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ABSTRACT Smart Grid (SG) networks include an associated data network for the transmission and
reception of control data related to the electric power supply service. A subset of this data network is the SG
Neighborhood Area Network (SG NAN), whose objective is to interconnect the subscribers’ homes with the
supplier control center. The data flows transmitted through these SG NANs belong to different applications,
giving rise to the need for different quality of service requirements. Additionally, other subscriber appliances
could use this network to communicate over the Internet. To avoid network congestion, as well as to
differentiate the quality of service (QoS) received by the different data flows, a congestion control mechanism
with traffic differentiation capabilities is required. The main contribution of this work is the proposal of a
new congestion control mechanism based on machine learning techniques to try to guarantee the different
QoS requirements to the different data flows. A main problem when applying machine learning techniques
is the need for datasets to be used in the training steps. In this sense, a second contribution of this article is the
proposal of a method to generate such datasets by means of simulation techniques. The proposed mechanism
is then evaluated in the context of a wireless SG NAN. The nodes of this network are the subscriber’s smart
meters, which in turn perform the function of concentrating the data traffic sent and received by the rest
of the home appliances. Besides, different machine learning classification methods are taken into account.
The evaluation carried out shows significant improvements in terms of network throughput, transit time, and
quality of service differentiation. Finally, the computational cost of the algorithms used in this proposal has
also been evaluated, using real low-cost IoT hardware platforms.

INDEX TERMS Smart grid, neighborhood area networks, machine learning, deep learning, congestion
control.

I. INTRODUCTION
The traditional electrical energy distribution networks have
evolved to the so-called Smart Grids (SG), in which an
associated data communication network is available to com-
plement the traditional electrical infrastructure. On the one
hand, the electricity distribution infrastructure is responsi-
ble for generating, transporting, and distributing this valu-
able resource to the subscribers [1]. On the other hand,
the data communication network is used to improve the ser-
vice offered to the subscribers, as well as to provide some
feedback about the operation status to the control center [2].
The associated data network comprises three sub-networks:
the Home Area Network (HAN), the Neighborhood Area
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Network (NAN), and the Wide Area Network (WAN). The
HAN sub-network is implemented in the subscriber’s home,
interconnecting all the available appliances together with the
smart meter, which in turn performs the functions of data
concentrator towards the NAN sub-network. Thus, the NAN
sub-network interconnects the subscribers’ homes (within a
limited geographical area), forwarding (receiving) the data
to (from) the control center through a gateway connected to
the WAN network. Different technologies can be used for
each of these sub-networks.

The availability of this new infrastructure for data trans-
mission gives rise to the possibility of offering new services
to the subscribers of the electric companies. These services
can be related to energy consumption, as well as to a wide
set of new applications from which both the supplier compa-
nies and the subscribers could make a profit. Thereby, in an
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environment in which the number of IoT devices is constantly
growing, many new home appliances will be able to transmit
(and receive) their data flows across theNANnetworks. How-
ever, an uncontrolled data transmission rate by such appli-
cations could lead to network congestion situations. Some
effects of network congestion are packet losses and buffering
delays. These effects can drastically reduce the network per-
formance of the NAN, especially for those applications with
a higher quality of service (QoS) requirements. Therefore,
a congestion control mechanism is mandatory to achieve ade-
quate QoS provision. Furthermore, knowing that traffic flows
with different QoS requirements will coexist in the network,
this mechanism should be able to distinguish between those
flows, implementing a differentiated resource allocation strat-
egy and thus guaranteeing the different degrees of quality
demanded.

The goal and main contribution of this work is the proposal
and evaluation of a new congestion control mechanism for
SG NANs, based on machine learning techniques and able to
differentiate between traffic flowswith different QoS require-
ments. To achieve a good performance, most machine learn-
ing techniques require large datasets, which are used during
the training phase of the selected algorithms. In fact, in many
situations, the unavailability of these datasets makes the
application of these techniques unfeasible. Thereby, a second
contribution of this work is the proposal of a mechanism to
obtain the required datasets bymeans of network simulations.
Among the available machine learning techniques, in this
article, we detail the results obtained with two of them: deci-
sion trees and feedforward neural networks. The complete
system has been evaluated also through network simulations,
using the ns-3 simulator [3]. The selected network technology
is the IEEE 802.11s Wireless Mesh Network [4].

To deal with the different QoS levels, the data packets are
classified into different categories (or traffic types), depend-
ing on the application to which they belong. A different
priority is assigned to each category, giving preference to
the transmission of the highest priority packets. Thus, data
packets belonging to critical applications of the Smart Grid
are assigned to higher categories, while those belonging to
less relevant applications are assigned to lower categories.

The application of the mechanism is done in a distributed
way. Every time a source node must transmit a packet belong-
ing to a certain flow, it will apply a decision algorithm to
predict, as a function of the current network status (utilization
factors of the wireless channels and buffer occupancy of the
network nodes), if the packet will be correctly delivered (on
time) to its destination, without compromising the correct
transmission of higher category packets. If these conditions
are met, the packet will be transmitted. Otherwise, it will be
discarded, avoiding a waste of network resources.

The rest of the paper is organized as follows. The following
section presents some related work. The proposed conges-
tion control mechanism is described in detail in Section III.
Next, the performance evaluation is presented in the follow-
ing two sections: section IV presents the obtained results

with a decision tree classifier, while section V evaluates the
performance of a neural network-based mechanism. Finally,
Section VI concludes the paper.

II. RELATED WORK
The improvement of the performance offered by wireless
SG NANs is a field of work that has attracted the attention
of several research groups. Some improvements have been
proposed in relation to different fields, such as network topol-
ogy, routing algorithms and protocols, channel allocation, and
congestion control.

Regarding the network topology, in [5] a multigate com-
munication network, based on IEEE 802.11s [6], together
with a mechanism to implement the load balance between
gateways is proposed. The possibility of multi-channel trans-
mission is also taken into account, as well as real-time traffic
scheduling.

Improving the capabilities offered by routing algorithms
and protocols is the focus of multiple papers. For instance,
a comparison between Optimized Link State Protocol
(OLSR) [7] and Hybrid Wireless Mesh Protocol (HWMP)
[6] is presented in [8]. For both protocols, different variations
have been proposed to improve their performance, modifying
some of their procedures or the metric used to obtain the
cost of the channels [9]–[14]. A more detailed summary of
theseworks, together with a proposal that combinesmultipath
routing with multichannel assignment can be found in [15].

