
Received October 17, 2020, accepted November 15, 2020, date of publication December 1, 2020,
date of current version December 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3041638

Aggregate Message Authentication Code Capable
of Non-Adaptive Group-Testing
SHOICHI HIROSE 1 AND JUNJI SHIKATA2,3, (Member, IEEE)
1Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan
2Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama 240-8501, Japan
3Institute of Advanced Sciences, Yokohama National University, Yokohama 240-8501, Japan

Corresponding author: Shoichi Hirose (hrs_shch@u-fukui.ac.jp)

This work was supported by the Research and Development for Expansion of Radio Wave Resources funded by the Ministry of Internal
Affairs and Communications, Japan.

ABSTRACT We introduce group-testing aggregate message authentication code (GTA MAC) and provide
its formal study. We first specify its syntax and security requirements. Then, we present a scheme of
generic construction which applies non-adaptive group-testing to aggregate MAC. We also confirm the
security of the generic construction based on that of underlying aggregate MAC and a useful property
of matrices representing non-adaptive group-testing. In addition, we instantiate the generic construction
using the aggregate MAC scheme proposed by Katz and Lindell or a scheme using a cryptographic hash
function for aggregating tags. Finally, we present some implementation results to show the effectiveness of
our proposed GTA MAC.

INDEX TERMS Group testing, message authentication, provable security.

I. INTRODUCTION
A. BACKGROUND
The number of IoT (Internet of Things) devices is increasing,
and there will be an enormous number of devices connected
to networks including 5G in the near future. Even in such a
situation, it is required to realize efficient communications
or data transmissions in an authenticated manner. Therefore,
it is important to study lightweight and secure authentication
systems that can be deployed in such a situation.

Message authentication code (MAC) is one of the most
fundamental cryptographic primitives, and it can be used as
a lightweight cryptographic primitive for message authenti-
cation. For authenticated communication using MAC, a tag
is attached to each message to detect tampering of the mes-
sage. The tag is computed with a cryptographic symmetric-
key primitive called a MAC function such as HMAC [1],
[2] and CMAC [3], [4]. However, one-to-one authenticated
communication using MAC requires an enormous number of
tags that is proportional to that of communicating IoT devices
in the network.

Aggregate MAC is a cryptographic primitive which can
compress tags on multiple messages into a short aggregate
tag [5]. It is possible to verify the validity of the multiple

The associate editor coordinating the review of this manuscript and

approving it for publication was Giacomo Verticale .

messages only with the shorter tag. One may think of use
of aggregate MAC to reduce the total amount of tag-size
compared to one-to-one authenticated communication using
MAC. However, in general, it is impossible to identify invalid
messages once the multiple messages are judged invalid with
respect to the aggregate tag.

The purpose of the paper is to study aggregate MAC that
has the following functionality: multiple tags generated by
MAC can be compressed into aggregate tags whose total size
is smaller than that of the tags and invalid messages are cor-
rectly identified from the aggregate tags. To realize aggregate
MAC with such functionality, it is expected that techniques
of group testing [6] can be utilized. Group testing is applied
to a set of items each of which are either negative (valid) or
positive (invalid). It assumes that a test can be run on multiple
items and that its result is negative if all the items are negative
and positive otherwise. If the number of positive items is
not so large, by selecting items for each test properly, one
can identify positive items more efficiently than by simply
testing one by one. The group testing is called adaptive if one
can choose items for a new test after seeing the result of the
previous test and is called non-adaptive otherwise.

B. CONTRIBUTION
We initiate formal study of group-testing aggregate MAC
(GTA MAC).

216116 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-6723-722X
https://orcid.org/0000-0001-7508-9706

S. Hirose, J. Shikata: Aggregate MAC Capable of Non-Adaptive Group-Testing

First, we give formal descriptions of its syntax and security
requirements. The security properties we require of GTA
MAC are unforgeability and identifiability. Unforgeability is
an extended notion of that of standardMAC:A givenmessage
should be judged invalid unless a legitimate user produces its
tag. Identifiability is a characteristic notion for GTA MAC:
(In)valid pairs of a message and a tag should be exactly
idetified by group-testing.

Then, we present a scheme of generic construction for GTA
MAC: It simply combines aggregate MAC specified by Katz
and Lindell [5] with non-adaptive group-testing. We show
that the generic construction enables us to reduce the security
of GTA MAC to that of aggregate MAC and a well-known
property of matrices representing group-testing.

We also discuss instantiations of the generic construction
using the aggregate MAC scheme by Katz and Lindell and a
scheme using a cryptographic hash function for aggregating
tags.

Finally, we present some implementation results on gen-
eration of group-testing matrices and performance of the
proposed GTA MAC.

This paper is the full version of our conference paper [7].
In the formalization of this paper, the GTA MAC enables
the users to use multiple group-testing matrices, while it
enables them to use only a single group-testing matrix in [7].
For aggregate MAC, soundness is introduced as a security
requirement in this paper, and accordingly, proofs of theo-
rems are revised. Minor errors in some of the proofs are also
fixed. In addition, some implementation results are added.

C. RELATED WORK
Katz and Lindell [5] initiated formal study of aggregate
MAC. They formalized its syntax and security and proposed a
scheme with a proof of its security on the assumption that the
underlying MAC function is unforgeable. Their scheme sim-
ply uses a MAC function for generating tags and aggregates
them by bitwise XOR.

Eikemeier et al. [8] proposed sequential aggregate MAC
and formalized its security requirement. They also presented
a scheme using a pseudorandom function and a pseudoran-
dom permutation with a proof of its security. A different type
of sequential aggregate MAC scheme was proposed by Sato,
Hirose and Shikata [9], [10]. Their scheme aggregates tags
without using secret keys of the users.

Ma and Tsudik [11] proposed forward-secure sequential
aggregate MAC, which was followed by Ma and Tsudik [12]
and by Hirose and Kuwakado [13]. Forward-secure sequen-
tial aggregate MAC may be useful for secure logging.

Group testing is also applied to MAC by
Goodrich et al. [14], Minematsu [15], and Minematsu and
Kamiya [16]. Their schemes are different from ours in that
aggregating tags frommultiple users is out of their scope. The
scheme proposed byMinematsu [15] is based on PMAC [17],
[18] and makes it possible to reduce the amount of computa-
tion to compute multiple tags for group testing. The scheme

proposed by Minematsu and Kamiya [16] makes it possible
to reduce the total number of tags for group testing.

Sato and Shikata [19] proposed an aggregate MAC scheme
with adaptive group-testing functionality. Thus, their scheme
is interactive.

After our proposal [7], Ogawa et al. [20] proposed a GTA
MAC scheme in the same setting as ours. Their scheme
reduces the total number of tags substantially but identifies
invalid messages probabilistically.

D. ORGANIZATION
We introduce MAC functions and cryptographic hash func-
tions together with a few notations in Section II. We describe
aggregate MAC in Section III. We give a formal descrip-
tion of its syntax and security and present the scheme
by Katz and Lindell and a scheme which aggregates tags
using a cryptographic hash function. In Section IV, we first
describe non-adaptive group testing and then formalize the
syntax and security of GTA MAC. We present a simple
generic construction of GTA MAC and discuss its security
in Section V. In Section VI, we present two instantiations
of the generic construction using aggregate MAC schemes
described in Section III. We show some implementation
results in Section VII. We give a concluding remark in
Section VIII.

