

)
, (26)

and (24) is derived as

sj = arg min
sj∈[0,1]

[
−

N∑
i=1

wij|j−1 log

(
ŵij

wij|j−1

)]
, (27)

so as to determine the optimal kernel parameter sj in the
OT step.
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The weighted particles {xij, a
i
j, b

i
j,w

i
j}
N
i=1 can be obtained

at time tj using this joint estimation method with multiple
degradation indicators based on parameter correlation, and
the obtained particle xij = [x i1,j, · · · , x

i
K ,j]

T representing the
estimated states of multiple indicators is multidimensional
with each dimension represents the state of the corresponding
degradation indicator. There are correlations between the
obtained x ik1,j and x ik2,j, a

i
k1,j

and aik2,j, b
i
k1,j

and bik2,j for
any k1, k2 ∈ [1,K ]. Therefore, the dependencies between
different degradation indicators are established on the cor-
responding model parameters using the proposed method,
and the joint probability distribution of degradation indicators
p
(
x1j, · · · , xKj

)
is obtained.

B. RUL PREDICTION WITH MULTIPLE
DEGRADATION INDICATORS
According to the joint estimation method with multiple indi-
cators using OTKS-PF in Section IV-A, the particle set
{xij, θ

i
j,w

i
j}
N
i=1 can be obtained at time tj. Then the joint

probability distribution of the state of multiple degradation
indicators is

p
(
x1j, · · · , xKj | y1:j

)
≈

N∑
i=1

wijδ
(
xj − xij

)
. (28)

The RUL corresponding to the ith particle which is predicted
at monitoring time tj is

l ij = inf{τ : x i1j +
j+τ∑

n=j+1

(
1µ1 (tn)+ ω1,n

)
≥ H1 or

· · · or x iKj +
j+τ∑

n=j+1

(
1µK (tn)+ ωK ,n

)
≥ HK }, (29)

and the probability density function (PDF) of RUL that is
predicted at time tj is

p
(
lj | y1:j

)
≈

N∑
i=1

wijδ
(
lj − l ij

)
. (30)

V. EXPERIMENTAL VERIFICATION
The turbine engine data (C-MAPSS) that is published by
NASA is applied to demonstrate the effectiveness of the pro-
posed method for series systems, which contains four subsets
(named FD001 ∼ FD004). Details of these subsets can be
accessed in [26], and the subset involving a single failure
mode and a single operating condition (FD001) is adopted
here. The proposed joint-RUL-prediction method with multi-
ple degradation indicators (OTKS-PF-Joint) is used to predict
the RUL of the engines, and the prediction result is compared
with the RUL result that obtained with a single degradation
indicator (OTKS-PF-Single).

A. DATASET DESCRIPTION AND PREPROCESSING
The dataset contains degradation data from 100 simulated
engines, each of them runs from a specific state to system

FIGURE 1. Degradation data of engine #1.

failure under a single operating condition and single fault
mode. The degradation status of each engine is measured by
21 sensors.

The degradation data are preprocessed first, which includes
standardization and dimension reduction. Z-score standard-
ization is carried out on the original data for all the 21 sensors,
and PCA is used for dimension reduction to remove features
that provide little degradation information. The obtained two
features using PCA, i.e., the first two principal components,
retain 87.6% of the variance of the original data, so the first
two principal components are chosen as the two degradation
indicators which characterize the degradation of engines.
Then the proposed joint-RUL-prediction method with two
degradation indicators is conducted to predict the RUL of
engines, and the RUL prediction result based on a single
indicator is compared with that based on two indicators.

The stochastic process models are established as (1) and
(2) for each degradation indicator, where k = 1, 2 represents
the kth degradation indicator. Then SMA is used to obtain
the smoother curves regarded as the states of the degradation
indicators X∗k (t) , k = 1, 2. Figure. 1 shows the measure-
ments and the degradation states of the engine #1.

To demonstrate the effectiveness of the proposed method
for series systems, the failure thresholds of indicator #1 and
indicator #2 are set as H1 = 1.22 and H2 = 0.85, respec-
tively. And the failure time of the engine is defined as the
first hitting time that any indicator exceeds the corresponding
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failure threshold, which is consistent with the failure defi-
nition of the series systems. For all the 100 engines, 5-fold
cross-validation is adopted to divide the testing units and
the training units and five experiments are conducted using
different training units and testing units. The run-to-failure
data of training units are already collected, while partial data
of each testing unit are removed to simulate the practical
cases, where there are only partial data for the practicer to
derive RUL. In each experiment, the RUL of the testing
units is predicted at different monitoring time. The following
analysis takes the first experiment as an example due to the
limit of the length of this article, and the results of all the five
experiments are also illustrated.

