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ABSTRACT In this paper, a double time-delay feedback control of an optimal velocity model (OVM) is
investigated. Double time-delay means that there exist two different state feedback control signals in the
controlled OVM system, which are related to the velocity difference and the optimal velocity difference,
respectively. Through linear stability analysis, the critical condition of Hopf bifurcation for the controlled
OVM is derived. Utilizing the characteristics of Hopf bifurcation and the improved definite integral method,
appropriate double time-delay feedback control strategy is designed in term of the number of unstable
eigenvalues of the characteristic equation to suppress the stop-and-go waves generated by the uncontrolled
OVM. Note that when the number of unstable eigenvalues is equal to zero, the controlled OVM is stable,
otherwise, it is unstable. Numerical simulations are executed to validate the accuracy and feasibility of the
design of double time-delay control strategy. Finally, case studies approximating the actual traffic situation
are given, and the appropriate combination of control parameters is selected through the verified design
steps. In addition, the measured data from NGSIM are also considered.

INDEX TERMS Optimal velocity model, double time-delay control, definite integral method, stability
analysis, Hopf bifurcation.

I. INTRODUCTION
Time delays have a non-negligible impact on the evolution of
traffic flow and driving performance whether human-driven
vehicles or self-driven vehicles, which is still a worthy issue
for discussion. In recent years, in order to further explore and
interpret the sophisticated traffic flow phenomenon caused
by time delays, many related traffic flow models have been
proposed, including car-followingmodels [1]–[3], continuum
models [4]–[6], lattice hydrodynamic models [7], [8].

In 1958, car following model with time delay was pre-
sented for the first time by Chandler et al. [9] based on
classical car following model [10]:

ẍn (t) = λ [ẋn+1 (t − τ)− ẋn (t − τ)] (1)

where ẋn (t) and ẍn (t) stand for the speed and acceleration
of the nth vehicle, respectively; λ is the driver’s sensitivity
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coefficient; τ is time delay regarding the driver’s response to
the stimulus. It was found that when τλ > 0.5 (where the unit
of τ is seconds and the unit of λ is the reciprocal of seconds),
the model would be deprived of stability, which further illus-
trated that time delay can exert a significant influence on the
asymptotic stability of traffic flow. However, the classic car-
following model with time delays disregarded the dynamic
relationship between traffic flow variables, the sophisticated
dynamic evolution of traffic flow cannot be well interpreted.
In addition, the classic car-following model only contains
velocity terms, without considering the safety distance, so it
is easy to cause collision. In order to eliminate this defect,
Bando et al. [11] proposed an optimal velocity model (OVM)
integrating response time delay based on the assumptions that
the driver can adjust the speed to the corresponding optimal
speed:

ẍn (t) = a [V (1xn (t − τ))− ẋn (t − τ)] (2)

V (1xn) = 16.8 [tanh (0.086 (1xn − 25))+ 0.913] (3)

216162 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-5558-9364
https://orcid.org/0000-0002-6738-5350
https://orcid.org/0000-0001-9852-5902
https://orcid.org/0000-0001-6494-1174


W. Ren et al.: Bifurcation Control in an OVM via Double Time-Delay Feedback Method

where 1xn (t) = xn+1 (t) − xn (t) represents the headway
of the nth vehicle; a is the driver’s sensitivity coefficient;
V (·) denotes optimal velocity function, which is fitted by the
measured data; τ is time lag, containing driver response and
mechanical time lag. Through theoretical analysis and numer-
ical simulation, a value representing critical time delay for
inducing traffic congestion is obtained, and traffic congestion
occurs when the time delay is greater than the critical value.
Compared with the classical car following model, OVM can
more accurately describe the formation of traffic conges-
tion, stop-and-go waves and other dynamic characteristics.
Thereby various improvements to OVM are made to dis-
cuss more sophisticated traffic phenomena induced by time
delays. Especially, for example, Hopf bifurcation, when a cer-
tain parameter in the traffic system exceeds the critical value,
the system stability changes suddenly, which has aroused
the interest of some traffic scholars [12]–[16]. For example,
by considering an OVM with time delay, Igarashi [12] found
that there coexist three exact solutions in a certain density
range, representing a metastable uniform flow, a metastable
congested flow and an unstable congested flow, respectively,
which further verified the existence of subcritical bifurca-
tion through numerical tests. Orosz et al. [13] implemented
bifurcation analysis on a nonlinear car-following model with
peculiar attention to driver’s reaction-time delay. Their results
demonstrated that Hopf bifurcation can give rise to a trans-
formation in stability where oscillations suddenly occur.
Moreover, the existence of subcritical bifurcation may bring
about bistability between traffic jam and uniformly flowing.
Considering that the smaller the distance between adjacent
cars in actual traffic, the smaller the driver’s reaction-time
delay, that is, the driver’s reaction time delay is related to
the distance between adjacent vehicles Gasser et al. [14]
introduced variable reaction time delay into the OVMmodel,
and then the bifurcation behavior in the case of variable
reaction time delay was shown. In the process of investigat-
ing the bifurcation characteristics of a platoon of vehicles,
Kamath et al. [15] proposed an improved OVM model with
attention to delayed feedback. Specially, they proved that the
stability analysis results agreed well with the Hopf bifurca-
tion boundary. Moreover, the existence of limit cycles was
also proved from a theoretical perspective. Zhang et al. [16]
presented an extended OVM accounting for time-delayed
velocity difference. Similarly, their experimental results also
showed that the occurrence of Hopf bifurcation will destroy
the stability of traffic flow. However, it is worth mentioning
that the delay can also significantly defer the emergence of
Hopf bifurcation, as shown in numerical simulation.

