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ABSTRACT Due to the uncertainty of object motion, object tracking is a more difficult state estimation
problem. The traditional tracking method based on particle filter has come into wide use, but it has high
complexity and poor real-time performance in the process of tracking. As long as there are enough training
data, the method based on deep neural network can fit any mapping well. In this paper, a structured
Long Short-Term Memory Network based on Particle Filter(LSTM-PF) is proposed to learn and model
video sequences with high uncertainty. This network draws on the idea of particle filter, which uses a set
of weighted particles to approximate the latent variable and updates the latent state distribution through
the LSTM gating structure according to Bayesian rules. We conduct a comprehensive experiment on two
benchmark datasets: OTB100 and VOT2016. The experimental results show that our tracker has better
performance than other trackers, which can effectively reduce the calculation redundancy and improve the
tracking accuracy.

INDEX TERMS Object tracking, particle filter, deep neural network, long short-term memory.

I. INTRODUCTION
Visual tracking has a very important research value in intel-
ligent monitoring [1], behavior recognition [2], [3], man-
machine interaction [4], etc. Its main task is to obtain the
position and motion trajectory of the interested object in
video or image sequence. Recent advances in object detection
approaches [5], [6] have promoted the development of some
tracking-by-detection methods [7]. Although object track-
ing has accomplished great success in the area of computer
vision, there are still many interference factors, such as scale
variance, partial occlusion, fast motion and background noise,
etc. These make robust tracking a challenging problem.

At present, there are twomain types of tracking algorithms:
generative model and discriminant model. The generative
model regards tracking as an optimization task to find the
region with the highest matching degree for the object, while
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the discriminant model regards tracking as a classification
task and tries to distinguish the object and background in
the object area [8]. The traditional tracking algorithm based
on particle filter is one of the representatives of the gen-
erative model. It has the advantages of simplicity and easy
implementation, and can be effectively applied to the state
of uncertain systems. It shows good performance in non-
linear and non-Gaussian estimation problems [9]. However,
the classic particle filter usually uses the global dynamic
model, which cannot distinguish the object from the back-
ground well. When the object is partially occluded or similar
to the background, the particle filter algorithm cannot track
the object accurately, and such phenomena as object drift and
loss will occur [10].

In order to solve these problems, more and more discrim-
inative methods based on Deep Neural Networks (DNN)
have been proposed. Different from most traditional model-
based methods, DNN-based methods are optimized to learn
DNN from available training data [11]. Usually, the method
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FIGURE 1. Overview of the tracking framework.

based on DNN is used as classifier to solve the problem
of object tracking. For example, the Convolutional Neural
Network (CNN) is used as a binary classifier when initial-
izing the object trajectories, and distinguishs the real object
trajectory from the false object track according to some hand-
made features [12]. When CNN is used as a general feature
extractor and trained on a general dataset, it has better per-
formance than the hand-made features and used to model the
appearance of the object [13].

However, CNN has no time correlation, and the tracking
based on the CNN method only uses appearance features
to build a redundant appearance model to predict the object
trajectory of the next frame, which is not enough to track
any moving object [14]. Some recent work has studied the
correlation characteristics between video sequences in object
tracking. Gan et al. [15] have tried to train a Recurrent Neural
Network (RNN) [16] for object tracking. Ning et al. [17]
combines You Only Look Once(YOLO) detection [18] with
LSTM network [19] to process video data, and proposes a
Recurrent-YOLO(ROLO) algorithm to track objects. RNN
and LSTM are very successful in object tracking, because
they can accurately predict the position of the object in the
current frame by using the relationship between context in
the video sequence. Although they have all proposed good
methods to improve the accuracy of object tracking, they have
not fully exploited the potential of RNN to deal with object
motion uncertainty and provide better estimation accuracy.
We know that neural network has a powerful expression
ability, which can make it approximate to any desired accu-
racy with a sufficiently complex network. From the point of
view of posterior state probability, the conditional density
of real state of a given measurement value is meaningful
in object tracking, which can be approximated by DNN.