II. PRELIMINARIES
Let s ←← S represent selection of an element s uniformly at
random from a set S. Concatenation of sequences x and y is
denoted by x‖y.

A. MAC FUNCTION
AMAC function is a cryptographic symmetric-key primitive
used for generating amessage authentication code called a tag
for a given message. It is a keyed function f : K×M→ T ,
where K is a set of keys, M is a set of messages and T is a
set of tags. f (K , ·) is often denoted by fK (·).
A MAC function is required to satisfy unforgeability. Let

Gmac
f ,A be a game played by an adversary A against f concern-

ing unforgeability. In this game, A is given a pair of oracles
fK and VK , where K ←← K and is able to make queries
adaptively to both of them. For a query M ∈ M, fK returns
fK (M). For a query (M ,T) ∈ M × T , VK returns > if
fK (M) = T and ⊥ otherwise. A is not allowed to ask (M ,T)
to VK once it asks M to fK . Gmac

f ,A outputs 1 if A succeeds in
getting > from VK and 0 otherwise. The advantage of A is
defined as

Advmac
f (A) , Pr

[
Gmac
f ,A = 1

]
. (1)

f is informally said to be a secure MAC function or satisfy
unforgeability if Advmac

f (A) is negligibly small for any effi-
cient A.

B. CRYPTOGRAPHIC HASH FUNCTION
A cryptographic hash function takes as input a sequence with
substantially arbitrary length and returns a sequence with

VOLUME 8, 2020 216117

S. Hirose, J. Shikata: Aggregate MAC Capable of Non-Adaptive Group-Testing

fixed length. It is often simply called a hash function. It is used
for almost all cryptographic schemes and is required various
kinds of properties on security. Among them, a random oracle
and collision resistance are relevant.

Let H : {0, 1}∗ → {0, 1}τ be a cryptographic hash
function. It is called a random oracle if it returns a sequence
chosen uniformly at random from {0, 1}τ for a new input. A
random oracle returns the same sequence for the same input
sequence. It is of course an ideal assumption that H is a
random oracle and it is called the random oracle model [21].

For collision resistance, let A be an adversary against H .
The advantage of A against H is defined as

AdvcolH (A) , Pr[(M ,M ′)← A(H) :

M 6= M ′ ∧ H (M) = H (M ′)]. (2)

H is informally said to satisfy collision resistance if
AdvcolH (A) is negligibly small for any efficient A.
Actually, the definition of collision resistance is not precise

theoretically, since H should be a function chosen at random
from a sufficiently large set of hash functions.

III. AGGREGATE MAC
A. SYNTAX
An aggregate MAC scheme is defined to be a tuple of algo-
rithms AM , (KG,Tag,Agg,Ver) associated with a set I of
IDs, a setK of keys, a setM of messages, a set T of tags and
a set TA of aggregate tags.
• The key generation algorithm KG is a randomized algo-
rithm. It takes id ∈ I as input and returns kid ∈ K for
id . Namely, (id, kid)← KG(id).

• The tagging algorithm Tag is a deterministic algorithm.
It takes k ∈ K and m ∈M as input and returns t ∈ T .
Namely, t ← Tag(k,m).

• The aggregate algorithm Agg is a deterministic algo-
rithm. It takes distinct (id1,m1, t1), . . . , (idn,mn, tn) ∈
I × M × T as input, where n ≥ 1 is a vari-
able, and returns an aggregate tag T ∈ TA. Namely,
T ← Agg((id1,m1, t1), . . . , (idn,mn, tn)).

• The verification algorithm Ver is a deterministic algo-
rithm. It takes distinct (id1,m1), . . . , (idn,mn) ∈ I ×
M, T ∈ TA, and (id1, k1), . . . , (idn, kn) ∈ I × K
as input and returns a decision d ∈ {>,⊥}. Namely,
d ← Ver(((id1, k1), . . . , (idn, kn)), ((id1,m1), . . . ,
(idn,mn)),T), where n ≥ 1. The pair ((id1,m1), . . . ,
(idn,mn)) and T are judged valid with respect to
((id1, k1), . . . , (idn, kn)) if d = >. They are judged
invalid otherwise.

AM is required to satisfy correctness: For (id1, k1), . . . ,
(idn, kn) and (id1,m1), . . . , (idn,mn), if tj ← Tag(kj,
mj) for 1 ≤ j ≤ n and T ← Agg((id1,m1,

t1), . . . , (idn,mn, tn)), then Ver(((id1, k1), . . . , (idn, kn)),
((id1,m1), . . . , (idn,mn)),T) = >.
Remark 1: The definition of the aggregate algorithm is

different from the definition by Katz and Lindell [5]. They
defined it in a recursive manner, which allows gradual

FIGURE 1. A targeted system configuration.

aggregation of tags during communication. Our definition
assumes, for example as shown in Fig. 1, a setting where a
server communicates with IoT devices and/or sensors in an
authenticated way with MAC via aggregators such as edge
devices. Each aggregator collects data, aggregates tags, and
sends them to the server.

B. SECURITY REQUIREMENT
An aggregate MAC scheme is required to satisfy unforge-
ability and soundness. Actually, soundness is not formalized
in [5], and it is introduced for the application of aggregate
MAC to the group-testing aggregate MAC.

1) UNFORGEABILITY
We introduce a gameGuf

AM,A played by an adversaryA against
AM , (KG,Tag,Agg,Ver) concerning unforgeability. In
this game, A is allowed to make multiple queries adaptively
to the tagging oracle T G, the key-disclosure oracle KD and
the verification oracle VR:
• For a query (id,m) ∈ I × M, T G returns
t ← Tag(k,m), where k ∈ K is the key for id .

• For a query id ∈ I, KD returns the key k ∈ K for id .
• For a query (((id1,m1), . . . , (idn,mn)),T), VR returns
d ← Ver(((id1, k1), . . . , (idn, kn)), ((id1,m1), . . . ,
(idn,mn)),T).

For a query (((id1,m1), . . . , (idn,mn)),T) to VR, if A
already asks (id j,mj) to T G or id j to KD, then we call it a
stale pair. If it is not stale, then we call it a fresh pair. A is not
allowed to ask VR a query only with stale pairs.
Guf

AM,A outputs 1 if A succeeds in getting > from VR
and 0 otherwise. The advantage of A against AM concerning
unforgeability is defined as

AdvufAM(A) , Pr[Guf
AM,A = 1]. (3)

AM is informally said to satisfy unforgeability if AdvufAM(A)
is negligibly small for any efficient A.

2) SOUNDNESS
We introduce a gameGsnd

AM,A played by an adversaryA against
AM concerning soundness. In this game, A is given access

216118 VOLUME 8, 2020

S. Hirose, J. Shikata: Aggregate MAC Capable of Non-Adaptive Group-Testing

to the tagging oracle T G and the key-disclosure oracle KD.
A is also given access to the aggregate-then-verify oracle
AVR described below.A is allowed to make multiple queries
adaptively to each of them.