From the abovementioned literatures on time delays, it is
obvious that time delays can induce the occurrence of bifur-
cation, while we also find that time delay can also defer the
generation of bifurcation, as reflected in Ref. [16]. Hence,
how to design an appropriate time delay is an issue worthy
of study. At present, most of designs of time delay mainly
focus on the design of delay feedback terms [17], [18]. For
example, Jin and Hu [17] added new control terms consisting

of time-delayed distance and velocity difference into the
OVM to alleviate abnormal traffic fluctuations caused by
OVM. Considering the popularity of V2V communication,
Peng et al. [18] constructed a new delay control term based on
OVM, involving the two vehicles ahead. Most of the existing
researches pay more attention to the overall design of the
delay control term while ignoring the delay itself. Moreover,
previous time-delay control methods lack flexibility, which
can be well applied to the design of a single delay, while
for multiple time delays, the stability analysis with respect to
delays is limited by the infinite phase space. Combining the
characteristics of Hopf bifurcation, Jin et al. [19] gave a novel
algorithm to accurately calculate the stable delay interval,
which gives us an inspiration for the design of delay feedback
control.

The subject of this paper is to determine the appropriate
combination of parameters for double time-delay feedback
control to stabilize traffic flow by utilizing the properties
of bifurcation. The remainder of this paper is structured as
follows. The OVM with double time-delay control is intro-
duced in Section II. In Section III, the stability analysis on the
controlled OVM is conducted to derive the stability criteria.
In Section IV, the detailed design steps of double time-delay
control are given and the effect of multiple control combina-
tions is tested. In Section V, the design of double time-delay
control strategy involving more vehicles is considered as case
studies, in which the measured data are also included. Finally,
in Section VI, some conclusions are drawn. The research
process is represented by the main flowchart shown in Fig.1.

FIGURE 1. Flowchart of research process.

II. THE CONTROLLED OVM
As one of the most widely applied car-following models,
OVM [11] can be calculated analytically with the existing
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mature differential equation theory, whose stability condi-
tions can be easily obtained. Moreover, some real traffic phe-
nomena and nonlinear characteristics are simulated, such as
traffic instability, stagnant traffic, stop-and-go waves. In this
paper, a double time-delayed feedback control is proposed to
alleviate the traffic congestion produced by the uncontrolled
OVM:
dvn (t)
dt
= α [V (1xn (t))− vn (t)]+ũn (t−τ1)+ ẽn (t − τ2)

(4)

where ũn (t − τ1) and ẽn (t − τ2) denote two different control
signals related to time delay which are expressed as follows:

ũn (t − τ1) = γ1 [vn (t)− vn (t − τ1)] (5)

ẽn (t − τ2) = γ2 [V (1xn (t))− V (1xn (t − τ2))] (6)

where γ1 and γ2 represent the feedback gains of veloc-
ity and optimal velocity difference, respectively; τ1 and τ2
denote time delays corresponding to delayed-feedback con-
trol signal of velocity and optimal velocity difference, respec-
tively. V (1xn (t)) is the optimal velocity function which is
expressed as follows [20]:

V (1xn (t)) = 16.8 [tanh (0.086 (1xn (t)− 25))+ 0.913]

(7)

When γ2 = 0, (4) is reduced to the model in Ref. [19].
When γ1 = γ2 = 0, (4) is reduced to the OVM [11]. When
τ1 = τ2, (4) degenerates to the car-following model consid-
ering self-stabilizing control in historical traffic data [21].

For the convenience of stability analysis, we transform (4)
into the following form:

dvn (t)
dt
= α [V (1xn (t))− vn (t)]+ ũn (t − τ1)

+ ẽn (t − τ2)
dxn (t)
dt
= vn (t)

(8)

III. STABILITY ANALYSIS OF THE CONTROLLED OVM
In this section, the stability analysis of the OVM with double
time-delayed feedback control is executed to investigate the
characteristics of bifurcation. Assume that N vehicles drive
on a single-track circular road with a length of L without
overtaking. Thereby uniform flow can be described as all
vehicles travel at the desired speed and maintain the same
headway, whose corresponding equilibrium solution is shown
as follows:

v0n (t) = V
(
h∗
)
, 1xn (t) = h∗ =

L
N
,

x0n (t) = nh∗ + V
(
h∗
)
t (9)

Adding a small derivation to the uniform flow (9):

v0n (t) = V
(
h∗
)
+ ηn (t) , x0n (t) = nh∗ + V

(
h∗
)
t + ξn (t)

(10)

where ηn (t) and ξn (t) denote derivation.

By inserting (10) into (8) and linearizing yields:
dηn (t)
dt
=β (ξn+1 (t)−ξn (t))+εηn (t)−γ1ηn (t − τ1)

− δ (ξn+1 (t − τ2)− ξn (t − τ2))
dξn (t)
dt
= ηn (t)

(11)

where β = (α + γ2)V ′, ε = (γ1 − α) and δ = γ2V ′; V ′ (h∗)
is abbreviated as V ′; the subscript n ∈ {1, 2, · · ·N } indicates
the vehicle number.

Considering the periodic boundary, (11) be simplified into
matrix form:(
η̇

ξ̇

)
=

(
εI −βA
I O

)(
η

ξ

)
+

(
−γ1I O
O O

)(
η (t − τ1)
ξ (t − τ1)

)
+

(
O δA
O O

)(
η (t − τ2)
ξ (t − τ2)

)
(12)

where η = (η1 (t) , η2 (t) , · · · , ηN (t))T , ξ = (ξ1 (t) , ξ2 (t) ,
· · · , ξN (t))T ; O is the zero matrix of N × N . The form of
Matrix A is as follows:

A =


1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 −1
−1 0 0 · · · 0 1

 (13)

The corresponding characteristic equation of (12) can be
derived as follows:[
λ2−ελ+γ1e−τ1λλ+ β − δe−τ2λ

]N
−
[
β − δe−τ2λ

]N
=0

(14)

(14) is equivalent to the following one:[
λ2 − ελ+ γ1e−τ1λλ+ β − δe−τ2λ

β − δe−τ2λ

]N
= 1 (15)

Solving (15) yields:

λ2 − ελ+ γ1e−τ1λλ+ β − δe−τ2λ =
(
β − δe−τ2λ

)
×

(
cos

2kπ
N
+ i sin

2kπ
N

)
(16)

where k ∈ {1, 2, · · ·N } is wave number representing the
oscillation mode.