In addition, a properly selected network should be able to
handle the complexity caused by motion uncertainty and
noise measurements. Specifically, the ability of LSTM based
structure is better than other methods in extracting sequence
information. LSTM needs "memory", which summarizes and
tracks information in the input sequence. Memory states are
usually not observable, so the need for a latent variable,
i.e., a posterior state distribution that captures the sufficient
statistic of the input for the input to be predicted. However,
the function of LSTM to update latent variables is determin-
istic, so LSTM can not model uncertainty in potential state.
In order to solve this problem, the belief is represented as a
set of sampling states and approximate Bayesian inference is
carried out, which can effectively model the uncertainty in
video sequence. Therefore, we propose a new visual track-
ing framework to improve the robustness and efficiency of
tracking, called Deep Particle Filter Tracker (DPFT). We take
advantage of the ability of particle filtering to approximate the
posterior state distribution to a set of weighted particles, and
use the powerful approximation capabilities of recurrent neu-
ral networks. The approximate framework is roughly shown
in Figure 1. First, we use YOLO to get preliminary position
inference. Then in the tracking stage, we use the LSTM-PF
to obtain the final bounding box information of the object.
This network explicitly models the uncertainty of its internal
structure, which can better handle the measurement of motion
uncertainty and noise, and improve the tracking robustness.
The main contributions of this paper are as follows:

(1) The network maintains a latent state distribution, rep-
resented by a set of weighted particles, which captures all
possible states of the current object movement.

(2) Different from the deterministic nonlinear update of
the fully connected layer in LSTM, LSTM-PF uses a random
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particle filter algorithm update strategy, which can better deal
with the uncertainty of object motion during tracking.

(3) The combination of offline pre-training and online
tracking fine-tuning solves the problem of lack of training
samples effectively.

The rest of this paper is organized as follows. In Section II,
some previous works related to this study are introduced.
In Section III, we introduce the relevant background of the
paper. In Section IV, we describe the proposed object tracking
framework in detail. The details and results of the experiment
are analyzed in Section V. Finally, we conclude our study
in Section VI.

II. RELATED WORK
In this section, we introduce two aspects of work related
closely to our research: (i) tracking by detection; (ii) tracking
by RNNs.

A. TRACKING BY DETECTION
Object tracking should first determine the position of the
object to be tracked in the initial frame. Most tracking meth-
ods aremanuallymarked, but combinedwith the current rapid
development of object detection, automatic selection will be
more convenient [20]. The tracking-by-detection methods
take object tracking as a detection problem in the image of
interest, and use online learning classifier to distinguish the
object and background. Wang et al. believe that an excel-
lent detection algorithm helps improve the accuracy of the
tracking algorithm [21]. There aremany detection algorithms,
one type of algorithm is focused on improving accuracy,
and the other type is focused on speed. Due to the real-time
requirements of object tracking, YOLO v1 algorithm [18] is
a good detection method. They use frame object detection as
a regression problem of spatially separated bounding boxes
and related class probabilities. The rapid YOLO processing
speed can reach 155 FPS. The paper also uses YOLO as the
object detection algorithm.

Tracking-Learning-Detection(TLD) is the first tracking
method that combines both online learning and detection
algorithms together. In TLD, the tracking algorithm updates
the object model and learning parameters through an online
mechanism to solve the problem of object deformation during
the tracking process [22]. In fact, under the TLD framework,
tracking and detection algorithms always cooperate with each
other. Many tracking algorithms based on deep learning fol-
low this method. Chen et al. [23] propose a new framework
SiamBAN, which add quality branches and state regression
branches to the twin network framework to avoid the super
parameters and prior knowledge of the candidate frames.
Danelljan et al. [24] propose a Deep-SRDCF algorithm,
which mainly uses the feature extraction capability of CNN,
but the calculation of Deep-SRDCF algorithm is complicated
and the cost is high. Nam and Han [25] propose an Multi-
Domain Network(MDNet) algorithm that uses CNN feature
sharing layers, which iteratively trains the CNN model for
each domain to obtain the common object representation in

the sharing layer. Wang et al. [26] propose the Structured
Output Deep Learning Tracker(SO-DLT) algorithm, which
train a CNN-based detector offline, and then use Stochas-
tic Gradient Descent(SGD) to learn the detection algorithm
during the tracking phase. Sun et al. [27] propose the Deep
Affinity Network(DAN), which is an end-to-end network that
combines appearance features and data association algorithm.
Ullah et al. [28] propose a new tracking-by-detection method
based on Bayesian filtering, which uses HoG descriptor to
model the appearance of the object. These tracking algo-
rithms use the powerful feature representation capabilities of
CNN networks to improve the stability of tracking, but do
not consider the historical position information of the object
in consecutive frames.