AVR accepts ((id1,m1, t1), . . . , (idn,mn, tn)) as a query,
and computes

1) For 1 ≤ i ≤ n, di←> if ti = Tag(ki,mi) and di←⊥
otherwise regarding (id i, ki),

2) T ← Agg((id1,m1, t1), . . . , (idn,mn, tn)), and
3) D ← Ver(((id1, k1), . . . , (idn, kn)), ((id1,m1), . . . ,

(idn,mn)),T).
Gsnd

AM,A outputs 1 if A succeeds in making a query to AVR
such that D = > and there exists some i such that di = ⊥.
Otherwise,Gsnd

AM,A outputs 0. The advantage ofA against AM
concerning soundness is defined as

AdvsndAM(A) , Pr[Gsnd
AM,A = 1]. (4)

AM is informally said to satisfy soundness if AdvsndAM(A) is
negligibly small for any efficient A.

C. KATZ-LINDELL AGGREGATE MAC SCHEME
Wedescribe an aggregateMAC scheme proposed byKatz and
Lindell [5]. We call it AMX.

1) SCHEME
AMX uses aMAC functionF : K×M→ {0, 1}τ for tagging.
• For given id ∈ I, the key generation algorithm returns
(id, k), where k ←← K.

• For given k ∈ K and m ∈ M, the tagging algorithm
returns t ← Fk (m).

• For given (id1,m1, t1), . . . , (idn,mn, tn), the aggregate
algorithm returns T ← t1 ⊕ t2 ⊕ · · · ⊕ tn. Notice that
T ← t1 if n = 1.

• For given (id1, k1), . . . , (idn, kn) and ((id1,m1), . . . ,
(idn,mn),T), the verification algorithm returns> if T =
Fk1 (m1)⊕ · · · ⊕ Fkn (mn) and ⊥ otherwise.

2) UNFORGEABILITY
It is shown in [5] that AMX satisfies unforgeability for any
efficient adversary making a single query to its verification
oracle. AMX satisfies unforgeability even for any efficient
adversary making multiple queries to its verification oracle:
Proposition 1: Let A be any adversary against AMX with

` users. Suppose that Amakes qt queries to its tagging oracle
and qv queries to its verification oracle. Suppose that each
verification query involves at most p pairs of an ID and a
message. Then, there exists some adversary B against F such
that

AdvufAMX
(A) ≤ `qv · Advmac

F (B). (5)

B makes at most qt + p queries to its tagging oracle and at
most a single query to its verification oracle. The run time of
B is at most about TA+TF (qt+ p), where TA is the run time
of A and TF is time required to compute F .

Proof: InGmac
F,B,B is given Fk∗ and Vk∗ , where k∗←← K.

B simulates Guf
AMX,A

.
First, B selects a user id∗ uniformly at random among `

users. B assigns secret keys in K for all the users other than
id∗. B also selects a positive integer a∗ ≤ qv uniformly at
random.

For a tagging query (id,m) by A, if id = id∗, then B asks
it to Fk∗ and returns Fk∗ (m) toA. Otherwise, B returns the tag
computed by using the corresponding secret key.

For a key-disclosure query id by A, if id 6= id∗, then B
returns the corresponding secret key. Otherwise, B aborts.

For the a-th verification query by A such that a <

a∗, B simply returns ⊥. For the a∗-th verification query
(((id1,m1), . . . , (idn,mn)),T), if id j 6= id∗ for every j ∈
{1, 2, . . . , n}, then B verifies it and returns the decision.
Otherwise, there exists some j such that id j = id∗. If, for
every (id j,mj) such that id j = id∗, A already asks it to
its tagging oracle and know the corresponding tag, then B
also verifies the verification query and returns the decision.
Otherwise, let j∗ be an integer such that id j∗ = id∗ and A
does not yet ask (id j∗ ,mj∗) to its tagging oracle. B gets a
tag tj of (id j,mj) for every j ∈ {1, 2, . . . , n} \ {j∗}. Then, B
asks (mj∗ ,T ⊕

⊕
j6=j∗ tj) to its verification oracle, returns the

answer to A and terminates.
Suppose that Guf

AMX,A
outputs 1. Let Win be the event that

the a∗-th verification query Q is the first successful query
made by A and Q involves (id∗,m∗) such that A asks neither
(id∗,m∗) to its tagging oracle nor id∗ to its key-disclosure
oracle before asking Q. Then,

Pr[Gmac
F,B=1]= Pr[(Guf

AMX,A
= 1) ∧Win] (6)

= Pr[Win |Guf
AMX,A

=1] Pr[Guf
AMX,A

=1] (7)

≥ (`qv)−1 · Pr[Guf
AMX,A

= 1]. (8)

Thus, AdvufAMX
(A) ≤ `qv · Advmac

F (B). �

3) SOUNDNESS
AMX does not satisfy soundness. For example, let
(id1,m1, t1) and (id2,m2, t2) be tuples such that t1 =
Fk1 (m1) and t2 = Fk2 (m2). Let t̃1 , t1 ⊕ c and t̃2 ,
t2 ⊕ c, where c is non-zero. Then, the aggregate tag is
t̃1 ⊕ t̃2 = t1 ⊕ t2. Thus, with respect to (id1, k1) and
(id2, k2), ((id1,m1), (id2,m2)), t̃1⊕ t̃2) is judged valid though
(id1,m1, t̃1) and (id2,m2, t̃2) are invalid.

D. AGGREGATE MAC SCHEME USING HASHING
We describe an aggregate MAC scheme using hashing for
aggregate. We call it AMH.

1) SCHEME
AMH aggregates tags with a cryptographic hash function H :
{0, 1}∗ → {0, 1}τ . Let F : K ×M → {0, 1}τ be a MAC
function. The key generation and tagging algorithms of AMH
are identical to those of AMX.

VOLUME 8, 2020 216119

S. Hirose, J. Shikata: Aggregate MAC Capable of Non-Adaptive Group-Testing

• For given (id1,m1, t1), . . . , (idn,mn, tn), the aggregate
algorithm returns T ← H (t1‖t2‖ · · · ‖tn). To make
each aggregate tag unique, it is assumed that (id1,m1,

t1), . . . , (idn,mn, tn) is ordered in a lexicographic order.
Notice that T ← H (t1) if n = 1 just for simplifying
the notation. It does not cause any problem if we specify
T ← t1 for n = 1 and T ← H (t1‖t2‖ · · · ‖tn) for n ≥ 2.

• For given (id1, k1), . . . , (idn, kn) and ((id1,m1), . . . ,
(idn,mn),T), the verification algorithm returns> if T =
H (Fk1 (m1)‖Fk2 (m2)‖ · · · ‖Fkn (mn)) and ⊥ otherwise.

2) UNFORGEABILITY
AMH satisfies unforgeability if F is a secure MAC function
and H is a random oracle:
Theorem 1: Let A be any adversary against AMH with `

users. ForA, let qh be the number of its queries to the random
oracleH , qt be the number of the queries to its tagging oracle,
and qv be the number of the queries to its verification oracle.
Suppose that each verification query involves at most p pairs
of an ID and a message. Then, there exists some adversary B
against F such that

AdvufAMH
(A) ≤ `qv · Advmac

F (B)+ qv/2τ . (9)

Bmakes at most qh+qv queries toH , at most qt+p queries to
its tagging oracle and at most a single query to its verification
oracle. The run time of B is at most about TA + TF (qt + p),
where TA is the run time of A and TF is time required to
compute F .