Inserting λ = µ + iω (where µ and ω are real
and imaginary part of λ, respectively; i is an imaginary
unit) into (16) and separating the real and imaginary parts
yield:
µ2
− ω2

− εµ+ γ1e−τ1µ (µcτ1 + ωsτ1)+ β
− δe−τ2µcτ2 = βck − δe−τ2µcτ2ck − δe−τ2µsτ2sk
2µω − εω + γ1e−τ1µ (ωcτ1 − µsτ1)+ δe−τ2µsτ2
= βsk − δe−τ2µcτ2sk + δe−τ2µsτ2ck

(17)

where ck = cos (2kπ/N ), sk = sin (2kπ/N ), cτ1 = cos τ1ω,
cτ2 = cos τ2ω, sτ1 = sin τ1ω, sτ2 = sin τ2ω.
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If k = N in the (17), the following formula holds:[
µ2
− ω2

− εµ
]2
+ [2µω − εω]2 =

(
µ2
+ ω2

)
γ 2
1 e
−2µτ1

(18)

Obviously, for k = N , (18) with µ and ω as dependent
variables and V ′ as independent variable has two roots, one
is (0, 0), and the other is (f , 0), where the value of f depends
on γ1, τ1 and ε (i.e. γ1−α). In other words, withV ′ increasing,
the eigenvalue always shows two fixed points in the coordi-
nate area, one is located at (0, 0) and the other is located at
(f , 0) for k = N . For fixed N = 7 and every k 6= N , the
real and imaginary part distributions of eigenvalues for (16)
are shown in the Fig. 2. Fig. 2(a) depicts the distribution of
eigenvalues of uncontrolled OVM, namely, γ1 = 0, γ2 = 0.
When V ′ = 0, the eigenvalues are located at (0, 0) and
(−1, 0) for each k . Then, as V ′ increases, the eigenvalues
of different k separate from (0, 0) and (−1, 0) along the
corresponding hyperbolic trajectory. For a sufficiently small
V ′ > 0, the eigenvalues for every k are all located on the left
half of the complex plane, which indicates that the system is
asymptotic stable [16]. However, when V ′ is large enough,
the eigenvalues cross the imaginary axis, and the system
suddenly loses stability, where the point on the imaginary
axis is the critical point called the Hopf bifurcation point.
From Fig. 2(a), we notice that the eigenvalues corresponding
to k = 1 and k = 6 first cross the imaginary axis, then k = 2
and k = 5, and finally k = 3 and k = 4 which take more
time to cross the imaginary axis. What reveals in Fig. 2(b)
is the eigenvalue distribution of the controlled OVM. In Fig.
2(b), for k = 1, the length of hyperbolic trajectory in the left
half complex plane is longer than that in Fig. 2(a). Moreover,
for k = 3, the trajectory moves to the left in the opposite
trend as shown in Fig. 2(a). In this way, the whole trajectory
corresponding to k = 3 is in the left half complex plane,
which demonstrates that the controlled OVM can suppress or
defer the occurrence of Hopf bifurcation. It further illustrates
that a reasonable delay design can postpone or eliminate the
impact of Hopf bifurcation.

It can be seen from Fig. 2 that when the eigenvalue crosses
the imaginary axis, the stability will change dramatically.
That is to say, when a pair of pure imaginary roots λ1,2 =
±iω appear in the system, the Hopf bifurcation will occur.
Therefore, introducing λ = iω into (16), the critical condition
for Hopf bifurcation yields:{
−ω2
+ γ1ωsτ1+β − δcτ2 = βck − δcτ2ck − δsτ2sk

−εω + γ1ωcτ1 + δsτ2 = βsk − δcτ2sk + δsτ2ck
(19)

Let γ1 = 0 and γ2 = 0 in (19), the stability condition (19)
can be simplified as follows:

α = 2 cos2
(
kπ
N

)
V ′ (20)

Obviously, (20) can be further reduced to α > 2V ′, which
is identical with the stability condition of uncontrolled OVM
in Ref. [11]. Therefore, when α < 2V ′ holds, uniform traffic

FIGURE 2. Eigenvalues of the system for a = 1 s−1 and N = 7: (a)
uncontrolled OVM with γ1 = 0 and γ2 = 0; (b) controlled OVM with
γ1 = 0.4 s−1, γ2 = 0.7 s−1, τ1 = 0.2 s and τ2 = 0.3 s.

flow will evolve into a stagnant traffic for the uncontrolled
OVM.