B. DEGRADATION MODELING AND
PARAMETER ESTIMATION
The marginal degradation models are established according
to (1) and (2), and the degradation trajectory µk (·) should
be determined first. Liu et al. [27] predicted the RUL on this
dataset with the exponential model, here we also establish the
exponential model for degradation indicators as

µk (θk , t) = ak + bk · exp (ck · t) . (31)

Two strategies are considered when the model (31) is used
for testing units, and the commonly used strategy (strategy I)
is that ak , bk and ck are all considered as unknown parameters
for testing units which should be estimated by PF. However,
the estimation error of parameters will be large because of the
interaction between bk and ck in PF [22], and considering
the consistency of different units given the same operating
condition and failure mode [3], the degradation processes of
different units are expected to be similar. Therefore, strategy
II can be chosen by defining bk or ck as constants which are
calculated using training units for the testing units.

Degradation data of training units are used to verify strat-
egy I first. Consistent with section V-A, the measurements
Y ∗k (t), k = 1, 2 of the training units are processed by SMA,
and the degradation states are obtained as X∗k (t) , k = 1, 2.
Matlab curve fitting toolbox is used to fit the degradation
states of the two indicators with the model (31) to get the fit-
ting parameters a∗k , b

∗
k , and c

∗
k using the least-squares method,

and Fig. 2 is the boxplot that illustrates the distribution of the
fitting parameters.

It can be seen from Fig. 2 that, different from the param-
eters a∗k and c∗k , there are a number of outliers in the dis-
tributions of b∗1 and b∗2, which indicates b∗k may not reflect
the consistency of different units under the same failure
mode and operating condition accurately. Moreover, accord-
ing to [28], model parameters can be categorized as fixed-
effect and random effect parameters, and the former describes
the homogeneity among the units. Therefore, strategy II is
considered by defining the parameters b1 and b2 as two
mixed-effect parameters which are estimated as themedian of
the fitting parameters: b1 = 0.085, b2 = 0.056, and a∗k and
c∗k are random for testing units to describe the heterogeneity
among the units. For this experiment (the first experiment),

FIGURE 2. Boxplot of fitting parameters using model (32) with strategy I.

FIGURE 3. Degradation data and fitted curves of engine #1 and
engine #8.

TABLE 1. Estimation results of fluctuation parameters.

model (31) can be redefined by using strategy II:

µ1(θ1, t) = a1 + 0.085 ∗ exp (c1 · t) ,

µ2(θ2, t) = a2 + 0.056 ∗ exp (c2 · t) . (32)

Figure. 3 shows the fitting result of two engines in the
training set using strategy II, and it can be seen that the model
fits the degradation data well using strategy II.

As a result, strategy II is used for the testing units in this
experiment. Then (8) and (9) are used to estimate the fluc-
tuation parameters σ 2

k and ν2k on the training units according
to the method in section II-B. Table 1 shows the parameters
estimated based on the training units.

C. JOINT RUL PREDICTION BASED ON PARAMETER
CORRELATION WITH TWO INDICATORS
After the establishment of the degradation models and the
estimation of the fluctuation parameters, OTKS-PF is used for
joint state estimation of the two degradation indicators involv-
ing parameter correlation. According to (25), the following
state transition equation f

(
xj, cj | xj−1, cj−1

)
is established
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for the two-dimensional degradation indicators of the engine:
xj = xj−1 +1uj + ωj,

cij | c
i
j−1 ∼ N

(
qcij−1 + (1− q) c̄j−1,

(
1− q2

)
V c,j−1

)
,

1µk
(
tj
)
= bk ·

(
exp

(
ck,j · tj

)
− exp

(
ck,j−1 · tj−1

))
,

ωk,j ∼ N
(
0, σ 2

k1t
)
,

(33)

where k = 1, 2 represents the kth degradation indicator.