Proof: Let F0 be the event that there exists at least
one successful forgery ((id1,m1), . . . , (idn,mn),T) by A
such that A makes a query (t1, . . . , tn) to H satisfying
H (t1‖ · · · ‖tn) = T , where ti is the valid tag for (id i,mi) for
1 ≤ i ≤ n. Then,

AdvufAMH
(A) = Pr[Guf

AMH,A
= 1] (10)

= Pr[F0]+ Pr[(Guf
AMH,A

= 1) ∧ F0] (11)

≤ Pr[F0]+ qv/2τ . (12)

For Pr[F0], the proof is similar to that of Proposition 1. There
exists an adversary B against F such that Pr[F0] ≤ `qv ·
Advmac

F (B). �

3) SOUNDNESS
AMH satisfies soundness if H is collision-resistant:
Theorem 2: LetA be any adversary against AMH concern-

ing soundness. Suppose thatAmakes qt queries to its tagging
oracle and qa queries to its aggregate-then-verification oracle.
Suppose that the total number of the tuples of an ID, a mes-
sage and a tag in the queries to the aggregate-then-verification
oracle is at most na. Then, there exists some adversary B
against H concerning collision resistance such that

AdvsndAMH
(A) ≤ AdvcolH (B). (13)

The run time of B is at most about TA+TF (qt+ na)+THqa,
where TA is the run time of A, and TF and TH are amounts
of time required to compute F and H , respectively.

Proof: B runs Gsnd
AMH,A

. B generates the keys
of all users. B simulates the tagging oracle, the key-
disclosure oracle and the aggregate-then-verification oracle
for A. Suppose that Gsnd

AMH,A
outputs 1. Then, A makes a

query ((id1,m1, t ′1), . . . , (idn,mn, t
′
n)) to its aggregate-then-

verification oracle such that the decision for the query is >
and there exists some j such that t ′j is not a valid tag for
(id j,mj). For 1 ≤ i ≤ n, let ti be the valid tag for (id i,mi).
Then, since F is deterministic, (t ′1, . . . , t

′
n) 6= (t1, . . . , tn) and

H (t ′1‖ · · · ‖t
′
n) = H (t1‖ · · · ‖tn). Thus, if Gsnd

AMH,A
outputs 1,

then B finds a collision for H . �

E. UNFORGEABILITY VERSUS SOUNDNESS
The security analyses of AMX and AMH make it clear that
unforgeability and soundness are separated.
Soundness is not implied by unforgeability since AMX

satisfies unforgeability but does not satisfy soundness.
Unforgeability is not implied by soundness, either. Theo-

rem 2 shows that AMH satisfies soundness only if the under-
lying hash function satisfies collision resistance, and it is the
property of the aggregate algorithm. Suppose thatAMH uses a
collision-resistant hash function and the following forgeable
MAC function: t ← Fk (m) and t is the most significant τ
bits of m. Then, AMH does not satisfy unforgeability but still
satisfies soundness.

IV. GROUP-TESTING AGGREGATE MAC
A. NON-ADAPTIVE GROUP TESTING
A non-adaptive group-testing is applied to a set of items. It
assumes that each item is either positive or negative. It also
assumes that multiple items can be examined by a single test
and that its result is negative if and only if all the items in the
test are negative. One may be able to identify positive items
with a smaller number of tests by non-adaptive group-testing
than by simply examining one by one.
A non-adaptive group-testing for n items with u tests

can be represented by a u × n {0, 1}-matrix: The (i, j) ele-
ment of the matrix equals 1 if and only if the i-th test
is applied to the j-th item. A matrix representing a non-
adaptive group-testing is called a group-testing matrix. In
a group-testing, each item should be tested and each test
should be run on at least one item. Thus, without loss of
generality, we can assume that a goup-testing matrix should
have at least one element equal to 1 in every row and every
column.

A useful property of a group-testing matrix is known:
Definition 1 (d-disjunct): A {0, 1}-matrix G is called

d-disjunct if, for any (d + 1) columns gcj1 , g
c
j2
, . . . , gcjd+1 of

G,
∨d

l=1 g
c
jl 6=

∨d+1
l=1 g

c
jl , where ∨ is the component-wise

disjunction.
Notice that, if G is d-disjunct, then it is d ′-disjunct for any d ′

such that d ′ ≤ d .
If there are at most d positive items among n items,

then, using a d-disjunct group-testing matrix G = (gi,j),
the following procedure identifies all the positive items:

216120 VOLUME 8, 2020

S. Hirose, J. Shikata: Aggregate MAC Capable of Non-Adaptive Group-Testing

Let j ∈ {1, 2, . . . , n} represent the j-th item. For G, let Si ,
{j | 1 ≤ j ≤ n, gi,j = 1}.

1) J ← {1, 2, . . . , n}.
2) For 1 ≤ i ≤ u, if the result of the i-th test is negative,

then J ← J \ Si.
3) Output J .

The output J is exactly the set of all positive items.

B. SYNTAX
A group-testing aggregate MAC (GTA MAC) scheme
is defined to be a tuple of algorithms GTAM ,
(KG,Tag,GTA,GTV) associated with a set G of group-
testing matrices, a set I of IDs, a set K of keys, a set M of
messages, a set T of tags and a set TA of aggregate tags. The
sizes (both the numbers of rows and the numbers of columns)
of the matrices in G may be different from each other in
general.

• The key generation algorithm KG is a randomized algo-
rithm. It takes id ∈ I as input and returns kid ∈ K for
id . Namely, (id, kid)← KG(id).

• The tagging algorithm Tag is a deterministic algorithm.
It takes k ∈ K and m ∈M as input and returns t ∈ T .
Namely, t ← Tag(k,m).

• The group-testing aggregate algorithm GTA is a deter-
ministic algorithm. It takes a group-testing matrix
G ∈ G and ((id1,m1, t1), . . . , (idn,mn, tn)) ∈

(I × M × T)n as input and returns aggregate
tags (T1, . . . ,Tu) ∈ T u

A , where G is assumed
to be a u × n matrix. Namely, (T1, . . . ,Tu) ←
GTA(G; (id1,m1, t1), . . . , (idn,mn, tn)). It is required
that (id1,m1, t1), . . . , (idn,mn, tn) are distinct.

• The group-testing verification algorithm GTV is a
deterministic algorithm. It takes G ∈ G, ((id1,
m1), . . . , (idn,mn)) ∈ (I × M)n, (T1, . . . ,Tu) ∈
T u
A , and (id1, k1), . . . , (idn, kn) ∈ I × K as

input and returns a set of (id j,mj)’s, where G is
assumed to be a u × n matrix. Namely, J ←

GTV(((id1, k1), . . . , (idn, kn)), (G; (id1,m1), . . . , (idn,
mn), (T1, . . . ,Tu))), and J is a set of (id j,mj)’s judged
invalid. It is required that (id1,m1), . . . , (idn,mn) are
distinct.

GTAM is required to satisfy correctness: For a u×n group-
testing matrix G, ((id1, k1), . . . , (idn, kn)), ((id1,m1), . . . ,
(idn,mn)) and (T1, . . . ,Tu), if tj← Tag(kj,mj) for 1 ≤ j ≤ n,
and (T1, . . . ,Tu)← GTA(G; (id1,m1, t1), . . . , (idn,mn, tn)),
then GTV(((id1, k1), . . . , (idn, kn)), (G; (id1,m1), . . . ,
(idn,mn), (T1, . . . ,Tu))) = ∅.
Remark 2: With the use of a u × n matrix for the

group-testing aggregate algorithm GTA, the total tag size
is reduced by a factor of u/n if a tag tj and an aggregate
tag Ti have an equal length. It is shown that the minimum
number of rows for a d-disjunct matrix with n columns
is O(d2 log n) [6].