Congestion control involves a set of techniques to detect
and correct a possible overuse of the network resources which
leads to a performance degradation. Basically, an unregulated
traffic generation rate by some source nodes, or even their
geographical position or the network size, can give rise to
a partial or complete congestion situation. Most Smart Grid
applications have strong security and reliability requirements,
and thus, congestion control mechanisms are mandatory to
provide the necessary QoS. In this sense, a generic proposal
for IEEE 802.11s networks, also based on the modification
of the routing protocol, can be found in [16].

In the context of Wireless Mesh Networks, most of the
congestion control mechanisms are focused on the Transmis-
sion Control Protocol (TCP) [16]. Taking into account that
a part of the traffic to be transmitted over the SG NANs
uses this transport protocol, all the obtained improvements
are undoubtedly of extreme importance for the correct oper-
ation of the network. A major problem when using TCP is
that it recognizes and handles all packet losses as network
congestion [17]. Hence, performing an unjustified congestion
control, when a packet loss is due to another reason, can
degrade the end-to-end throughput. With this goal in mind,
several researchers are focused on the design of learning
algorithms that differentiate between network congestion and
transmission errors [18]–[22]. On the other hand, a multitude
of new and future IoT applications are and will be transmitted
without the need for an end-to-end connection, such as those
established by the TCP protocol. These applications will then
make use of the lighter User Datagram Protocol (UDP).
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Nowadays, the application of machine learning techniques
to improve the performance in wireless communication net-
works is a hot topic. In this sense, numerous recent works can
be found. A very good survey can be found in [23].

In [24] and [25], the authors present a new forwarding
mechanism, based on a learning algorithm, by which each
node dynamically selects its next hop with the highest poten-
tial bandwidth. In their proposal, when a node must forward
a data packet, the node learns the historical changes of band-
width and then predicts the possible future bandwidths of the
links with its neighbor nodes. Besides, in order to avoid flood-
ing problems, they also propose a geographical algorithm to
let the source node to figure out the best forwarding region.
They evaluate their mechanism in a simulated noiseless radio
network environment using the MATLAB platform. Another
recent work that deals with the routing mechanism, focused
in this case on wireless sensors networks, is presented in
[26], where authors propose a combination of algorithms
which offers improvements in terms of network lifetime,
coverage, and robustness, as well as a reduction in the energy
consumption of the overall network system. On the other
hand, a study of some parameters that could be of relevance
for a congestion control mechanism, together with a first
evaluation of some machine learning techniques, appears in
[27]. The authors state that transmission energy, queue size,
distance between the transmitter and the receiver, transmis-
sion rate, and channel cost are relevant parameters to design
a congestion control decision mechanism. It is not proposed
a method to obtain datasets for algorithms training, nor the
operational congestion control mechanism, for a specific
wireless network technology. Traffic differentiation is not
taken into account either.

We have previously proposed two alternatives for conges-
tion control on SGNANs. One of them is implemented on the
intermediate nodes and takes into account the possibility of
being in emergency situations [28]. The second one delves
into the need to offer an equitable distribution of network
resources among all traffic generating nodes [29]. In this
work, a new congestion control mechanism that uses machine
learning and deep learning techniques is presented. The con-
tribution is focused on UDP based applications and takes into
account the need of traffic differentiation, providing different
levels of QoS to the traffic flows depending on their needs and
relevance. We propose, implement, and evaluate some proce-
dures to obtain useful datasets to train the machine learning
algorithms when traffic differentiation is mandatory. Besides,
we have built a complete framework to evaluate two different
classificationmechanisms (based on decision trees and neural
networks techniques). A study of the computational cost of
the proposed mechanism, and its implementation feasibility
on current low-cost hardware platforms, is also included.

III. PROPOSED SOLUTION
The application scenario for the proposed congestion control
mechanism is shown in Figure 1, where the different subnets
that make up the Smart Grid data network can be seen:

FIGURE 1. Smart Grid data network.

Home Area Network (HAN), Neighborhood Area Network
(NAN), and Wide Area Network (WAN). Within each
HAN, different data generators/receivers (computers, IoT
sensors and actuators, electrical vehicles, . . . ) can coexist
with the devices of the electrical network. The smart meter
(SM-GW) can perform the gateway functions, to concentrate
all these data flows to/from the NAN network. Thus, different
data traffics will coexist within the NAN, some of them
being of critical importance for the correct operation of the
Smart Grid. Therefore, it is highly recommended to include
traffic differentiation techniques in the congestion control
mechanism.

The proposed mechanism is based on machine learning
techniques, and therefore it is necessary to distinguish two
main steps:
• Training of the selected algorithms: In this step, previous
datasets are needed, in which the correct (or not) recep-
tion of the data packets, as a function of the network state
(channels utilization, occupation of buffers, presence of
packets with different priority), has been detected. As it
has been previously mentioned, in this work a method
to obtain these datasets, by means of network simulation
techniques, is proposed.

• Operation phase: In this phase, the NAN source nodes
(that is, the SM-GWs) are able to predict whether a
new packet to be transmitted will be correctly (on time)
received or not. If the packet will not be received cor-
rectly, or if its transmission will make it impossible to
provide the required QoS to a higher priority packet,
it will be directly discarded at the source node.

Figure 2 shows the road-map used for building ourmachine
learning-based congestion control mechanism. The entire
process can be separated into three steps. First, the necessary
datasets are generated. Second, the training of the machine
learning algorithms is carried out. Third, the mechanism can
be put into operation on the SG NAN.

In the first step, data collection is mandatory since there
is not an available dataset for NANs that contemplates dif-
ferent network loads and traffic differentiation. This way,
a method has been designed to create a dataset according to
our problem. To this end, numerous network simulations have
been carried out with the help of the ns-3 simulator. In these
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FIGURE 2. Development and operation of the congestion control
mechanism.

simulations, the relevant network state parameters found by
every data packet in its way from its source to its destination,
together with the received service, in terms of network transit
time, are captured and stored. For our purposes, the channel
utilization factor and the buffer occupancy are good descrip-
tors of the network load state. To get a complete description of
the network behavior, different network load values are gen-
erated by the different SG NAN applications. Once the data
have been collected, they must be processed. The objective
here is to clean and organize those data in a structured way,
which can be used to train the machine learning algorithms.

In the next two subsections, the data collection and
processing steps, will be deeply covered.