B. TRACKING BY RNNs
As we all know, RNNs perform very well in processing
sequence data, because they can store memories of previ-
ous states and establish temporal connections between them.
Therefore, since the video frames are sequence data, it is very
appropriate to use a recurrent neural network for visual track-
ing. Several works have studied this direction. Cui et al. [29]
use the multi-directionality of recurrent neural networks to
model and mine reliable object parts that are useful for the
whole tracking. Fan and Ling [30] propose Structure-Aware
Network(SANet), which uses multiple neural networks to
model object structures at different levels. Kahou et al. [31]
use a distinguishable attention mechanism to train the RNN
to locate the object. Similarly, Gan et al. [15] train an RNN
model to obtain the absolute position of the object in each
frame. Ning et al. [17] propose a ROLOmethod, which com-
bines a convolutional neural network and a recurrent neural
network to predict the position of an object. Zhong et al. [32]
propose a robust hierarchical tracker by combining recurrent
neural networkwith correlation filtering.With the application
of deep networks, RNN’s ability to learn more complex tasks
will be further improved.

III. BACKGROUND
In this section, we introduce relevant background of the study:
(i) particle filter algorithm; (ii) long short-term memory
networks.

A. PARTICLE FILTER ALGORITHM
The tracking process is considered to be a probability prob-
lem, which matches the object by estimating the posterior
probability distribution. In the particle filter method, a set
of samples (particles) are used to approximate the posterior
probability distribution of the system, b(ht ). and then the
approximate representation is used to estimate the state of the
nonlinear system [10].

b(ht ) ≈
{
hit ,w

i
t

}K
i=1
, (1)

where
∑

K w
k
t = 1, K is the number of particles, ht is the

particle state, which is latent state sampled from the same
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distribution, wt is the weight of the particles, and t represents
time. The particle set can be approximated by any distribu-
tion, such as continuous, non-linear, non-Gaussian distribu-
tion, etc. The state estimate can be calculated by weighted
average, and the particles are updated regularly in a Bayesian
manner. The algorithm process is detailed in Algorithm 1.

Algorithm 1 Particle Filter
Input: Previous particle set: b(ht−1); Last action: ut ; Current

observation: ot .
Output: Current particle set: b(ht ); State estimate: h̄.
1: for i = 1 TO K do
2: sample hit ∼ ftr (ht |ut , hit−1)
3: wit = ηfobs(ot |h

i
t )w

i
t−1

4: end for
5: for i = 1 TO K do
6: draw j with probability ∝ wit−1
7: h′it = hjt
8: reset particle as w′it = 1/K
9: end for

10: return to step1
11: state estimate: h̄ =

∑K
i=1 w

i
th
i
t

B. LONG SHORT-TERM MEMORY NETWORKS
RNNs can solve sequence prediction problems, approximate
beliefs as latent state vectors, learn directly from the data,
and update beliefs with deterministic nonlinear functions.
Object tracking extends it to multidimensional image pro-
cessing tasks. However, when the image sequence is too long,
the gradient of the original RNN network disappears due to
back propagation errors, which may cause the original RNN
to be unable to access the remote context. At the same time,
the number of associated frames is variable, which may limit
the performance of RNN in complex scenarios. In contrast,
Long Short-Term Memory Network (LSTM) overcomes this
problem and is able to learn context-independent and context-
sensitive sequence information. The main idea of LSTM is
to introduce an adaptive gate mechanism to determine what
information to discard and what information to store. The
LSTM framework is shown in Figure 2.

FIGURE 2. LSTM structure diagram.

A standard LSTM block consists of four parts: input
gate it , forgotten gate ft , output gate ot and memory unit ct .

The memory state is updated by the deterministic function of
each gate unit, and the relevant equation is derived as follows:

ft = σ (Wf · [ht−1, xt ]+ bf ), (2)

it = σ (Wi · [ht−1, xt ]+ bi), (3)

c̃t = tanh(Wc · [ht−1, xt ]+ bc), (4)

ct = ft ∗ ct−1 + it ∗ c̃t , (5)

ot = σ (Wo · [ht−1, xt ]+ bo), (6)

ht = ot ∗ tanh(ct ), (7)

IV. DEEP PARTICLE FILTER TRACKER (DPFT)
The overview of our method is introduced in Section IV-A.
Then, the detection module and tracking module are pre-
sented in detail in Sections IV-B and IV-C. Finally, the loss
function of training the tracking network is described
in Section IV-D.