C. SECURITY REQUIREMENT
For a GTA MAC scheme GTAM, we formalize two security
requirements, unforgeability and identifiability.

1) UNFORGEABILITY
We introduce a game Guf

GTAM,A played by an adversary A
against GTAM concerning unforgeability. In this game, A is
able to make queries adaptively to the tagging oracle T G, the
key disclosure oracle KD and the group-testing verification
oracle GT V:
• For a query (id,m) ∈ I × M, T G returns
t ← Tag(k,m), where k ∈ K is the key for id .

• For a query id ∈ I, KD returns k ∈ K for id .
• For a query (G; (id1,m1), . . . , (idn,mn), (T1, . . . ,Tu)),
GT V returns J ← GTV(((id1, k1), . . . , (idn,
kn)), (G; (id1,m1), . . . , (idn,mn), (T1, . . . ,Tu))).

For a query (G; (id1,m1), . . . , (idn,mn), (T1, . . . ,Tu)) to
GT V , if A already asks (id j,mj) to T G or id j to KD, then
we call it a stale pair. If it is not stale, then we call it a fresh
pair. A is not allowed to ask GT V a query only with stale
pairs.
Guf

GTAM,A outputs 1 if A succeeds in asking a query Q =
(G; (id1,m1), . . . , (idn,mn), (T1, . . . ,Tu)) to GT V such that
F(Q) \ J 6= ∅, where J ← GTV(((id1, k1), . . . , (idn,
kn)),Q) and F(Q) is the set of fresh pairs of Q. Guf

GTAM,A
outputs 0 otherwise.
The advantage of A against GTAM concerning unforge-

ability is defined as

AdvufGTAM(A) , Pr[Guf
GTAM,A = 1]. (14)

GTAM is informally said to satisfy unforgeability if
AdvufGTAM(A) is negligibly small for any efficient A.

2) IDENTIFIABILITY
We introduce completeness and (weak) soundness for iden-
tifiability. Completeness captures the notion that any valid
tuple (id,m, t) should be judged valid. (Weak) soundness
captures the notion that any invalid tuple should be judged
invalid.
We introduce games Gid-c

GTAM,A, G
id-s
GTAM,A and Gid-ws

GTAM,A
played by an adversary A against GTAM concerning com-
pleteness, soundness and weak soundness, respectively. In
all of the games, A is allowed to make multiple queries to
T G and KD described in the definition of Guf

GTAM,A. A is
also allowed to make queries adaptively to a group-testing
oracle GTx in Gid-x

GTAM,A for x ∈ {c, s,ws}. For a query Q =
(G; (id1,m1, t1), . . . , (idn,mn, tn)), GTx computes
1) For 1 ≤ j ≤ n, dj←> if tj = Tag(kj,mj) and dj←⊥

otherwise regarding (id j, kj),
2) (T1, . . . ,Tu)← GTA(Q) and
3) J ← GTV(((id1, k1), . . . , (idn, kn)), (G; (id1,m1),

. . . , (idn,mn), (T1, . . . ,Tu))),
where G is assumed to be a u× n matrix. GTc returns 1 if

J ∩ {(id j,mj) | dj = >} 6= ∅ (15)

VOLUME 8, 2020 216121

S. Hirose, J. Shikata: Aggregate MAC Capable of Non-Adaptive Group-Testing

and 0 otherwise. GTs returns 1 if

{(id j,mj) | dj = ⊥} \ J 6= ∅ (16)

and 0 otherwise. GTws returns 1 if the set on the left side
of (16) contains one or more fresh pairs. Otherwise, it returns
0.

Gid-x
GTAM,A outputs 1 if GTx returns 1 for some query and

0 otherwise. The advantage of A against GTAM concerning
identifiability is defined as

Advid-xGTAM(A) , Pr[Gid-x
GTAM,A = 1] (17)

for x ∈ {c, s,ws}.

3) IMPLICATION AND SEPARATION
It is clear that weak soundness is implied by soundness. Weak
soundness is also implied by unforgeability:
Proposition 2: LetA be any adversary againstGTAM con-

cerning weak soundness. For A, let qt, qk and qg be the num-
bers of the queries to its tagging oracle, key-disclosure ora-
cle and group-testing oracle, respectively. Then, there exists
some adversary B against GTAM concerning unforgeability
such that

Advid-wsGTAM(A) ≤ AdvufGTAM(B). (18)

The numbers of queries made by B to its tagging, key-
disclosure and group-testing verification oracles are at most
qt, qk and qg, respectively. The run time of B is at most about
the total of the run time ofA and qgTGTA, where TGTA is time
required to run GTA.

Proof: B simulates Gid-ws
GTAM,A. In Guf

GTAM,B, simula-
tions of the tagging and key disclosure oracles for A are
trivial. For a query Q , (G; (id1,m1, t1), . . . , (idn,mn, tn))
made by A to its group-testing oracle, B computes
(T1, . . . ,Tu) ← GTA(Q), gets J ← GTV(G; ((id1,
m1), . . . , (idn,mn)), (T1, . . . ,Tu)) from its group-testing ver-
ification oracle. If there exists some fresh (id j,mj) 6∈ J , then
B terminates. Otherwise, B returns 0 to A and continues the
simulation. If Gid-ws

GTAM,A = 1, then Guf
GTAM,B = 1. �

Similar to the case of aggregate MAC, unforgeability
and soundness are separated: Soundness is not implied by
unforgeability and unforgeability is not implied by sound-
ness.

V. GENERIC CONSTRUCTION OF GTA MAC SCHEME
Let v = (v1, v2, . . . , vn) ∈ {0, 1}n and x = (x1, x2, . . . , xn) ∈
X n for some set X . Let v � x = (xj1 , xj2 , . . . , xjw), where
1 ≤ j1 < j2 < · · · < jw ≤ n, and vj = 1 if and only if
j ∈ {j1, j2, . . . , jw}.
For a group-testing matrix G ∈ G, let G = (gi,j) and gi be

the i-th row of G.

A. GENERIC CONSTRUCTION
We can construct a GTA MAC scheme GTAMg ,
(KGg,Tagg,GTAg,GTVg) associated with a set Gg of
group-testing matrices using an aggregate MAC scheme

AM , (KG,Tag,Agg,Ver) in the following way:
Let G ∈ Gg be a u× n matrix.
• KGg and Tagg are identical toKG and Tag, respectively.
• For input G and (id1,m1, t1), . . . , (idn,mn, tn), GTAg
computes Ti ← Agg(gi � ((id1,m1, t1), . . . , (idn,mn,
tn))) for 1 ≤ i ≤ u and outputs (T1, . . . ,Tu).

• For input (G; (id1,m1), . . . , (idn,mn), (T1, . . . ,Tu))
and (id1, k1), . . . , (idn, kn), GTVg computes
1) J ← {(id1,m1), . . . , (idn,mn)},
2) For 1 ≤ i ≤ u, ifVer(gi�((id1, k1), . . . , (idn, kn)),

gi � ((id1,m1, t1), . . . , (idn,mn, tn)),Ti) = >,
then J ← J \ {(id j,mj) | 1 ≤ j ≤ n ∧ gi,j = 1}

and outputs J .