A. DATA COLLECTION
As previously stated, to build our proposal the first step we
must do is to obtain a large amount of data that describes all
possible network load situations, together with the service
received by the data packets. In this work, the scenarios
used for data collection consist of communication networks

FIGURE 3. Data collection scenario.

TABLE 1. Main simulation parameters used for data collection.

arranged in a grid topology, in which each node represents
a home connected to the SG NAN through the SM/GW. The
data transmitted by all these nodes are destined to another
data concentrator, which forwards those data packets to the
control center through a WAN network. Figure 3 shows a SG
NAN scenario consisting of eight SM/GWs (nodes 1 to 8) and
one data concentrator (node 9).

The data collection process can be carried out in two dif-
ferent ways: offline or online. In our context, an offline data
collection has been performed. Among others, the channel
utilization factor and the number of queued packets (ρi and qi
respectively in Figure 3, with i = 1 . . .N and N representing
the total number of nodes) will be stored. Besides, the offline
data collection can be done through active or passive monitor-
ing. For our purposes, a passive monitoring can be performed,
in order not to introduce additional control traffic such as
probe packets [17].

Several simulation runs were performed to build the train-
ing dataset. The main simulation parameters are summarized
in Table 1. As shown, a variable size (specifically, a truncated
exponential distribution) has been chosen for the data packets.
For the inter-arrival time, the same criteria has been followed,
and so packets are generated with different and random time
between each other. In order to obtain the full range of
values of the channel utilization factor and buffer occupation,
a variable packet inter-arrival time has been configured.

Figure 4 shows an example about the way the data col-
lection has been done. The figure represents the simplest
case, that is, when just one traffic type or category (cat) is
considered. In this example, just one data packet that belongs
to traffic category 1 is transmitted, from SM/GW 1 towards
the data concentrator. As it can be seen, when the packet
travels through the network hop by hop, the current channel
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FIGURE 4. Data collection.

utilization factor and the buffer occupancy are stored in the
repository. Besides, many more events are stored such as the
arrival time (at), the packet category and a packet identifier
(pid) among others.

B. DATA PROCESSING AND FEATURE EXTRACTION
The collected data are stored in some repositories in an
unstructured way. Therefore, they have to be processed in
order to organize and to define the features and labeled
classes, which will be the inputs and outputs to train the
machine learning algorithms. This process is often called as
feature extraction. For this purpose, the pandas tool [30]–[32]
has been chosen to process, create, and organize the variables
from the collected data in a structured way.

First, the data are processed to have onemeaningful sample
per packet. That is, each sample will contain the network
parameters perceived by one packet in its way hop by hop
through the whole network (see Table 2). Second, the fea-
tures and classes are extracted from these variables. Figure 5
presents the resulting training dataset with the inputs and the
outputs for the machine learning algorithms. Each training
sample represents the parameters for a unique packet trans-
mitted over the network. The features are the channel uti-
lization factor and the buffer occupancy per node (ρi and qi),
while the class represents whether the packet has been suc-
cessfully received or not (r). To decide if a packet has been
successfully received, its network transit time is considered.
This way, if that time is lower than the maximum allowed
according to the required quality of service, the packet is con-
sidered successfully received. Otherwise, the transmission is
considered unsuccessful.

With these guidelines on how to build a representative
dataset for our targeted problem, several data files have been
generated from scratch. Besides, different traffic patterns

TABLE 2. Variables used to represent the unstructured data.

FIGURE 5. Features and labels for the training and testing dataset.

TABLE 3. SG applications transmitted over the smart grid [33].

have been considered to generate the datasets, with the aim of
collecting a large amount of historical data and with different
values of the selected features.

C. TRAFFIC DIFFERENTIATION
In this subsection, the previous procedures will be extended
and generalized to be usedwhen theQoS provided to different
traffic flows must be differentiated. For instance, Table 3
shows some different Smart Grid applications which are
grouped according to their relevance. Thus, here we consider
different traffic priorities, assigning the higher priority to
traffic category 1.

Therefore, a new dataset that includes different types of
traffic has to be built. In order to explain the methodology
used to create a dataset with different traffic types, a simple
example will again be used, which is shown in Figure 6.
In this example, two packets that belong to two different
traffic categories (1 and 2) are considered.

The two packets are transmitted at the same time, and
we have included a common packet identifier (cpid) in their
header. Basically, the objective of having a common identi-
fier is to analyze how the transmission of data belonging to
traffic category 2 penalize the traffic category 1 in terms of
successful packet reception and network packet transit time.
In the example, once the two packets have arrived to node 9,
we get the values of their network transit times (t9 for the
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FIGURE 6. Data collection used to build a training dataset considering
different traffic types.

TABLE 4. Required QoS.

category 2 packet, and t10 for the category 1 packet). If the
value obtained for the packet belonging to category 1 is lower
than the required (see an example in Table 4), the packet is
considered successfully transmitted. Otherwise, the packet
transmission is unsuccessful and so we consider that the
transmission of the lower category packet has been detrimen-
tal, and therefore we mark it as not selectable for transmis-
sion. That is, in the next step of the process, the machine
learning algorithms will be trained to not transmit the cat-
egory 2 packets in this network situation. Note that this is
an approximation, and maybe the transmission of the packet
belonging to category 2was not the only cause of the incorrect
reception of the packet belonging to category 1.

The same approach is applied when transmitting more
than two traffic categories. Besides, in the previous example,
the two traffic types are transmitted at the same rate. However,
in the real data collection implemented, different combina-
tions of traffic patterns were considered. For instance, a com-
bination consist of keeping constant the rate of traffic type 1,
while increasing the rate of traffic type 2, and observing how
the service offered to traffic type 1 is reduced.We always keep
common identifiers to be able to infer the influence of the

FIGURE 7. Validation curve.

lower categories traffics in the service received by the higher
ones.

Once we have created the needed datasets, the next step
is using them to train the classification algorithms and eval-
uate the resulting performance. In the next sections, two
different classifiers will be considered: decision trees and
neural networks. In order to avoid underfitting and overfitting
problems, the size of the different datasets has been chosen by
inspecting the learning curve, which relates the classification
accuracy to the number of samples in the dataset.