A. OVERVIEW
Inspired by particle filter to approximate the posterior state
distribution to a set of weighted particles, we propose a
new network named LSTM-PF, which effectively improves
its ability to process spatio-temporal information and infer
regional position, and can solve the disappearance of short-
term object problems, can better deal with the complexity
of the real world. The architecture of our tracker DPFT is
shown in Figure 3. Specifically, we first use a traditional
CNN for regular feature learning training. CNN takes video
frames as its input to generate a feature map of the whole
image. Secondly, we use YOLO as the detection module, and
use the visual features obtained by CNN as its input to get
a preliminary location inference. Finally, the feature vector
spliced from the feature vector and the frame position is used
as the input of the LSTM-PF, and the latent state is updated
by the Bayesian update strategy to obtain the final position of
the object to be tracked. The resampling step is micronized,
so that the gradient of the network can be back-propagated
during training. The tracker is a combination of offline pre-
training and online fine-tuning, which can solve the problem
of less training data.

B. DETECTION MODULE
The TLD framework proves that the performance of a tracker
depends in part on its excellent appearance characteris-
tics [20]. In each frame of the video sequence, we choose
YOLO to generate the detection results of the object. The
first is to use traditional CNN to collect rich and robust
image features. The convolution weights are pre-trained and
learned through 1000 classes of ImageNet data. So that the
network will have a good generalization ability. During train-
ing, the output of the first fully connected layer is a feature
vector with a size of 4096, which is a dense representation
of the visual features of the middle layer. In theory, feature
vectors can be input into any classification tool (such as SVM
or CNN), and good classification results can be obtained after
training. After pre-training the CNN, on the convolutional
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FIGURE 3. Framework of the proposed method.

layer, YOLO uses a fully connected layer to return the feature
vector to the region border prediction, and these predictions
are encoded into a tensor of S × S × B × 5 + C dimension.
It indicates that the image is segmented into S × S grids,
and each segmentation line has predicted B bounding boxes,
which are represented by its five position parameters, x, y,
w, h, and confidence c. A single thermal feature vector of
length C is also predicted, representing the class label of
each bounding box. In our framework, we follow the YOLO
architecture and set S = 7,B = 2,C = 20. Each bounding
box is initially composed of 6 predictions: x, y, w, h, class
labels and confidence. For single object visual tracking tasks,
class labels and confidence have little effect on it. Therefore,
we eliminated the visual tracking category and confidence,
and only locations are included in the evaluation.

Bt = (0, x, y,w, h, 0), (8)

where (x, y) represents the coordinates of the center of the
bounding box relative to the width and height of the image,
(w, h) represents the width and height of the bounding box
relative to the width and height of the image. For better
regression, we should normalize all the output, which is
(x, y,w, h) ∈ [0, 1].

In a video frame, there may be multiple detection frames of
the object generated by YOLO. When we want to assign the
detection frame of the object tracked to the tracking network,
an allocation cost matrix is used here. The matrix assignment
is based on the IOU distance between the mean of the cur-
rent detection and the short-term history verified detection
results. The detection of the first frame is determined by the
distance between the current detection and the ground truth
IOU. When the IOU is less than a certain threshold value,
the allocation is rejected, that is, it is not initialized. In the
experiment, we set the threshold to 0.7. Finally, the correctly
allocated object detection bounding box is connected with the
appearance features generated by CNN, and these spliced fea-
ture vectors are input into LSTM-PF, and the object tracking
problem is regarded as the regression problem of the object
position coordinates.

C. TRACKING MODULE
The network overview of our tracking module is introduced
in Section IV-C1. Then, the network architecture is shown

in detail in Sections IV-C2. Finally, the online tracking algo-
rithm is described in Section IV-C3.

1) NETWORK OVERVIEW
We regard the object tracking as a problem which predicts
the position of the object to be tracked in the sequences of
video. The ordinary sequence prediction problem is to predict
the corresponding output sequence y1, y2, . . . , yt given input
sequence x1, x2, . . . , xt . The memory state of the standard
LSTM is composed of the cell state ct and the hidden state ht .
The latent state ht is updated by deterministic nonlinear func-
tion learned from the data, which captures the historical infor-
mation of input sequence. The predicted output yt is another
nonlinear function of the latent state ht , which is also learned
from the data. The memory state of our proposed network
is composed of a set of weighted particles {hit , c

i
t ,w

i
t }
K
t=1,

and is updated by the particle filter algorithm.In addition,
the parameters of each particle are the same in LSTM-PF,
so the number of particles does not influence the number of
LSTM-PF network parameters. LSTM-PF uses the learning
function to update the potential states, and the final prediction
output yt is obtained by using the average particle state:
yt = fout (h̄t ) where ht =