B. UNFORGEABILITY
Unforgeability of GTAMg is implied by that of underlying
AM:
Theorem 3: For any adversary A against GTAMg with `

users, there exists some adversary B against AM with ` users
such that

AdvufGTAMg
(A) ≤ AdvufAM(B). (19)

ForA, let qt be the number of the queries to its tagging oracle,
qk be the number of the queries to its key-disclosure oracle,
and uv and nv be the total number of the tests and the total
numebr of the ID-message pairs, respectively, in the queries
to its group-testing verification oracle. Then, the numbers of
queries made by B to its tagging, key-disclosure and verifica-
tion oracles are at most qt + nv, qk and uv, respectively. The
run time of B is at most about the total of the run time of A
and nvTTag + uvTAgg, where TTag and TAgg are amounts of
time required to run Tag and Agg, respectively.

Proof: B simulates Guf
GTAMg,A

. In Guf
AM,B, simulations

of the tagging, key disclosure and group-testing verification
oracles for A are trivial. Notice that B is not allowed to make
verification queries only with stale pairs. IfGuf

GTAMg,A
outputs

1, then A asks a group-testing verification query with a fresh
pair judged valid. Thus, Guf

AM,B also outputs 1. �

C. IDENTIFIABILITY
We call an adversary A against GTAMg concerning iden-
tifiability d-dishonest if A only asks group-testing queries
(G; (id1,m1, t1), . . . , (idn,mn, tn)) such that |{(id j,mj) | tj 6=
Tagg(kj,mj) for (id j, kj)}| ≤ d .

1) COMPLETENESS
Theorem 4: If GTAMg is associated with a set of

d-disjunct group-testing matrices, then, for any d-dishonest
adversary A,

Advid-cGTAMg
(A) = 0. (20)

Proof: Let (G; (id1,m1, t1), . . . , (idn,mn, tn)) be a
group-testing query made by A. If G is d-disjunct and A
is d-dishonest, then for any valid pair (id j,mj), that is,

216122 VOLUME 8, 2020

S. Hirose, J. Shikata: Aggregate MAC Capable of Non-Adaptive Group-Testing

tj = Tagg(kj,mj) for (id j, kj), there exists some test in G
including (id j,mj) and no invalid pairs. �

2) SOUNDNESS
GTAMg inherits soundness from AM:
Theorem 5: Let A be any adversary against GTAMg. For

A, let qt and qk be the numbers of queries to its tagging
and key-disclosure oracles, respectively, and uv be the total
number of tests in the queries to its group-testing oracle.
Then, there exists some adversary B against AM such that

Advid-sGTAMg
(A) ≤ AdvsndAM(B). (21)

The numbers of queries made by B to its tagging, key-
disclosure and aggregate-then-verify oracles are at most qt,
qk and uv, respectively. The run time of B is at most about
that of A.

Proof: B simulatesGid-s
GTAMg,A

. InGsnd
AM,B, simulations of

the tagging and key-disclosure oracles are trivial. For a group-
testing query (G; (id1,m1, t1), . . . , (idn,mn, tn)) made by A,
B makes a query gi � ((id1,m1, t1), . . . , (idn,mn, tn)) to its
aggregate-then-verify oracle for each gi. IfG

id-s
GTAMg,A

outputs

1, then Gsnd
AM,B also outputs 1. �

VI. INSTANTIATIONS OF GENERIC CONSTRUCTION
We can instantiate GTAMg with AMX or AMH as an underly-
ing aggregate MAC scheme.

In the description below, F : K×M→ {0, 1}τ is a MAC
function, and G = (gi,j) is a u× n group-testing matrix.

A. GTA MAC SCHEME BASED ON KATZ-LINDELL
AGGREGATE MAC
1) SCHEME
The GTA MAC scheme GTAMX using AMX is specified
below:
• For given id ∈ I, the key generation algorithm returns
(id, k), where k ←← K.

• For given k ∈ K and m ∈ M, the tagging algorithm
returns t ← Fk (m).

• For given (G; (id1,m1, t1), . . . , (idn,mn, tn)), the group-
testing aggregate algorithm computes Ti ←

⊕
gi,j=1 tj

for 1 ≤ i ≤ u, and returns (T1, . . . ,Tu).
• For given (G; ((id1,m1), . . . , (idn,mn)), (T1, . . . ,Tu))
and (id1, k1), . . . , (idn, kn), the group-testing verifica-
tion algorithm executes
1) J ← {(id1,m1), . . . , (idn,mn)}.
2) For 1 ≤ i ≤ u, if Ti =

⊕
gi,j=1 Fkj (mj), then J ←

J \ {(id j,mj) | 1 ≤ j ≤ n ∧ gi,j = 1}.
and returns J .

2) UNFORGEABILITY
Unforgeability of GTAMX is implied by unforgeability of the
underlying MAC function F :
Corollary 1: LetA be any adversary against GTAMX with

` users. ForA, let qt be the number of the queries to its tagging
oracle, qk be the number of the queries to its key-disclosure

oracle, and uv and nv be the total number of the tests and
the total numebr of the ID-message pairs, respectively, in the
queries to its group-testing verification oracle. Then, there
exists some adversary B against F such that

AdvufGTAMX
(A) ≤ `uv · Advmac

F (B). (22)

The numbers of queries made by B to its tagging and verifi-
cation oracles are at most qt+nv and 1, respectively. The run
time of B is at most about the total of the run time of A and
TF (qt + nv), where TF is time required to compute F .
Corollary 1 follows from Proposition 1 and Theorem 3.

3) IDENTIFIABILITY
a: COMPLETENESS
From Theorem 4, if GTAMX is associated with a set of
d-disjunct group-testing matrices, then it satisfies complete-
ness against any d-dishonest adversary.

b: SOUNDNESS
Weak soundness of GTAMX is confirmed by Corollary 1.
It is easy to see that GTAMX does not satisfy soundness.

However, if it is associated with a set of d-disjunct group-
testing matrices and an adversary is d-dishonest, then one can
easily verify whether the result of a group-testing is correct
or not.

Suppose that G is d-disjunct and that A is d-dishonest. Let
(G; (id1,m1, t̃1), . . . , (idn,mn, t̃n)) be a query made by A to
GTs and J be the set of pairs of an ID and a message judged
invalid by group-testing verification. Then, let P be the set of
the tests inGwhich result in positive. LetQ be the set of tests
in G which involve one or more pairs in J . It is easy to see
that Q ⊆ P .

Let J ′ , {(id j,mj) | 1 ≤ j ≤ n ∧ t̃j 6= Tagg(kj,mj)
for (id j, kj)}. Since |J ′| ≤ d and G is d-disjunct, J ⊆ J ′.
Suppose that J (J ′ and (id j∗ ,mj∗) ∈ J ′ \ J . Then,

since G is d-disjunct, there exists some test in G such that it
involves (id j∗ ,mj∗) and none of the other ID-message pairs it
involves are in J ′. The result of the test is positive for AMX
and Q (P . On the other hand, if Q (P , then each of the
tests in P \Q involves some pair in J ′ \ J .
It is concluded that P (Q if and only if J (J ′.

B. GTA MAC SCHEME USING HASHING
1) SCHEME
The GTA MAC scheme GTAMH using AMH is specified
below: Let H : {0, 1}∗ → {0, 1}τ be a cryptographic hash
function.
• For given id ∈ I, the key generation algorithm returns
(id, k), where k ←← K.