Subsequently, linear stable curves are shown in Fig. 3 by
solving the (19) of headway h∗ and sensitivity α. Note that the
upper area of the curve in Fig. 3 is the stable region, and the
lower is the unstable region. In Fig. 3, the blue line represents
the uncontrolled OVM, and the other four colorful lines rep-
resent four different combinations of time-delayed feedback
control strategies. For Fig. 3(a), multiple sets of time-delayed
parameters are selected with fixed feedback coefficients (i.e.
γ1 = 0.25 s−1, γ2 = 0.25 s−1). Obviously, as τ2 increases,
the stable region increases with fixed τ1 = 0.7 s, and the
control effect with the parameter set to γ1 = 0.7 s−1 and
γ2 = 0.9 s−1 is the best. However, in Fig. 3, when we retain
the time-delay parameter invariant and alter the feedback
coefficient γ1 = 0.75 s−1 and γ2 = 0.75 s−1, an inter-
esting phenomenon will appear. The stability region expands
gradually with τ2 increasing from 0.1 to 0.4, while the stable
region shrinks with τ2 increasing from 0.4 to 0.9, which is
different from the trend in Fig. 3(a). Similarly, in Fig. 3(c),
multiple sets of feedback coefficients are chosen with fixed
time-delayed parameters (i.e. τ1 = 1.5 s, τ2 = 0.5 s).
For fixed γ1 = 0.3 s−1, the stable region expands with γ2
increasing. Conversely, when selecting τ1 = 1 s and τ2 =
1.25 s, the stable region decreases as γ2 increases in Fig. 3(d).
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FIGURE 3. Stability diagram of the system (4) in the
(
h∗, α

)
plane for

k = 1 and N = 7 with fixed: (a) γ1 = 0.25 s−1, γ2 = 0.25 s−1;
(b) γ1 = 0.75 s−1, γ2 = 0.75 s−1; (c) τ1 = 1.5 s, τ2 = 0.5 s; (d) τ1 = 1 s,
τ2 = 1.25 s.

Moreover, the vertices of the green and purple curves repre-
senting the controlled OVM in Fig. 3(d) are higher than that
of the blue curve representing the uncontrolled OVM, which
means that the two control strategies represented by green and
purple curves cannot suppress the oscillation well. In general,
Fig. 3 demonstrates that there is no single linear relationship
between parameter values and stability. Therefore, in the
design of time-delayed control, it is important to select appro-
priate control parameters by leveraging reasonable methods
to stabilize traffic flow. In the next section, we will discuss
the design of time-delayed feedback control in detail.

IV. THE DESIGN OF DOUBLE TIME-DELAY FEEDBACK
CONTROL
The design of time-delay control for nonlinear systems is
an issue worth studying [22]–[25]. From Section 3, it is
obvious that reasonable parameter setting can postpone the
occurrence of bifurcation or reduce the negative effect of
bifurcation. Hence, in Section 4, an improved definite inte-
gral method proposed by Xu et al. [26] is utilized to select
the appropriate combination of time-delayed parameters and
feedback coefficients, so as to design a reasonable double
time-delay feedback control strategy to contain bifurcation
behavior in OVM. The following characteristic equation
from (16) is indispensable to the stability method:

f (λ) = λ2 − ελ+ γ1e−τ1λλ+ β − δe−τ2λ −
(
β − δe−τ2λ

)
×

(
cos

2kπ
N
+ i sin

2kπ
N

)
(21)

Generally, the time-delayed control strategy is designed by
the Nyquist criterion [27], since it can judge stability well in
case of a single delay, while for the case of multiple delays,
it works ineffectively. Therefore, a definite integral method
was proposed by Kolmanovskii and Myshkis [28] to address
the issue. The core of the method is to calculate a definite
integral whose integrand is a transcendental real equation
related to the characteristic equation. The result calculated by
the definite integral represents the number� of characteristic
roots in the right-half complex plane. If � = 0, the con-
trolled system (4) will be stable for the selected time-delayed
parameters and feedback coefficients. Otherwise � 6= 0, the
system is in an unstable state, and stop-and-go wave appears
in the traffic flow. The issue of multiple time-delayed control
design seems to be well solved. However, there is a defect
in this method, that is, there is no general rule for estimating
the upper limit of definite integral. Thereby Xu et al. [26]
added an ingenious and tractable algorithm into the definite
integral method whose function is choosing the upper limit
of integral. The specific procedure of the improved definite
integral method is given in Appendix.

In order to facilitate readers to better understand the oper-
ation process of the above steps, an example is implemented
to illustrate how to determine the stability of the system for
α = 2 s−1, V ′ = 1.448, γ1 = 0.3 s−1 and γ2 = 0.5 s−1.
Select the time-delayed parameters as (τ1, τ2) = (1.25, 1.5)
and insert them into (A1), and then the maximum positive
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FIGURE 4. The stability chart of the controlled OVM with regard to τ1 and
τ2 for γ1 = 0.3 s−1, γ2 = 0.5 s−1 and α = 2 s−1.

root of R (ω) = 0 can be obtained as ωmax = 1.5481
for k = 1. Selecting T0 = 1.6481 > ωmax as the upper
limit of definite integral, (A7) can yield that F (0,T0)k=1.
Further, (A8) yields that �k=1 (τ1, τ2) = 1. Repeating
the above calculation process, �k=2,5,6 (τ1, τ2) = 1 and
�k=3,4 (τ1, τ2) = 0 are figured out. Adding up all charac-
teristic roots in the right-half complex plane,�(1.25, 1.5) =∑N−1

k=1 �k (1.25, 1.5) = 4 can be obtained, which indicates
that the system for (γ1, γ2, τ1, τ2) = (0.3, 0.5, 1.25, 1.5) is
unstable.

Subsequently, the above steps will be executed to judge
the stability of the system (4) for different parameter com-
binations. The common parameters such as headway h∗,
derivative of optimal speed function (7) related to headway
V ′ (h∗) and the number of vehicles N are set as follows:

1xn (t) = h∗ = 25 m, V ′ = V ′
(
h∗
)
= 1.448, N = 7

(22)

Note that α = 2 s−1 < 2V ′ corresponding to the uncon-
trolled OVMof unstable state is selected in the following sim-
ulation for the purpose of reflecting the control performance
of our designed double time-delay feedback control strategy.