IV. DECISION TREE BASED CLASSIFICATION
A. ONE TRAFFIC CATEGORY
Decision trees belong to the set of supervised learning algo-
rithms. They are used to solve classification and regression
problems [34]. Since the proposed congestion control mech-
anism is aimed to solve a binary classification problem, this
type of classifier represents a very good option, with a low
computational load, which is very interesting if the network
nodes are based on low-cost hardware architectures.With this
classifier, the prediction is obtained by means of a set of if-
then-else decision rules [35].

To get good performance from machine learning algo-
rithms, some hyperparameters must be adjusted. To this end,
there are basic techniques such as Grid Search or Random
Search, and more sophisticated techniques such as Bayesian
Optimization and Evolutionary Optimization. In this sense,
decision trees have different hyperparameters that must be
adjusted. Among those parameters, one of the most important
is the depth of the tree. In general, a greater depth provides a
greater accuracy, although it also results in a greater number
of if-then-else operations. Figure 7 shows the training and
validation scores of a decision tree with different depth val-
ues. As it can be seen, if the depth value is very low, both the
training score and the validation score are low (underfitting).
Medium depth values (from 6 to 12) provide high values for
both scores. It means that the classifier is performing fairly
well. However, if the depth value is too high, the classifier
will overfit, which means that the training score is good but
the validation score is poor. In this work, a good trade-off has
been found between the required number of operations and
the obtained accuracy, by selecting a maximum depth value
equal to 10. On the other hand, the entropy function has been
selected to measure the quality of each split in the decision
tree.

Once the hyper-parameters have been tuned, the result-
ing Receiver Operating Characteristic (ROC) curve has been
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FIGURE 8. Decision Tree Receiver Operating Characteristic (ROC).

obtained as shown in Figure 8. For this purpose, we split the
dataset into two sub-sets, reserving a 30% of the data to test
the prediction capability. The ROC curve is one of the most
well-known performancemetrics for machine learning classi-
fiers [36]. Basically, it is a two-dimensional graphwhich plots
the true positive rate (TPR) against the false positive rate
(FPR) for different values of the discrimination threshold:
• The TPR (also called sensitivity or recall) represents
the proportion of positive samples that were correctly
classified as positive. It can be calculated as follows:

TPR =
TP

TP+ FN
(1)

where TP (true positive) is the number of positive
samples correctly classified as positive, and FN (false
negative) is the number of positive samples incorrectly
classified as positive.

• The FPR (also called fall-out) represents the proportion
of negative samples that were incorrectly classified as
positive. It can be calculated as follows:

FPR =
FP

FP+ TN
(2)

where FP (false positive) is the number of negative
samples incorrectly classified as positive, and TN (true
negative) is the number of negative samples correctly
classified as negative.

Therefore, classifiers that produce curves closer to the
top-left corner obtain a better performance. Obviously,
the best classification is achieved in the point (0, 1). A uni-
form random prediction will provide points over the diagonal
line. Points under that line represent a prediction worse than
a random classification. The Area Under the Curve (AUC)
is also used as a performance value, with a maximum value
equal to 1. This value is also shown in the figure. As it can
be seen, the decision tree classifier trained with our proposed
dataset provides a ROC curve with a high level of prediction
performance.

For the previous performance evaluation, the simplest case
has been considered. In this case all the network nodes use
the same classifier each time they have to make the decision
of whether or not to transmit a data packet. In order to
obtain a performance improvement, the dataset can be divided
into N (number of nodes) different subsets SSi, i = 1 . . .N .
In each subset, only the samples corresponding to the packets
generated from node i will be included. This way, a different

FIGURE 9. Decision Tree ROC (node 1 and divided dataset).

TABLE 5. Decision tree performance metrics [35], [38].

decision tree will be built for each node. Some examples will
be shown later.

Figure 9 shows the ROC curve for node number 1 when the
dataset has been divided as a function of the source nodes.
Comparing Figures 8 and 9, the second model exhibits a
better prediction performance. Besides, the AUC value is
higher because the second plot is nearer to the top-left corner.
The cost to pay for this performance improvement is a higher
computational load in the training phase and a slight increase
in the network control traffic.

These two possibilities have also been evaluated in terms
of the F-Score (harmonic mean of the precision and recall)
and Cohen’s kappa (agreement between two raters) metrics
[37]. The results are shown in Table 5. Overall, it can be seen
that better results are obtained when a different decision tree
is built and used by each source node.

In the following, these two possibilities will be evaluated
in a networking scenario with the help of the ns-3 simulator
(Step 3 in Figure 2). For this purpose, the model is exported to
be used in a real network. Thus, each network node will have
available the parameters of its decision tree. Furthermore,
as inputs for these trees, they will need the updated values
of ρi and qi of the rest of the network nodes. These values
must be broadcast by all nodes at regular time intervals.
Such broadcasting can be done by means of the inclusion of
new dedicated fields in the HWMP routing protocol frames
(PREQ and PREP), or by means of the generation and trans-
mission of special management frames (Action subtype) [6].

1) NETWORK PERFORMANCE EVALUATION
The first two network experiments carried out are related
to the evaluation of the generated training datasets. On the
one hand, the complete dataset will be used to generate the
model to be used by all the network nodes. Remember that
in this case all of them will have the same decision rules.
On the other hand, the training dataset will be divided as a
function of the source nodes. That is, each node will have
its own decision rules. For these two experiments, a Smart
Grid NAN scenario made up of eight smart meters and one
data concentrator (as already seen in Figure 3) has been
considered. In this first evaluation, only one traffic type is
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FIGURE 10. Packet delivery ratio, network attained throughput and
transit time.

transmitted upstream from the smart meters towards the data
concentrator. The packet generation rate and packet length
distributions have been considered as truncated exponentials,
with average values 200 Bytes and 200 pkt/s respectively.
With these values, the traffic generated by the applications is
greater than the traffic the network is able to transport. This
way, the congestion control mechanism must be activated by
all the network nodes.

Figure 10 presents, by means of box-plots, the results of
these two first sets of simulations in terms of packet delivery
ratio (PDR), attained throughput, and network transit time.
As it can be seen, the network performance is better for those
three parameters when the Decision Tree based Congestion
Control (DTCC) mechanism is applied. Besides, the results
are even better when the training data set is divided according
to the source node. For instance, in the absence of a con-
gestion control mechanism, the PDR only reaches the value
of 26%. However, when the proposed mechanism is applied,
the PDR reaches a 50% and this value increases to 98% when
the data set is divided by nodes. Similar results are obtained
for the network throughput, where DTCC exhibits better
results. That is, more information is correctly transmitted
to the data concentrator. Finally, the network transit time is
decreased more than the 50%with the proposed solution, and
this value decreases even more when the dataset is divided
according the source node.