• For given k ∈ K and m ∈ M, the tagging algorithm
returns t ← Fk (m).

• For given (G; (id1,m1, t1), . . . , (idn,mn, tn)),
let 〈〈gi, (t1, t2, · · · , tn)〉〉 = tj1‖tj2‖ · · · ‖tjwi , where 1 ≤
j1 < j2 < · · · < jwi ≤ n, and gi,j = 1 if and only if
j ∈ {i1, i2, . . . , iwi}. Then, the group-testing aggregate

VOLUME 8, 2020 216123

S. Hirose, J. Shikata: Aggregate MAC Capable of Non-Adaptive Group-Testing

algorithm computes Ti ← H (〈〈gi, (t1, t2, · · · , tn)〉〉) for
1 ≤ i ≤ u and returns (T1, . . . ,Tu).

• For given (G; ((id1,m1), . . . , (idn,mn)), (T1, . . . ,Tu))
and (id1, k1), . . . , (idn, kn), the group-testing verifica-
tion algorithm executes
1) J ← {(id1,m1), . . . , (idn,mn)}.
2) For 1 ≤ i ≤ u, if Ti = H (〈〈gi, (Fk1 (m1), . . . ,

Fkn (mn))〉〉), then J ← J \ {(id j,mj) | 1 ≤ j ≤
n ∧ gi,j = 1}.

and returns J .

2) UNFORGEABILITY
Unforgeability of GTAMH is implied by that of F in the
random oracle model:
Corollary 2: LetA be any adversary against GTAMH with

` users. For A, let qh be the number of its queries to H , qt
be the number of the queries to its tagging oracle, qk be the
number of the queries to its key-disclosure oracle and uv and
nv be the total number of the tests and the total numebr of the
ID-message pairs, respectively, in the queries to its group-
testing verification oracle. Then, there exists some adversary
B against F such that

AdvufGTAMH
(A) ≤ `uv · Advmac

F (B)+ uv/2τ . (23)

Bmakes at most qh+uv queries toH , at most qt+nv queries to
its tagging oracle and at most a single query to its verification
oracle. The run time of B is at most about the total of that of
A and TF (qt + nv), where TF is time to compute F .
Corollary 2 follows from Theorems 1 and 3.

3) IDENTIFIABILITY
a: COMPLETENESS
From Theorem 4, if GTAMH is associated with a set of d-
disjunct group-testing matrices, then it satisfies completeness
against any d-dishonest adversary.

b: SOUNDNESS
From Theorems 2 and 5, soundness of GTAMH is implied by
collision resistance of H :
Corollary 3: Let A be any adversary against GTAMH. For

A, let qt be the number of the queries to its tagging oracle,
qk be the number of the queries to its key-disclosure oracle,
and uv and nv be the total number of the tests and the total
numebr of the ID-message pairs, respectively, in the queries
to its group-testing oracle. Then, there exists some adversary
B against H such that

Advid-sGTAMH
(A) ≤ AdvcolH (B). (24)

The run time of B is at most about the total of that of A and
TF (qt + nv)+ THuv, where TF and TH are amounts of time
to compute F and H , respectively.

VII. IMPLEMENTATION
A. GROUP-TESTING MATRIX
Wegenerated d-disjunct u×n group-testingmatrices for a few
values of n using the shifted transversal design (STD) [22].

FIGURE 2. Relationship between d and u of d -disjunct u× 100
group-testing matrices generated by STD [22], where d <

√
u.

FIGURE 3. Relationship between d and u of d -disjunct u× 1000
group-testing matrices generated by STD [22], where d <

√
u.

We generated a matrix for every d resulting in a matrix
satisfying u < n.
The relationships between d and u such that d <

√
u are

shown in Figures 2, 3 and 4 for n = 100, n = 1000 and
n = 10000, respectively. For example, the rate u/n is smaller
than 0.7 if d ≤ 5 for n = 100, d ≤ 17 for n = 1000 and
d ≤ 68 for n = 10000. We can see that our GTA MAC is
effective in those cases though it still remains open how to
design optimal d-disjunct matrices.

B. GTA MAC
We implemented theGTAMAC schemeGTAMX in Python 3.
We adopted HMAC-SHA256 as its underlyingMAC function
for tagging. We simply used modules hmac and hashlib
to implement HMAC-SHA256.

We measured the runtime of our implementation on Mac-
Book Pro with 2.3GHz Intel Core i5, 16GB memory and
macOS Mojave 10.14.6. The results are shown in Table 1,
where each entry (time in milliseconds) is the minimum
among 10 measurements. ‘‘Users’’ indicates the number of
users in group-testing, which equals the number of columns
(n) of the corresponding group-testing matrix. ‘‘Tagging’’
indicates total time for generating tags of all users involved
in the group-testing. ‘‘Verif’’ indicates total time for verifying
tags of all users one by one. ‘‘GT Verif’’ indicates total time

216124 VOLUME 8, 2020

S. Hirose, J. Shikata: Aggregate MAC Capable of Non-Adaptive Group-Testing

FIGURE 4. Relationship between d and u of d -disjunct u× 10000
group-testing matrices generated by STD [22], where d <

√
u.

TABLE 1. Runtime in milliseconds.

for group-testing verification. We did not measure the run
time of group-testing aggregate since it is almost equal to the
difference between ‘‘GT Verif’’ and ‘‘Verif.’’

The group-testing matrices used for group-testing verifica-
tion are 66× 100, 666× 1000 and 6969× 10000 d-disjunct
matrices, where d = 5, 17, 68, respectively. Thus, for each
case, the total size of aggregate tags of our GTAMAC scheme
is more than 30% smaller than that of the traditional MAC
scheme, which attaches a tag to each message. Nevertheless,
our group-testing verification is able to identify maliscious
users as long as the number of them is at most d .
On the other hand, the runtime of ‘‘GT Verif’’ is larger

than that of ‘‘Verif’’ mainly due to the time for generating
aggregate tags. It is proportional to the total number of 1’s
in the group-testing matrix. The total numbers of 1’s in the
66×100, 666×1000 and 6969×10000 group-testingmatrices
are 600, 18000 and 690000, respectively.

VIII. CONCLUSION
We have introduced and formalized GTA MAC. We have
presented simple generic construction applying non-adaptive
group-testing to aggregate MAC. The generic construction
reduces the security of GTA MAC to its underlying crypto-
graphic primitives and d-disjunct property of group-testing
matrices.We have discussed two kinds of instantiations of the
generic construction. Finally, we have presented some imple-
mentation results to show the effectiveness of the proposed
GTA MAC. Future work includes design of an algorithm to
produce d-disjunct matrices allowing more efficient group-
testing. It is also interesting to design an efficient algorithm
to verify whether a given group-testing matrix is d-disjunct
or not.

ACKNOWLEDGMENT
The authors would like to thank Dr. Kazuhiko Minematsu for
providing us data of disjunct matrices generated by the STD
method.

REFERENCES
[1] M. Bellare, R. Canetti, and H. Krawczyk, ‘‘Keying hash functions for

message authentication,’’ in Advances in Cryptology—CRYPTO (Lecture
Notes in Computer Science), vol. 1109. Berlin, Germany: Springer, 1996,
pp. 1–15.

[2] The Keyed-Hash Message Authentication Code (HMAC), document FIPS
PUB 198-1, 2008.