Fig. 4 shows the stability of the controlled OVM for γ1 =
0.3 s−1 and γ2 = 0.5 s−1 in (τ1, τ2) ∈ [0, 2] × [0, 2].
In Fig. 4, the dark blue region representing �(τ1, τ2) = 0 is
the stable region; the green region representing �(τ1, τ2) =
2 and the yellow region representing �(τ1, τ2) = 4 are the
unstable region. From Fig. 4, when τ1 ∈ [0, 1.38], there
always exists appropriate τ2 to make the system stable, while
for τ1 ∈ (1.38, 2], the system is unstable regardless of the
value of τ2. Similarly, when τ2 ∈ [0.06, 1.46], appropriate
τ1 always presents to stabilize the system, otherwise the
system is unstable. For the sake of validating control effect,
several sets of parameter combinations in Fig. 4 are chosen
to describe the velocity fluctuation of the first vehicle under
the corresponding parameter conditions, as shown in Fig. 5.
From Fig. 5, when (γ1, γ2, τ1, τ2) = (0.3, 0.5, 0.5, 0.8) rep-
resented by the blue line which is located in the stable region
in Fig. 3, the velocity has been maintained at a constant value

FIGURE 5. Time evolution of velocity for the first vehicle with different
time-delayed parameters combinations in Fig. 4 and α = 2 s−1,
γ1 = 0.3 s−1 and γ2 = 0.5 s−1.

FIGURE 6. The stability chart of the controlled OVM with regard to γ1 and
γ2 for τ1 = 0.7 s, τ2 = 0.9 s and α = 2 s−1.

over time, which strictly conforms to the property of stable
traffic flow. When (γ1, γ2, τ1, τ2) = (0.3, 0.5, 0.075, 0.1)
and (γ1, γ2, τ1, τ2) = (0.3, 0.5, 0.8, 1.2) which are located
in the unstable region, the velocity represented by the green
line oscillates at a constant amplitude, and the velocity repre-
sented by the red line increases in amplitude over time, which
are consistent with the behaviors of unstable traffic flow.

Analogous to the time-delayed parameter design men-
tioned above, the feedback coefficients design is shown in
Fig. 6.What reveals in Fig. 6 is the stability chart of controlled
OVM for τ1 = 0.7 s and τ2 = 0.9 s in (γ1, γ2) ∈
[0, 1]× [0, 1]. In Fig. 6, the stable area is shown in navy blue
for �(τ1, τ2) = 0, and there are three unstable areas: light
blue (�(τ1, τ2) = 2), green (�(τ1, τ2) = 4) and yellow
(�(τ1, τ2) = 6). For γ1 ∈ [0, 0.74], there always exists
a suitable γ2 to suppress the traffic fluctuation, while for
γ1 ∈ (0.74, 1], the oscillation generated by the uncontrolled
OVM will not be alleviated, regardless of the value of γ2.
In the same way, for arbitrary γ2, there is always a certain
interval of γ1 to restrain the original stop-and-go wave.

In Fig. 7, several sets of parameters in Fig. 6 are
selected to verify the rationality of the control strategy
through time-velocity evolution for the first vehicle. For
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FIGURE 7. Time evolution of velocity for the first vehicle with different
feedback coefficients combinations in Fig. 6 and τ1 = 0.7 s, τ2 = 0.9 s
and α = 2 s−1.

FIGURE 8. The stability chart of the controlled OVM with regard to τ1 and
τ2 for α = 2 s−1, γ1 = 0.3 s−1 and: (a) γ2 = 0.3 s−1; (b) γ2 = 0.5 s−1; (c)
γ2 = 0.7 s−1; (d) γ2 = 0.9 s−1.

(γ1, γ2, τ1, τ2) = (0.5, 0.5, 0.7, 0.9) in the stable region,
the corresponding blue line has been kept horizontal, which
means that the unstable traffic flow grown by uncontrolled
OVM is contained. On the contrary, when the parameter
combination is not contained in the stable region, such as
(γ1, γ2, τ1, τ2) = (0.2, 0.04, 0.7, 0.9) and (γ1, γ2, τ1, τ2) =
(0.6, 0.5, 0.7, 0.9), the red and green lines they represent both
show sharp fluctuations in velocity.

Fig. 8-11 are simulated to observe how the stable region
changes when a certain control parameter varies. In Fig. 8,
for fixed γ1 = 0.3 s−1 and with the increase of γ2, the length
of optional stable interval for τ2 decreases from 1.47 to 1.13,
while that of τ1 increases from 1.21 to 1.61. Conversely, when
fixing γ2 = 0.5 s−1 and increasing γ1, the length of optional
stable interval for τ2 raises from 1.29 to 1.49, and that of τ1
reduces from 2 to 0.83, as shown in Fig. 9. From Fig. 10, for
fixed τ1 = 0.7 s, when τ2 raises from 0.1 to 0.4, the area of
stable region in γ1 and γ2 expands, while for τ2 increasing
from 0.4 to 0.9, the area of that narrows gradually. There is

FIGURE 9. The stability chart of the controlled OVM with regard to τ1 and
τ2 for α = 2 s−1, γ2 = 0.5 s−1 and: (a) γ1 = 0.1 s−1; (b) γ1 = 0.3 s−1;
(c) γ1 = 0.5 s−1; (d) γ1 = 0.7 s−1.

FIGURE 10. The stability chart of the controlled OVM with regard to γ1
and γ2 for α = 2 s−1, τ1 = 0.7 s and: (a) τ2 = 0.1 s; (b) τ2 = 0.4 s;
(c) τ2 = 0.7 s; (d) τ2 = 0.9 s.

a similar trend between Fig. 10 and Fig. 11. In Fig. 11, for
fixed τ2 = 0.7 s, the area of stable region with respect to γ1
and γ2 firstly ascends and then descends with the adding of
τ1.
According to the simulation and analysis of Fig. 4-11, the

feasibility of the improved definite integral stability method
in traffic flowmodel is verified, which lays the foundation for
the following study.