From these preliminary results, it is possible to conclude
first that the proposed mechanism will effectively improve
the network performance. Second, dividing the dataset by
nodes represents an even greater improvement, although it
also implies a greater operational complexity in the network.

2) FEATURES SELECTION
The next step is to make a selection of the best features that
should be taken into account. In the previous experiments,

FIGURE 11. Features importance.

the decision trees have been built taking into account all the
available features, that is, the values of ρi and qi measured
by all the network nodes. However, all these features will
not have the same importance for all the nodes, having some
of them more relevance than others. Thus, the number of
used features could be reduced, giving rise to less complex
models. To make this relevance analysis, the L1 regulariza-
tion technique is commonly used [39]. By means of this
technique, a ranking has been created where the different
features of the dataset are sorted by their relative impor-
tance. Figures 11a and 11b present the features importance
for the two cases previously considered (dataset complete and
dataset divided according the source node respectively). Note
that the feature importance plots are normalized. In the sec-
ond case (Figure 11b) the features ranking is shown for nodes
number 1 and 5. As it can be seen, the most relevant features
at each node are their own channel utilization (ρ1 and ρ5
respectively). However, when the whole dataset is used by all
the network nodes (Figure 11a) the most important feature
is related to the data concentrator (ρ9). Figure 12 shows a
simplified example of the different decision trees obtained
in both cases. The trees have been truncated with a depth
value equal to three. At the final branches, the classification
obtained by a greater number of samples at this level is
indicated (the value ‘‘1’’ means a prediction of success in the
packet transmission, and the value ‘‘0’’ means a prediction of
not success).

On the other hand, Figure 13 shows the number of features
needed by every network node to reach a certain accuracy
score (80, 85, and 90%). As expected, the higher the desired
accuracy score, the more features are needed.

In order to illustrate the benefits obtained by applying
feature reduction, a new set of simulations has been carried
out. In this case, the models (per node) are generated with
the most important characteristics to obtain an accuracy score
of 85%. At the beginning of the training phase, the model is
trained just with the most relevant feature. If the model does
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FIGURE 12. Decision trees examples.

FIGURE 13. Number of features needed to reach different accuracy
scores.

FIGURE 14. Packet delivery ratio, network attained throughput and
network transit time (number of selected features computed for a target
accuracy of 85 %).

not reach the desired testing score, the second most important
feature is included in a new training, and so on. Moreover,
a maximum number of features equal to 6 was set up as
a trade-off between the accuracy and the complexity of the
model.

Figure 14 shows the results in terms of packet delivery,
throughput and transit time. As it can be seen, these results
are pretty similar to those presented previously in Figure 10,

showing even a slight improvement in terms of network tran-
sit time. Besides, thanks to the feature reduction, the model
complexity, as well as the amount of network control traffic,
have been reduced.

B. TRAFFIC DIFFERENTIATION
As already mentioned, another requirement for the proposed
congestion control mechanism is that it must allow traffic
differentiation. With the huge increase in traffic expected for
data networks due to the proliferation of IoT devices, we need
to be able to distinguish the importance of the different traffic
flows and assign different priorities to allocate the shared
network resources.

In this sense, the classification algorithms must be
‘‘taught’’ to distinguish between different traffic types
to decide whether or not a packet can be transmitted.
As explained in subsection III-C, in this proposal this dif-
ferentiation is carried out when building the datasets that
will be used in the algorithms training phase. Thus, during
the simulations carried out to generate the different datasets,
the influence of some traffic types on others has been ana-
lyzed for all possible combinations of the network load.
After this analysis, in the data processing phase, the labels
assigned to the different samples are modified in order to
favor themost priority traffic types, but without unnecessarily
discarding those with lower priority.

First, we will evaluate a Smart Grid NAN scenario where
two traffic types are transmitted. The previous network sce-
nario is considered again, but now all the network nodes are
transmitting packets belonging to the two traffic types. On the
one hand, the system will provide congestion control in situ-
ations of high network load. On the other hand, the solution
will provide higher transmission priority to traffic type 1.

Table 4 shows the maximum allowable network transit
time values that have been selected for each traffic type. The
dataset has been divided as a function of the source node and
the traffic type. Therefore, each node have its own decision
rules based on the traffic type to be transmitted. Besides,
a features selection has also be done for a target accuracy
of 85%.

With respect to the decision tree parameters, they have
been chosen again after performing several evaluations with
different combinations of possible values: the tree depth has
been set to 6, and the selected decision criterion has been
again the entropy.

The packet length and the packet generation rate dis-
tributions have been selected as truncated exponential for
both data flows, and their average values are 200 Bytes and
100 pkt/s respectively. As previously done, we are operating
with a high network load, and therefore, the congestion con-
trol mechanism is activated.

Figure 15 shows the obtained results in terms of packet
delivery ratio, network throughput and transit time. As it can
be seen, in the absence of a congestion control solution a high
percentage of packets will be lost on their way towards the
data concentrator. However, when the DTCC mechanism is
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FIGURE 15. Packet delivery ratio, network attained throughput and
network transit time (number of selected features computed for a target
accuracy of 85 %).

applied, a 92% of the packets are correctly transmitted to the
sink node. Regarding the attained throughput, the value for
traffic type 1 is higher than for traffic class 2, and thus, differ-
ent priorities are correctly provided to each traffic category.
Besides, the attained throughput is higher compared to the
uncontrolled case for both traffics. Finally, the figure shows
also a significant improvement obtained in terms of network
transit time with our solution.

Overall, the previous results indicate the benefits obtained
with the proposed mechanism when two traffic types are
transmitted on the network. Next, a last set of experiments
will be carried out to verify if the mechanism works correctly
for a higher number of traffics types (4) and a larger scenario.
In a similar way, the traffic type 1 has the highest QoS needs,
while the traffic type 4 has the lowest QoS requirements. For
this purpose, a new data collection and data processing have
been done as follows. First, if the QoS requirements of traffic
type 1 are not met (packet is not received correctly on time),
the lower priority traffics are not considered for transmission
(that is, their classification labels are set to 0). The same will
happen if the QoS needs of traffic 2 are not met. In this case,
traffic types 3 and 4 will not be considered for transmission.
As before, for the data collection a common identifier is
included in the packet header, in order to be able to relate
the four packets transmitted simultaneously, belonging each
one to a different traffic type. The maximum allowed network
transit times are presented in Table 6. As previously done,
different combinations of traffic patterns were configured in
the data collection process.