[3] T. Iwata and K. Kurosawa, ‘‘OMAC: One-key CBC MAC,’’ in Fast Soft-
ware Encryption (Lecture Notes in Computer Science), vol. 2887. Berlin,
Germany: Springer, 2003, pp. 129–153.

[4] Recommendation for Block Cipher Modes of Operation: The CMACMode
for Authentication document NIST Special Publication 800-38B, 2005.

[5] J. Katz and A. Y. Lindell, ‘‘Aggregate message authentication codes,’’
in Topics in Cryptology—CT-RSA (Lecture Notes in Computer Science),
vol. 4964. Berlin, Germany: Springer, 2008, pp. 155–169.

[6] D. Z. Du and F. K. Hwang, ‘‘Combinatorial group testing and its appli-
cations,’’ in Series on Applied Mathematics, vol. 12, 2nd ed. Singapore:
World Scientific, 2000.

[7] S. Hirose and J. Shikata, ‘‘Non-adaptive group-testing aggregate MAC
scheme,’’ in Information Security Practice and Experience (Lecture Notes
in Computer Science), vol. 11125, C. Su and H. Kikuchi, Eds. Cham,
Switzerland: Springer, 2018, pp. 357–372.

[8] O. Eikemeier, M. Fischlin, J. F. Götzmann, A. Lehmann, D. Schröder,
P. Schröder, and D. Wagner, ‘‘History-free aggregate message authen-
tication codes,’’ in Security and Cryptography for Networks (Lecture
Notes in Computer Science), vol. 6280. Berlin, Germany: Springer, 2010,
pp. 309–328.

[9] S. Sato, S. Hirose, and J. Shikata, ‘‘Sequential aggregate MACs with
detecting functionality revisited,’’ inNetwork and System Security (Lecture
Notes in Computer Science), vol. 11928, J. K. Liu and X. Huang, Eds.
Cham, Switzerland: Springer, 2019, pp. 387–407.

[10] S. Sato, S. Hirose, and J. Shikata, ‘‘Sequential aggregate MACs from any
MACs: Aggregation and detecting functionality,’’ J. Internet Services Inf.
Secur., vol. 9, no. 1, pp. 2–23, 2019.

[11] D. Ma and G. Tsudik, ‘‘Extended abstract: Forward-secure sequential
aggregate authentication,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2007, pp. 86–91.

[12] D. Ma and G. Tsudik, ‘‘A new approach to secure logging,’’ ACM Trans.
Storage, vol. 5, no. 1, pp. 1–21, Mar. 2009.

[13] S. Hirose and H. Kuwakado, ‘‘Forward-secure sequential aggregate mes-
sage authentication revisited,’’ in Provable Security (Lecture Notes in
Computer Science), vol. 8782, S. S. M. Chow, J. K. Liu, L. C. K. Hui, and
S. Yiu, Eds. Cham, Switzerland: Springer, 2014, pp. 87–102.

[14] M. T. Goodrich, M. J. Atallah, and R. Tamassia, ‘‘Indexing information for
data forensics,’’ in Applied Cryptography and Network Security (Lecture
Notes in Computer Science), vol. 3531. Berlin, Germany: Springer, 2005,
pp. 206–221.

[15] K. Minematsu, ‘‘Efficient message authentication codes with combinato-
rial group testing,’’ in Computer Security—ESORICS (Lecture Notes in
Computer Science), vol. 9326, G. Pernul, P. Y. A. Ryan, and E.R. Weippl,
Eds. Cham, Switzerland: Springer, 2015, pp. 185–202.

[16] K. Minematsu and N. Kamiya, ‘‘Symmetric-key corruption detection:
When XOR-MACs meet combinatorial group testing,’’ in Computer
Security—ESORICS (Lecture Notes in Computer Science), vol. 11735,
K. Sako, S. A. Schneider, and P. Y. A. Ryan, Eds. Cham, Switzerland:
Springer, 2019, pp. 595–615.

[17] J. Black and P. Rogaway, ‘‘A block-cipher mode of operation for paralleliz-
able message authentication,’’ in Advances in Cryptology—EUROCRYPT
(LectureNotes in Computer Science), vol. 2332, L. R. Knudsen, Ed. Berlin,
Germany: Springer, 2002, pp. 384–397.

[18] P. Rogaway, ‘‘Efficient instantiations of tweakable blockciphers and
refinements to modes OCB and PMAC,’’ in Advances in Cryptology—
ASIACRYPT (Lecture Notes in Computer Science), vol. 3329, P. J. Lee,
Ed. Berlin, Germany: Springer, 2004, pp. 16–31.

[19] S. Sato and J. Shikata, ‘‘Interactive aggregate message authentication
scheme with detecting functionality,’’ in Proc. 33rd Int. Conf. Adv. Inf.
Netw. Appl. (AINA), 2019, pp. 1316–1328.

[20] Y. Ogawa, S. Sato, J. Shikata, and H. Imai, ‘‘Aggregate message authen-
tication codes with detecting functionality from biorthogonal codes,’’ in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2020, pp. 868–873.

[21] M. Bellare and P. Rogaway, ‘‘Random oracles are practical: A paradigm for
designing efficient protocols,’’ in Proc. 1st ACM Conf. Comput. Commun.
Secur. - CCS, 1993, pp. 62–73.

VOLUME 8, 2020 216125

S. Hirose, J. Shikata: Aggregate MAC Capable of Non-Adaptive Group-Testing

[22] N. Thierry-Mieg, ‘‘A new pooling strategy for high-throughput screen-
ing: The Shifted transversal design,’’ BMC Bioinf., vol. 7, no. 28, p. 28,
2006.

SHOICHI HIROSE received the B.E., M.E., and
D.E. degrees in information science from Kyoto
University, Kyoto, Japan, in 1988, 1990, and 1995,
respectively.

From 1990 to 1998, he was a Research Asso-
ciate with the Faculty of Engineering, Kyoto Uni-
versity. From 1998 to 2005, he was a Lecturer
with the Graduate School of Informatics, Kyoto
University. From 2005 to 2009, he was an Asso-
ciate Professor with the Faculty of Engineering,

University of Fukui. Since 2009, he has been a Professor with the Graduate
School of Engineering, University of Fukui. His current interests include
cryptography and information security.

JUNJI SHIKATA (Member, IEEE) received the
B.S. and M.S. degrees in mathematics from Kyoto
University, Kyoto, Japan, in 1994 and 1997,
respectively, and the Ph.D. degree in mathematics
from Osaka University, Osaka, Japan, in 2000.

From 2000 to 2002, he was a Postdoctoral
Fellow with the Institute of Industrial Science,
The University of Tokyo, Tokyo, Japan. Since
2002, he has been with the Graduate School of
Environment and Information Sciences, Yoko-

hama National University, Yokohama, Japan. From 2008 to 2009, he was
a Visiting Researcher with the Department of Computer Science, Swiss
Federal Institute of Technology (ETH), Zurich, Switzerland. He is currently
a Professor with Yokohama National University. His research interests
include cryptology, information theory, theoretical computer science, and
computational number theory.

Dr. Shikata received several awards, including theWilkesAward 2006 from
the British Computer Society, and the Young Scientists’ Prize, the Commen-
dation for Science and Technology by the Minister of Education, Culture,
Sports, Science and Technology, Japan, in 2010.

216126 VOLUME 8, 2020