V. CASE STUDIES
A. CASE 1
In order to further verify the effectiveness of the design for
double time-delay control, the number of simulated vehicles
N is increased to 100, which approximates the operation
of actual traffic. Assume that the initial state is N vehicles
traveling on a 2000 m long circular road with identical speed
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FIGURE 11. The stability chart of the controlled OVM with regard to γ1
and γ2 for α = 2 s−1, τ2 = 0.7 s and: (a) τ1 = 0.1 s; (b) τ1 = 0.4 s;
(c) τ1 = 0.7 s; (d) τ1 = 0.9 s.

FIGURE 12. The stability chart of the controlled OVM with regard to τ1
and τ2 for γ1 = 0.8 s−1, γ2 = 0.6 s−1 and α = 2 s−1.

and distance, and the mathematical expression is as follows:

xn (0) = nh∗ + yn (0) , vn (0) = V
(
h∗
)
, h∗ =

L
N

(23)

where yn (0) is a random perturbation with an amplitude of
0.01.

For fixed γ1 = 0.8 s−1, γ2 = 0.6 s−1 and α = 2 s−1

corresponding to the unstable OVM, the stable region of the
controlled OVM is determined in (τ1, τ2) ∈ [0, 2] × [0, 2],
as shown in Fig. 12. The dark blue area at the bottom left of
Fig. 12 is a stable region (i.e.�(τ1, τ2) = 0), and the rest are
unstable region (i.e. �(τ1, τ2) 6= 0). Then, select arbitrary
three point, for example, (τ1, τ2) = (0.4, 0.7) from the stable
region, (τ1, τ2) = (0.2, 0.1) and (τ1, τ2) = (0.5, 0.95) from
the unstable region. It can be seen from Fig. 13 that the blue
line representing (τ1, τ2) = (0.4, 0.7) remains horizontal at
t = 2000 s, which indicates that all vehicles travel at velocity
V (h∗) and this set of control parameters (γ1, γ2, τ1, τ2) =
(0.8, 0.6, 0.4, 0.7) can effectively decay traffic fluctuation.
While the value of velocity of the other two lines in Fig. 13

FIGURE 13. Time evolution of velocity for all vehicles at t = 2000 s with
different time-delayed parameters combinations in Fig. 12 and
γ1 = 0.8 s−1, γ2 = 0.6 s−1 and α = 2 s−1.

FIGURE 14. The hysteresis loops for the controlled OVM correspond to
Fig. 13.

still fluctuate in different degrees, which demonstrates that
these two sets of control parameters have negative control
effect on the speed fluctuation.

The hysteresis loop is an important reason for the insta-
bility and stagnation of traffic flow. In addition, the stronger
the hysteresis effect, the greater the disturbance to the steady
traffic flow. In Fig. 14, the hysteresis loop for (τ1, τ2) =
(0.4, 0.7) is reduced to a point compared with (τ1, τ2) =
(0.2, 0.1) and (τ1, τ2) = (0.5, 0.95), which is also consistent
with the stability shown in Fig. 12.

To better compare the uncontrolled OVM with the con-
trolled OVM with (γ1, γ2, τ1, τ2) = (0.8, 0.6, 0.4, 0.7),
Fig. 15 and Fig. 16 are plotted. The dynamic behavior of the
uncontrolled OVM is shown in Fig. 15(a) and 16(a) where
irregular stop-and-go waves appear in the traffic flow, which
is in sharp contrast with the controlled OVM in Fig. 15(b) and
16(b) where traffic flow is homogeneous.

Subsequently, with τ1 = 0.5 s, τ2 = 0.8 s and α = 2 s−1

fixed, the stability chart for γ1 and γ2 is plotted, as shown in

VOLUME 8, 2020 216169



W. Ren et al.: Bifurcation Control in an OVM via Double Time-Delay Feedback Method

FIGURE 15. Comparison between the uncontrolled OVM (i.e. τ1 = 0 and
τ2 = 0) and the controlled OVM (i.e. τ1 = 0.4 s and τ2 = 0.7 s) with fixed
γ1 = 0.8 s−1, γ2 = 0.6 s−1 and α = 2 s−1.

FIGURE 16. The snapshots of velocity for all vehicles at t = 2000 s
correspond to Fig. 15.

Fig. 17. In Fig. 17, the stable region is colored in dark blue,
where the appropriate combination of control parameters will
come from, while the rest is the unstable region. In Fig. 18,
three sets control parameters from Fig. 17 are chosen to
observe their velocity evolution over time. Obviously, the
blue line representing (γ1, γ2) = (0.75, 0.5) in stable region
always stays at the optimal velocity V (h∗). While the red
line and green line represented by (γ1, γ2) = (0.16, 0.15)
and (γ1, γ2) = (0.875, 0.725) appear irregular oscillation.
Moreover, the hysteresis loops in Fig. 19 corresponding to
Fig. 18 shows the same trend as Fig. 18, that is, the more
stable, the smaller the hysteresis loop. For example, the most
stable (γ1, γ2) = (0.75, 0.5) whose delay loop is reduced to
a point.

For the sake of verifying the control effect of the
selected control parameters combination (γ1, γ2, τ1, τ2) =
(0.75, 0.5, 0.5, 0.8), comparison between the uncontrolled
and controlled OVM is shown in Fig. 20 and 21. In Fig. 20(a)
and Fig. 21(a), the uncontrolled OVM results in frequent
traffic stagnation and obvious velocity fluctuations. However,
when we apply a double time-delay control to the uncon-
trolled OVM, the stop-and-go wave decays and the traffic
flow returns to stability, which indicates the effectiveness of
the double time-delay control strategy.