In this case, a network size of 25 nodes has been consid-
ered, with 24 SM/GW transmitting data packets towards the
data concentrator. The packet length and the packet genera-
tion rate distributions have been selected as exponential for
the four data flows, and their average values are 200 Bytes

TABLE 6. Maximum network transit time allowed for each category.

FIGURE 16. Packet delivery ratio, network attained throughput and
network transit time (number of selected features computed for a target
accuracy of 85 %).

and 20 pkt/s respectively. With these values, the NAN will
operate again in a congested scenario.

Given that the current evaluation scenario consists
of 25 nodes, the training dataset will contain 50 features (the
values of ρi and qi in every node). In order to reduce the
dataset dimension as well as the model complexity, a features
selection is performed again, with a target accuracy equal
to 85%.

The obtained results are shown in Figure 16. As it can be
seen, in the absence of a congestion control solution, a 75% of
packets will be lost in their way towards the data concentrator.
However, with the proposed solution, the PDR is 100% for all
traffic types. Besides, the traffic type 1 is strongly favoured
in terms of throughput, and thereby different priorities are
provided to each traffic type. Finally, it is also shown the
significant improvements obtained in term of network transit
time with our solution.

Regarding the throughput, the previous figure shows a
higher value for the traffic category with the highest priority,
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FIGURE 17. Network transit time compliant factor and complaint
throughput.

but a lower throughput is reflected for the other three cate-
gories. On the one hand, as alreadymentioned, to get different
values depending on the traffic type is a desired effect, since
one of the requirements of the proposal is to differentiate the
relevance of the traffic flows. On the other hand, it must also
be taken into account that the received packets, in order to be
useful, must meet their requirements regarding the maximum
allowed network transit time, and this time is different for
each category (see Table 6). In this sense, an interesting
measure is the percentage of packets of each category that
has been delivered to their destination on time.We refer to this
percentage as the compliant factor and we represent its values
in Figure 17a. In addition to the factor for each category,
a global value is also offered, taking into account the propor-
tion of packets of each traffic type. Our results indicate that
this factor is considerably better in all cases when applying
DTCC, reaching practically the maximum value. Taking this
factor into account, the compliant throughput is represented
in Figure 17b, where it can be seen how the obtained value is
higher, for all traffic categories, when DTCC is applied.

V. FEEDFORWARD NEURAL NETWORK BASED
CLASSIFICATION
In this section, a neural network is used in the classification
step. Figure 18 depicts a generic neural network together with
the smallest part of this architecture, the neuron. On the one
hand (Figure 18a), neurons consist of mathematical functions
aiming to emulate a biological neuron. Basically, a neu-
ron or perceptron is a computational unit that calculates the
weighted average of its inputs, being the resulting value the
input of an activation function, which finally generates the
output of the neuron. On the other hand, the artificial neural
network is a collection of interconnected neurons, organized
into different layers (Figure 18b):
• In the first layer, there are a certain number of neurons
(NIN ) and dendrites (NID) that represent the input of the
neural network. For our purpose, these inputs are the ρi
and qi (as defined in the previous sections) values.

• Second, the network is made up of a set of (hidden)
layers (NHL), each one containing a certain number of
neurons (NHN ). These are the twomain hyperparameters

FIGURE 18. Neural network.

TABLE 7. Neural network training parameters.

that define the network architecture or topology. In the
following sections, the selection of these values will be
covered.

• Finally, the last layer consists of one neuron with NHN
dendrites and one axon, which provides the network
output.

A. NEURAL NETWORK DESIGN
In the following subsections, the characteristics selected in
the design of the neural network are specified, which are
also summarized in Table 7. To build and to train the model,
we have made use of the keras [40] set of tools inside our
framework.

1) NEURAL NETWORK ARCHITECTURE
In this work, a feedforward neural network [41] has been
chosen to implement the desired classification mechanism.
With this network topology, the information progresses in
only one direction, that is, no feedback loops are built. There-
fore, the computational cost is smaller. The next step is to
chose how the different layers are interconnected. Among
the different possibilities, we have used a fully-connected
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network, also known as dense layer type. In a fully-connected
network, the inputs of each neuron are the outputs of all the
neurons in the previous layer.

2) ACTIVATION FUNCTION
Another characteristic of the neural network that must be
selected is the activation function of the neurons. There are
different activation functions, mainly classified into three
types: binary step, linear, and nonlinear activation func-
tions. Among them, nonlinear activation functions are mainly
preferred as they allow the nodes to learnmore complex struc-
tures in the data. For the first and hidden layers, we have cho-
sen the well-established Rectified Linear Activation (ReLU)
function for, among other characteristics, its computational
simplicity and linear behavior [42], [43]. Finally, the sigmoid
activation function has been used in the output layer, due
mainly to the fact that its output varies from 0 to 1, which
fits our classification problem.

3) LEARNING PROCESS
In the learning process, a suitable optimization algorithm has
to be selected, which is in charge of computing the best set
of weights that minimizes the prediction error (quantified
by means of some loss function). Basically, the optimization
algorithm computes the derivative of the loss function with
respect to the neural network parameters. With this computa-
tion, the appropriate value to adjust the weights is obtained.
For our purposes, the well-established adaptive moment esti-
mation (adam) optimizer is used. This optimization algorithm
has been proven to be a good choice compared to the classical
stochastic gradient descent procedures [44]. On the other
hand, the well-known mean square error (MSE) has been
chosen as the loss function.

4) MODEL TRAINING
In the training phase, the original datasets are divided again
into training and validation subsets. Besides, we have to set
up the number of epochs that the model will iterate through
all the training samples. Generally speaking, the more epochs
are run, the more accurate the model is. However, to avoid
overfitting, the validation-based early stopping technique has
been used [45]–[47]. With this technique, the training phase
is finished when it is detected that increasing the number of
epochs does not improve the model accuracy. It will be seen
later when analyzing the obtained ROC curves and accuracy
values, that the model is not showing overfitting problems.