∑K
i=1 w

i
th
i
t , and fout is the prediction

function of object tracking, which ht will be mapped to the
position of the object to be tracked in a video frame. In order
to use the gradient method for effective training, we use a
completely differentiable particle filter algorithm. The com-
parison between LSTM and LSTM-PF is shown in Figure 4.
LSTM approximates the posterior probability distribution as
a potential vector and uses a deterministic nonlinear function
to update it. LSTM-PF approximates belief as a group of
weighted particles and uses a random particle filter algorithm
to update it.

2) NETWORK ARCHITECTURE
In order to improve the accuracy of object tracking, the net-
work of our tracking module adopts the improved LSTM-PF,
and its network structure is shown in Figure 5. There are
two steps in the traditional particle filter to update the
posterior state distribution: the transition update b̃(ht ) =
ftr (b(ht−1), ut ) for control ut and the observation update
b(ht ) = fobs(b(ht ), ot ) for observation ot However, in the
problem of video sequence prediction, ut and ot are not
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FIGURE 4. Comparison of LSTM and LSTM-PF.

separated from prior knowledge. LSTM-PF uses the input
xt in both ftr and fobs function, and extracts potential control
vector ut and measured value ot from input vector xt by task
oriented discriminant training. This method is more simple
and makes full use of the data-driven technology of neural
networks.

Random memory update: To help LSTM-PF effectively
track potential particle beliefs in the long-term history of the
data, we make two changes to the memory update equation.
One is to add randomness:

c̃it = Wc · [hit−1, xt ]+ bc + ξ
i
t , ξ

i
t ∼ N (0,

i∑
t

), (9)

i∑
t

= W6 · [hit−1, xt ]+ b6, (10)

where xt is the joint vector of the bounding box coordinate
position and image features obtained by the detectionmodule,
ξ it is a learning noise. From the perspective of RNN, ξ it
capture potential stochastic transformation dynamics. From
the point of view of particle filtering, ξ it increases particle
diversity and alleviates particle degeneracy after resampling.
Another change is inspired by LiGRU [33], using ReLU
activation and batch normalization [34] instead of LSTM
hyperbolic tangent activation,

cit = f it ∗ c
i
t−1 + i

i
t ∗ ReLU (BN (c̃it )), (11)

where i = 1, 2, · · · ,K . The back propagation algorithm is
usually used to calculate the gradient, but back propagation
can only be achieved after the RNN is deployed in time.
Therefore, the back propagation algorithm used to train the
RNN is often called the Back Propagation Through Time
(BPTT) [35]. Gradient truncation has a great influence on the
training of LSTM-PF, because the network explicitly retains
the latent state, and may require a long input sequence to
approximate the beliefs well. As shown in [33], ReLU activa-
tion combined with batch normalization has good numerical
characteristics and can be back-propagated through multiple

time steps. Therefore, when the sequence length is relatively
large, the truncated BPTT algorithm can be used. The update
of hit can be calculated according to Equation 7.
Particle weight update: We use Bayesian method to

recursively update the weight of particle hit . In the particle
filtering algorithm, the particle weights are updated by the
likelihood probability p(ot |hit ) as a generated distribution.
In LSTM-PF, we directly approximate it to a learning func-
tion fobs(ot |hit ) to update particle weights.

wit = ηfobs(ot |h
i
t )w

i
t−1, (12)

where η−1 =
∑

i=1:K f
i
t w

i
t−1 is a normalization factor. First

use the joint vector of the boundary frame coordinate position
of the previous video frame and the feature representation
as input to obtain the predicted position of the current frame
object, and then use the detection frame position of the current
frame as the measurement result to correct the predicted
object position.