B. CASE 2
1) DATA SOURCES
In this section, we utilize the vehicle trajectory real data from
theNGSIMproject of the Federal HighwayAdministration of
USA which is an open data source to calibrate the parameters

FIGURE 17. The stability chart of the controlled OVM with regard to γ1
and γ2 for τ1 = 0.5 s, τ2 = 0.8 s and α = 2 s−1.

FIGURE 18. Time evolution of velocity for all vehicles at t = 2000 s with
different time-delayed parameters combinations in Fig. 17 and τ1 = 0.5 s,
τ2 = 0.8 s and α = 2 s−1.

FIGURE 19. The hysteresis loops for the controlled OVM correspond to
Fig. 18.

of the model, so as to verify the effect of double time-
delay control. The data were collected on freeway 101 in
Los Angeles, California, including the acceleration, speed
and location of each vehicle on multiple lanes. According
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FIGURE 20. Comparison between the uncontrolled OVM (i.e. γ1 = 0 and
γ2 = 0) and the controlled OVM (i.e. γ1 = 0.75 s−1 and γ2 = 0.5 s−1) with
fixed τ1 = 0.5 s, τ2 = 0.8 s and α = 2 s−1.

FIGURE 21. The snapshots of velocity for all vehicles at correspond to Fig.
20.

FIGURE 22. Observed and simulated acceleration curves.

to the data screening criteria in Ref. [29], the trajectory data
are filtered and processed, and two sets of qualified data are
obtained, which are recorded as dataset A and dataset B.
Dataset A contains 709 sets of data to calibrate the model and
dataset B contains 668 sets of data to verify the parameters
after calibration.

2) PARAMETER CALIBRATION METHOD
At present, many methods have been applied in the process
of calibration, including least square method [30], maximum
likelihoodmethod [31], genetic algorithm [32], monkey algo-
rithm [33] and so on, among which genetic algorithm (GA)
is the most widely used. Genetic algorithm is a method of
simulating natural selection and genetic theory in the pro-
cess of biological evolution, which is a global optimization

FIGURE 23. The stability chart of the controlled OVM with regard to τ1
and τ2 for γ1 = 0.7 s−1, γ2 = 0.9 s−1 and α = 0.7557 s−1.

FIGURE 24. The stability chart of the controlled OVM with regard to τ1 for
γ1 = 0.7 s−1 and α = 0.7557 s−1.

search algorithm. The calibration process can be regarded
as the process of solving the optimal solution of a nonlinear
programming problem. Thereby, this paper leverages genetic
algorithm to solve the optimal problem to achieve the goal of
parameter calibration.

The objective function proposed by Ossen et al. [34] is
taken and its expression is as follows:

PI =

√∑M
m=1

(
arealm − asimm

)2√∑M
m=1

(
arealm

)2
+

√∑M
m=1

(
asimm

)2 (24)

where M denotes the sample size; m denotes the index num-
ber; arealm is the actual acceleration; asimm is the simulated
acceleration. The objective function (24) is taken as fitness
function in GA. The smaller the value of fitness PI is, the
better the parameter fitting effect.

The model to be calibrated are as follows:
dvn (t)
dt

= α (V (1xn (t))− vn (t)) (25)

V (1xn (t)) = V0 [tanh(C1(1xn (t)− hc))+ C2] (26)

where the optimal velocity function is from Ref. [35], which
has been toned for the convenience of calibration.
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FIGURE 25. Comparison among the uncontrolled OVM (i.e. τ1 = 0 and
τ2 = 0), the controlled OVM with single time-delay control (i.e. τ1 = 0.4 s
and τ2 = 0 s) and the controlled OVM with double time-delay control (i.e.
τ1 = 0.4 s and τ2 = 0.6 s) with fixed γ1 = 0.7 s−1, γ2 = 0.9 s−1 and
α = 0.7557 s−1.

TABLE 1. The configuration of Genetic algorithm.

TABLE 2. The range of calibrated parameters.

The configuration of genetic algorithm is shown in
Table 1 and the range of calibrated parameters is shown in
Table 2.

Hence, the results of parameter calibration yield by
performing GA, as shown in Table 3. In Fig. 22, the
comparison between simulated accelerations and actual
ones of dataset A illustrates that the fitting effect is
acceptable.

After parameter calibration, we utilize dataset B to verify
the results of calibration and obtain the evaluation value PI =
0.8042, which is within the acceptable range.

TABLE 3. The results of parameter calibration.

FIGURE 26. The snapshots of velocity for all vehicles at t = 2000 s
correspond to Fig. 25.

3) DOUBLE TIME-DELAY CONTROL STRATEGY VERIFICATION
According to the abovementioned calibration, the OVM with
double time-delay control reflecting actual traffic flow can be
expressed as follows:

dvn (t)
dt

= 0.7557 (V (1xn (t))− vn (t))+ ũn (t − τ1)

+ ẽn (t − τ2) (27)

ũn (t − τ1) = γ1 [vn (t)− vn (t − τ1)] (28)

ẽn (t − τ2) = γ2 [V (1xn (t))− V (1xn (t − τ2))] (29)

V (1xn (t)) = 15.0428 [tanh(0.0874(1xn (t)− 19.776))

+ 0.7827] (30)

where γ1, γ2, τ1 and τ2 are the parameters of the control
signal we proposed, which are determined by the design
of feedback control in Section IV. Subsequently, the same
method as case 1 is applied to verify the design of delay
control strategy based on measured data. Similarly, we select
N = 100 vehicles on a 1977.6 m long circular road.
For fixed γ1 = 0.7 s−1, γ2 = 0.9 s−1 and α = 0.7557 s−1

corresponding to the unstable OVM (i.e. α < 2V ′ =
2.62948), the stable region of the controlled OVM is deter-
mined in (τ1, τ2) ∈ [0, 2]× [0, 2], as shown in Fig. 23. Then,
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we choose the parameter combination (τ1, τ2) = (0.4, 0.6) in
the stable region to validate the effect of the design of double
time-delay control.