5) SELECTING THE NUMBER OF HIDDEN LAYERS AND
NEURONS
As previously said, artificial neural networks have two main
hyperparameters that control the architecture or topology of
the network: the number of layers and the number of nodes
in each of them. For the first (input) and last (output) layers,
we have already selected the number of neurons (Figure 18)
and their inputs. However, the number of hidden layers and
neurons are still unknown parameters that must be config-
ured. There are some heuristics methods on how to estimate

FIGURE 19. Model accuracy and loss.

those values [48]. However, in this work, we have carried out
a systematic experimentation to discover the best configura-
tion for our specific datasets. Thus, the first experiments are
aimed to select the number of hidden layers and neurons.

For these first experiments, the neural network has been
trained with all the available features, that is, without doing
a features selection. A network size of 9 nodes and just one
traffic category have been considered. Figure 19 shows the
results obtained for the network node number 1, in terms of
accuracy and loss in front of the number of epochs. The values
obtained for the rest of the network nodes are very similar. For
these two parameters, both the general value (obtained from
the whole training dataset) and the validation value (obtained
from the validation subset) are shown. As it can be seen,
increasing the number of hidden layers from 8 to 25 does not
represent a significant improvement. Thus, the configuration
for 8 layers might be seen as a good selection if we want
to reduce the model complexity. With the following experi-
ments, more information will be obtained for the selection of
this parameter.

A new set of training runs were performed to select the
number of neurons at each hidden layer. Here, we have
obtained the accuracy value for two cases: using all the
available features, or just themost relevant. From the previous
results, the number of hidden layers has been configured
to 8 and 25, while the number of neurons is a variable param-
eter. Figure 20 shows the obtained accuracy for every network
node. As it can be seen, even though the results are very
similar, a better performance is obtained when the network
is built with 8 layers. Furthermore, almost the same results
are obtained when the number of neurons is greater or equal
than 6. Therefore, the values selected for the number of
hidden layers and for the number of neurons will be 8 and 6
respectively. These values will be used in the rest of the
experiments carried out in this section.
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FIGURE 20. Neural network accuracy in each source node.

FIGURE 21. Receiver Operating Characteristic (ROC) metric.

TABLE 8. Neural network performance [35], [38].

6) VALIDATION OF THE NEURAL NETWORK WITH
CLASSIFICATION METRICS
In the same way as previously done with the decision tree
classifier, the neural network will also be evaluated by means
of the ROC curve and other performance metrics. On the one
hand, Figure 21 shows the ROC curve computed in the two
considered cases: when the model is trained with all the
features or just with the most relevant. As it can be seen,
for both cases the neural network exhibits a higher prediction
power than the decision tree classifier (Figures 8 and 9). Here,
the plots are nearer to the top-left corner and so theAUCvalue
is higher. On the other hand, Table 8 presents the resulting
values of the F-Score andCohen’s kappametrics. Comparing
these results with those obtained for Decision Trees (Table 5),
it can be seen again that better results are achieved with the
neural network.

FIGURE 22. Packet delivery ratio (PDR), network attained throughput and
transit time (network size 25 nodes, 4 Traffic categories).

B. NETWORK PERFORMANCE EVALUATION
In this subsection, we will evaluate the trained neural network
through network simulations. We have considered again a
realistic SG NAN scenario made up of a set of smart meters
and one data concentrator. Besides, we will comparethe
decision tree (DTCC) and the neural network congestion
control (NNCC) mechanisms. Finally, some considerations
about the computational cost of both proposals will also be
provided.

For this set of experiments, we have considered a large net-
work size consisting of 24 smartmeters transmitting upstream
data traffic towards the data concentrator. Besides, we have
considered 4 traffic categories and provided traffic differenti-
ation based on the QoS needs of each traffic category. Similar
to the previous experiments, the packet length and the packet
generation rate distributions have been selected as truncated
exponentials for the four data flows, and their average values
are 200 Bytes and 20 pkt/s respectively.

Figure 22 shows again the significant improvements
obtained in terms of PDR, network throughput, and transit
time when both DTCC and NNCC mechanisms are applied.
On the one hand, Figure 22 shows that in the absence of our
congestion control solutions, approximately 75% of packets
will be lost on their way towards the data concentrator. How-
ever, when the congestion control mechanisms are applied,
the PDR is almost 100%. Besides, the PDR reached is slightly
better with NNCC. On the other hand, the results vary when
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FIGURE 23. Network transit time compliant factor and compliant
throughput.

the attained throughput is analyzed. For both cases, the deliv-
ered data is higher when the congestion control mechanisms
are applied, and traffics with higher priorities are favored.
Besides, the attained throughput for traffic type 1 is almost
the same for both solutions, while for the rest of the traffics
the NNCC proposal provides higher values. Regarding the
network transit time, it is shown the significant improvements
obtained for both proposals. As it can be seen, this value is
approximately 30 times lower compared to the uncontrolled
case.

As previously done, we have also computed the network
transit time compliant factor. Remember that the received
packets, to be useful, must meet their requirements regarding
the maximum allowed network transit time, and this time is
different for each category (see again Table 6). Figure 23a
shows how the value of this factor is considerably better
in all cases when applying the DTCC and NNCC mecha-
nisms, reaching practically the maximum value. However,
this factor is slightly better with the neural network classi-
fier. Finally, taking this factor into account, the compliant
throughput is represented in Figure 23b, where it can be seen
again how the value is higher, for all the traffic categories,
if DTCC or NNCC are applied.

As a summary of the presented results, we can conclude
that both mechanisms perform well over the targeted Smart
Grid NANs, but a better behavior is observed with the
neural network. This improvement is higher if we consider
a higher number of traffic categories and larger network
sizes. In these cases, we have a higher number of features
describing the overall network situation, and therefore the
higher adaptation ability of the neural networks shows its

advantages. On the other hand, this greater prediction capa-
bility does not come free, because it has a higher com-
putational cost. This issue will be evaluated in the next
subsection.

C. COMPUTATIONAL COST
The proposed congestion control mechanism works on a
per-packet basis, that is, the node must decide, for each
new packet generated by the applications, whether or not
it should be transmitted through the network. This means
that all the computations needed by the mechanism must be
performed every time a new packet is generated. Therefore,
the computational complexity of the mechanism is an impor-
tant factor to take into account when checking the possibility
of implementing it in a real network environment, especially
considering that the network nodes must be kept at the lowest
possible cost.

Among the two possibilities presented in this work, neural
networks represent a much higher computational cost. In fact,
the computational cost of decision trees is the needed to make
a number of comparisons equal to the depth of the tree minus
one. This cost is affordable, without problems, by current
low-cost hardware platforms.