V c,j−1 =

 V 1
c,j−1 ρc1,2

√
V 1
c,j−1V

2
c,j−1

ρc2,1

√
V 2
c,j−1V

1
c,j−1 V 2

c,j−1

 ,
cij =

[
ci1,j, c

i
2,j

]T
, b1 = 0.085, b2 = 0.056 (for the first

experiment). c̄j−1 =
[
c̄1,j−1, c̄2,j−1

]T , and {cij−1,wij−1}Ni=1
are the particles of c = [c1, c2]T with their corresponding
weights estimated at time tj−1. c̄k,j−1 and V k

c,j−1 are the mean
and variance of ck,j−1 based on {cik,j−1,w

i
j−1}

N
i=1.

It can be seen from (33) that only the increment of the state
is involved in the state transition process, so a1 and a2 do not
need to be estimated in (33). For each training unit, the param-
eters a∗k and c

∗
k are obtained by fitting the degradation states

X∗k (t) with model (32), and c∗u =
[
c∗1,u, c

∗

2,u

]T
is obtained for

all taining units, where u = 1, 2, · · · , 80 representing the uth
unit. The Pearson correlation coefficient between c1 and c2 is
estimated as

ρc1,2 =

∑80
u=1

(
c∗1,u − c̄

∗

1

) (
c∗2,u − c̄

∗

2

)
√[∑80

u=1

(
c∗1,u − c̄

∗

1

)2] [∑80
n=1

(
c∗2,u − c̄

∗

2

)2] ,
(34)

where c̄∗k =
∑80

u=1

(
c∗k,u

)
/80, k = 1, 2, and it is calculated

as ρc1,2 = 0.9873 according to (34). Figure. 4 shows the
scatter plot of the parameters c∗1 and c

∗

2 of all the training units.
It can be seen that there is a significant correlation between
the parameters c1 and c2 from Fig. 4 and the calculated
value of ρc1,2, which indicates that the dependence between
degradation indicators is evident and can be characterized in
the correlation of parameters.

The OTKS-PF method in Section IV is used to con-
duct the joint estimation of X1 (t), X2 (t), c1, and c2 online
using the state transition equation (33) and the measure-
ment equation (4). The initial distribution of states and
parameters p(x0) and p(c0) are set as Gaussian distributions,
i.e., x0 ∼ N (µx ,6x) and c0 ∼ N (µc,6c), where µx =[
x̄1,1, x̄2,1

]T , µc = [c̄1, c̄2]T , 6x = diag(σx,1, σx,2), and
6c = diag(σc,1, σc,2). x̄k,1 and σx,k are themean and variance
of x∗k,1 of all training units, respectively, where x∗k,1 is the
degradation state of the kth indicator at time t1. c̄k and σc,k are
the mean and variance of c∗k of all training units, respectively.

Figure. 5 shows the parameter estimation results of engine
#5 using the proposed OTKS-PF-Joint and the OTKS-PF-
Single respectively. The black lines represent the posterior

FIGURE 4. Scatter plot of the fitting parameters of training units.

FIGURE 5. Online estimation of parameter c of engine #5 using
OTKS-PF-Single and OTKS-PF-Joint.

optimal fitted values (POFV). After all the measurements are
collected, the POFVs are obtained by fitting the degradation
states estimated by using SMA. It can be seen that the esti-
mation result of OTKS-PF-Joint is similar to that of OTKS-
PF-Single. The estimated parameters can gradually converge
to the POFV with the increase of the number of collected
measurements.

Figure. 6 and Fig. 7 respectively show the RUL predic-
tion results of engine #19 and engine #68 in the testing set.
Figure. 6-a and Fig. 7-a show the predicted PDFs and RULs

VOLUME 8, 2020 215153



S. Chen et al.: RUL Prediction for Complex Systems With Multiple Indicators Based on PF and Parameter Correlation

FIGURE 6. RUL prediction of engine #19 using OTKS-PF-Single and
OTKS-PF-Joint.

estimated using indicator #1, indicator #2, and OTKS-PF-
Joint respectively. It can be seen from Fig. 6-a that the
predicted PDF of RUL with OTKS-PF-Joint keeps closer
tracking to the predicted PDF based on indicator #2 than
that based on indicator #1. Such a situation changes and the
predicted PDF of RUL with OTKS-PF-Joint keeps closer to
the indicator #1 in Fig. 7-a. These are because the degradation
indicator #2 of engine #19 exceeds its corresponding failure
threshold first, while the degradation indicator #1 of engine
#68 exceeds the failure threshold first. The prediction results
in Fig. 6-a and Fig. 7-a demonstrate that no matter which
indicator exceeds its corresponding failure threshold first,
the PDF of RUL predicted by the proposed OTKS-PF-Joint
can track the PDF that predicted based on that indicator
in an adaptive way. As a result, the proposed method will
provide accurate RUL prediction for equipment according to
the definition of equipment failure, i.e., the first hitting time
that any indicator exceeds the corresponding failure threshold
is regarded as the EoL.