In order to more intuitively observe the superiority of
double time-delay control compared to uncontrolled OVM
and controlled OVM with single time-delay control, Fig. 25
and Fig. 26 are depicted. Obviously, comparedwith Fig. 25(a)
and Fig. 25(b), the speed fluctuation of Fig. 25(c) is obvi-
ously suppressed, showing a stable state, which indicates that
double time-delay control is more reliable than single time-
delay control [19] under the same condition. Furthermore,
from Fig. 24, it can be seen that there is no appropriate single
time-delay control strategy to stabilize the traffic flow for
γ1 = 0.7 s−1, which also demonstrates that the single time-
delay control is short-sighted, that is, the narrower selection
range is compared with the double time-delay control.

Through the above case analysis, the feasibility of practical
application of double time-delay control strategy is verified,
which also provides a novel idea for the design of vehicle
assisted driving controllers.

VI. CONCLUSION
In this paper, a controlled OVM accounting for double time-
delay control is proposed to dampen the unstable traffic
oscillations generated by the uncontrolled OVM. Through
stability analysis, the critical condition of bifurcation is given.
Then, the definite integral method is presented, which is the
core of design of double time-delay control. The application
of the presented method to the study on the stability of the
controlled OVM and the selection of the control parameters
are performed, which further verifies the feasibility of the
method and the rationality of the design. In the case study,
more vehicles were considered and the measured data were
also included, and the result of numerical simulation that
the controlled OVM with reasonable parameter settings can
smooth the traffic fluctuations caused by the uncontrolled
OVM.

In addition to the research content mentioned above, this
topic can also do the following further expansions:

(1) In this paper, the delay control strategy based on
the definite integral method is only applied to suppress the
unstable traffic oscillation caused by OVM, while how to
apply it to other traffic models such as the intelligent driver
model (IDM) [36] and Cooperative Adaptive Cruise Control
(CACC) [37] is still a blank, which is a direction worth
studying.

(2) The actual traffic data, such as NGSIM database, can
be integrated into the future research. Some parameters in the
traffic flow model can be calibrated by leveraging the mea-
sured data, by which stability control parameters determined
will have more practical application value.

(3) Due to the universal applicability of the definite inte-
gral method, the double time-delay feedback control can be
extended to the n-dimensional time-delay feedback control,
which is difficult to achieve for the previous single time-delay
control.

APPENDIX
THE SPECIFIC PROCEDURE OF THE IMPROVED DEFINITE
INTEGRAL METHOD
Step 1. Inserting λ = iω into (21) and separating the real part
of i−nf (iω) yields:

R (ω) = Re
(
i−nf (iω)

)
= ω2

− γ1ωsτ1 − β + δcτ2 + βck
− δcτ2ck − δsτ2sk (A1)

where n represents the highest degree of the characteristic
equation (21).

Step 2. According to (A1), all positive roots W =

{ω1, ω2, . . . , ωm} of R (ω) = 0 are solved. Take the maxi-
mum value of the set W as ωmax, and select arbitrary T0 >
ωmax as the upper limit of definite integral.
Step 3. In the light of < (ω) = Re

(
f ′ (iω)

/
f (iω)

)
, the

integrand < (ω) yields:

< (ω) = Re
(
f ′ (iω)
f (iω)

)
=

Re
(
f ′ (iω)

)
Re (f (iω))+ Im

(
f ′ (iω)

)
Im (f (iω))

[Re (f (iω))]2 + [Im (f (iω))]2

(A2)

where Re
(
f ′ (iω)

)
is the real part of f ′ (iω)whose expression

as follows:

Re
(
f ′ (iω)

)
= −ε + γ1cτ1 − γ1τ1sτ1 + τ2δcτ2 − τ2δcτ2ck

− τ2δsτ2sk ; (A3)

Im
(
f ′ (iω)

)
is the imaginary part of f ′ (iω) and its expression

as below:

Im
(
f ′ (iω)

)
= 2ω − γ1sτ1 − γ1τ1ωcτ1 − τ2δsτ2

− τ2δcτ2sk + τ2δsτ2ck ; (A4)

The real part of f (iω) is recorded as Re (f (iω)):

Re (f (iω)) = −ω2
+ γ1ωsτ1 + β

− δcτ2 − βck + δcτ2ck + δsτ2sk ; (A5)

The imaginary part of f (iω) is marked as Im (f (iω)):

Im (f (iω)) = −εω + γ1ωc1τ + δs
2
τ − βsk+δc

2
τ sk − δs

2
τ ck .

(A6)

Step 4. Introducing T0 in Step 2 and integrand < (ω) in
Step 3 into the following definite integral yields:

F (0,T0)k =
∫ T0

0
< (ω)dω (A7)

For every k and k 6= N , total number �k (τ1, τ2) of
eigenvalues with positive real part yields by:

�k (τ1, τ2) = round
(
n
2
−
F (0,T0)k

π

)
(A8)

Step 5. Sum the �k (τ1, τ2) for every k and k 6= N , that
is, �(τ1, τ2) =

∑N−1
k=1 �k (τ1, τ2). If �(τ1, τ2) = 0, the

system (4) with τ1 and τ2 is stable. Otherwise,�(τ1, τ2) 6= 0
means there exists bifurcation in the system (4).
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