In the case of neural networks, we must first consider
the computational cost of a neuron, which have to per-
form in a first step the following calculation (the so-called
net input):

z =
k∑
i=0

wixi (3)

where k is the number of dendrites, wi the weights and xi
the input values. In particular, x0 = 1 and w0 is the additive
inverse of the neuron decision threshold [49]. This calculation
represents a total of k products and k sums, or what is the
same k accumulated products. In a second step, the acti-
vation function is applied on z. As previously explained,
in this work we have used the ReLU function in all neu-
rons, except for the output neuron in which the sigmoid
function has been chosen. Thus, for each neuron in the net-
work, the computational cost can be considered the cost of k
accumulated products (kCAP) plus the cost of the activation
function (CRL or CSIG).

Regarding the network layers, there are some differences
with respect to the number of neurons and dendrites:
• In the input layer there are NIN neurons with NID
dendrites each, and so the computational cost is
NIN (NIDCAP + CRL).

• In the first hidden layer there are NHN neurons with NIN
dendrites in each neuron, and so the computational cost
is NHN (NINCAP + CRL).

• For the rest of the hidden layers, there are NHN neurons
with NHN dendrites in each neuron, and so the compu-
tational cost is NHN (NHNCAP + CRL).

• Finally, in the last layer there are just one neuron
with NHN dendrites, and so the computational cost is
NHNCAP + CSIG.
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TABLE 9. Computational cost evaluated on hardware platforms.

Taken into account all the network layers, the global
computational cost of the neural network (CNN ) is:

CNN = NIN (NIDCAP + CRL)+ NHN (NINCAP + CRL)

+ (NHL − 1)NHN (NHNCAP + CRL)

+NHNCAP + CSIG (4)

This expression can be rewritten as:

CNN = [NINNID + NHN [NIN + NHN (NHL − 1)+ 1]]CAP
+ (NIN + NHLNHN )CRL + CSIG (5)

where we can clearly identify the number of necessary accu-
mulated products, ReLU and sigmoid functions (NAP, NRL
and NSIG respectively), for every complete run of the neural
network:

CNN = NAPCAP + NRLCRL + NSIGCSIG (6)

In the previous dimensioning experiments, we have con-
sidered NIN = NHN , and so:

NAP = NIN (NID + NHLNIN + 1) (7)

NRL = NIN (NHL + 1) (8)

NSIG = 1 (9)

With the selected values (NID = 6, NIN = 6, NHL = 8)
we get a value of 330 accumulated products, 54 ReLUs and
1 sigmoid needed for every packet transmission. To calibrate
the magnitude of these values, we have performed a set of
simulations on real low-cost hardware platforms commonly
used nowadays in IoT device developments. Specifically,
we have considered the platforms ESP-8266 [50] and ESP-32
[51]. The first one is provided with one 160MHz low-power
32-bit microprocessor and 80 KB of on-chip SRAM, while
the second one has two 240MHz low-power 32-bit micro-
processors and 520 KB of on-chip SRAM. Table 9 shows
the results obtained for different combinations of the network
dimensioning parameters. The values of NAP, NRL and NSIG
are computed following the previous expressions. For each
of the platforms under study, it is shown the number of times
per second that all the necessary computations can be run,
that is, the number of packets per second that can be checked
by the congeestion control mechanism. As it can be seen,
for the selected design parameters, the computation cost is
affordable even for the least expensive platform (ESP-8266).
The first line of the table shows the results for the previ-
ously selected parameters. The ESP-8266 platform is able to
perform all the necessary operations 2898 times per second,
and so this is the number of packets per second that can
be evaluated by the congestion control mechanism before

they are transmitted or discarded. The values are of course
higher if we make use of the ESP-32 platform. For parameter
combinations that lead to more complex networks, the use of
higher cost hardware platforms could be necessary. It is worth
mentioning that in the tests carried out the microprocessors
have been fully dedicated to this task, and the clock frequency
(and therefore the power consumption) have been adjusted to
the maximum possible value.

VI. CONCLUSION AND FUTURE WORK
In this work, a congestion control mechanism for Smart Grid
NeighborhoodArea Networks (SGNANs), based onmachine
learning techniques, has been proposed, implemented and
evaluated.

In the proposed mechanism, the source nodes must decide
if they transmit or not each new data packet generated by the
applications, depending on the state of the network (amount
of traffic being currently transported). This state is character-
ized by the value of the channels utilization factor and by the
occupation of the packet buffers. These values are measured
by all the network nodes and broadcast to the source nodes.
Besides, the separation of the traffic flows into different
categories is taken into account, depending on the relevance
of the data generating applications. Thereby, the provision of
different QoS levels is also allowed.

In most applications of machine learning techniques, it is
essential to previously have large datasets that make it possi-
ble to train the selected algorithms. Thus, the first contribu-
tion of this work has been the proposal of a mechanism for
the generation of appropriate datasets. These datasets allow
us to describe the behavior of the network and the influence
of some traffic categories on others.

On the other hand, it has also been considered the divi-
sion of the obtained datasets in various subsets. This way,
an individualized training is carried out for each source node.
This division results in a better performance with the cost of a
small increase in the complexity of the mechanism during the
initial phase. Besides, a feature selection has also been taken
into account to reduce the complexity of the model.

Two different classification algorithms have been used and
evaluated. The first one is based on decision trees, which
present a very low computational cost. Its performance is
evaluated in a first step through the Receiver Operating Char-
acterisitic (ROC) curve, showing a very good accuracy value,
which is even better when the dataset is divided according
to the source node. Next, the benefits obtained in a SG
NAN environments have been evaluated, in terms of packet
delivery ratio (PDR), throughput and network transit time,
obtaining significant improvements in the three parameters.
On the other hand, the system behavior has been evaluated
considering different traffic categories, observing how the
mechanism adequately differentiates the QoS provided to
each of them. At this point, in addition to the previously
evaluated parameters, the concepts of compliant factor and
compliant throughput have been introduced, to describe in a
more clearly way the obtained improvements.
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The second classification mechanism has been based on
the use of neural networks. With this classifier, the benefits
have improved the results obtained with the decision trees,
although this is at the cost of a higher computational com-
plexity.

As future lines of work, other interesting and relevant
characteristics, such as emergency awareness and fairness in
the distribution of network resources among all the network
nodes, will be considered.
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