Subsequently, the above prediction results of the proposed
method which are shown in Fig. 6-a and Fig. 7-a are analyzed
in detail. At the prediction stage, each particle is propagated
using the state transition equation, and the predicted failure
time of the equipment based on each particle is defined as the
first hitting time that any dimension of the particle reaches

FIGURE 7. RUL prediction of engine #68 using OTKS-PF-Single and
OTKS-PF-Joint.

the corresponding failure threshold. Therefore, the predicted
PDF of RUL with multiple degradation indicators is obtained
and the predicted RUL value will be accurate.

Figure. 6-b and Fig. 7-b respectively show the RUL pre-
diction result of engine #19 and engine #68 using OTKS-PF-
Joint. The widths of the 95% confidence intervals become
narrower as the monitored equipment running, which means
that the uncertainty of prediction decrease gradually with the
number of collected measurements increasing. It also can be
seen that the predicted RUL is getting closer to the real one
as the monitored equipment running, which indicates that the
accuracy of RUL prediction increases when the monitored
equipment runs closer to its EoL.

To compare the RUL prediction results of the pro-
posed OTKS-PF-Joint and the OTKS-PF-Single intuitively,
the RUL of testing units is predicted at each cycle after
the engine runs beyond two-thirds of its whole life so that
several illustrative prediction results can be obtained for each
testing unit. Then the mean of the several prediction results
is calculated. Figure. 8 shows the mean prediction error and
the mean width of the 95% confidence interval for the testing
units.

It can be seen that the prediction errors of the proposed
method are generally lower than that of the RUL prediction
via OTKS-PF-Single. The 95% confidence interval widths
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FIGURE 8. The mean prediction errors and mean widths of 95%
confidence intervals of testing units.

TABLE 2. Prediction result of OTKS-PF-Joint and OTKS-PF-Single.

obtained by the proposed method are also narrower than that
with a single indicator. This result confirms the validity of the
proposed joint-RUL-prediction method with multiple indica-
tors based on parameter correlation. This result confirms the
validity of the proposed joint-RUL-prediction method with
multiple indicators based on parameter correlation.

For each experiment, the mean prediction errors and the
mean widths of 95% confidence interval for all testing
units are averaged, and Table 2 gives the average prediction
result using the proposed OTKS-PF-Joint and the OTKS-
PF-Single respectively for all 5 experiments of the 5-fold
cross-validation. The results demonstrate that the proposed
method is superior to OTKS-PF-Single in the accuracy and
the uncertainty of the prediction.

VI. CONCLUSION AND DISCUSSION
In this article, a joint-RUL-prediction method with multiple
degradation indicators based on parameter correlation is pro-
posed by combining the stochastic process model and PF. The
dependencies between different degradation indicators are
characterized as the correlations between their parameters,
and the covariance matrices of model parameters between
different degradation indicators are introduced into KS-PF to
quantify such a correlation. Besides, the OT approach is used
to choose the optimal kernel parameter in KS. Then the joint
probability distribution ofmultidimensional degradation state
can be estimated via OTKS-PF considering parameter corre-
lation, and the RUL of equipment is consequently predicted
with multiple degradation indicators. A case study regarding
engine degradation is performed, and the result shows that
the proposed method is superior to the prediction method
with a single indicator in prediction accuracy and prediction
uncertainty.

The proposedmethod is designed for the product with mul-
tiple performance characteristics, or the system with multiple
components, in which the dependencies between multiple
degradation indicators can be characterized as the correla-
tions of model parameters. In addition to the series systems,
the proposed method can also be applied to other systems
with differnt failure structures, such as the parallel systems
or the combination systems, since the degradation states of
multiple degradation indicators can be estimated simultane-
ously by the proposed method.
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