Soft resampling: After updating the particles and their
weights, we perform micro-sampling to get a new set of
particles. In the particle filtering algorithm, re-sampling is
needed to avoid particle degeneracy, because after iteration,
the weight of most particles is close to zero. However, resam-
pling is not differentiable, which prevents the use of back
propagation to train LSTM-PF. In order to make our latent
belief update differentiable, we use soft resampling [36].
Instead of resampling particles based on p, we resample
from q.

q(i) = βwit + (1− β)(1/K ), (13)

where β ∈ (0, 1]. The new weight calculation is based on the
importance sampling equation, which leads to an unbiased
estimated belief,

wit =
p(i = aj)
q(i = aj)

=
wa

j

t

βwa
j
t + (1− β)(1/K )

, (14)

Soft resampling provides a non-zero gradient β > 0. In our
experiments, we use β = 0.5.

3) ONLINE TRACKING ALGORITHM
Our DPFT framework adopts a simple online tracking strat-
egy, which encodes the historical data extracted from the
video frame into the memory unit, and encodes the hid-
den state into the estimated state when passing through the
network. The online tracking algorithm is detailed in the
Algorithm 2. Because the training data of object tracking is
very limited. Firstly, we use the auxiliary ImageNet dataset
for pre-training to obtain the general representation of the
object features. In the tracking process, we use the limited
sample information of the current tracking object to fine-
tune the LSTM-PF network to improve the performance
of the tracking algorithm. This idea of migration learning
greatly reduces the demand for training samples of tracking
objects [37].
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FIGURE 5. LSTM-PF network structure diagram.Notation (1) RPT:reparameterization trick (2) BN:batch
normalization.

Algorithm 2 Online Tracking Algorithm With LSTM-PF
Input: Joint vector of feature representation and bound-

ing box position: xt ; Status information of the previous
frame: ht−1.

Output: Predict the bounding box of the object.
1: predict the status information of the current frame
2: update the weight of the LSTM-PF memory unit accord-

ing to the detection information of the current frame
3: use soft resampling to get a new set of particles
4: continue tracking and return to step 1
5: input the final current frame state information ht into the

softmax layer for regression
6: output the corresponding bounding box coordinates

D. LOSS FUNCTION
The tracking module uses a LSTM-PF network. There are
two types of incoming data streams, one is the joint vector Xt
of the feature representation of the convolutional layer and
the detection information of the fully connected layer, and
the other is the state output of previous time step ht−1. The
final output is the predicted object location Bt which is a real
value [17]. We use the Mean Square Error (MSE) to train the
network:

Loss =
1
n

n∑
i=1

||Btrue − Bpred ||22, (15)

where n is the number of training samples, Bpred is the predic-
tion of the model, Btrue is the object ground truth value, || · ||
is the square of the Euclidean norm, and we use the Adam
method for random optimization. For all models, we perform
a standard grid search on training parameters: learning rate,
batch size, and gradient clipping value.

V. EXPERIMENTAL RESULTS
In this section, our tracker is compared with other state-
of-the-art trackers. Experiments are conducted on OTB-100
and VOT-2016 two datasets, and the relevant introduc-
tion of the datasets are shown in Section V-A. Experi-
mental metric and implementation details are presented

in Sections V-B and V-C. The experimental results on
OTB benchmarks and VOT challenge are described in
Sections V-D and V-E. Ablation study and runtime about the
proposed tracker are shown in Sections V-F and V-G.

A. DATASETS
In order to verify the versatility and effectiveness of the
algorithm, we select OTB-100 [38] and VOT-2016 [39]
two benchmark datasets for extensive experiments, these
two datasets cover many challenging scenarios, Such as
object deformation, local occlusion, scale change and rapid
movement. The OTB-100 dataset contains video sequences
of 100 different objects, such as animals, cars, toys, and peo-
ple, etc., and the attributes of object deformation, local occlu-
sion, and fast motion are manually marked in the sequence.
We select 30 video sequences with special visual challenges
from the OTB-100 benchmark to evaluate the performance of
the proposed framework. VOT-2016 is composed of 60 chal-
lenging short video sequences of different scenes. Some
examples of these two datasets are shown in Figure 6.

B. EXPERIMENTAL METRIC
There are usually two evaluation indicators for the OTB
dataset: accuracy map and success rate. The accuracy map
uses the Central Location Error (CLE) to measure the posi-
tioning accuracy. CLE is the measurement of the discrete
pixel error between the predicted value and the ground truth
center. The accuracy graph shows that the distance between
the center point of the object position estimated by the tracker
and the manually labeled object center point is less than the
percentage of the video framewith the given threshold.We set
the threshold to 20 pixel. The success rate is evaluated using
the bounding box overlap rate. The calculation equation is as
follows:

OR =
area(Bpre ∩ Btrue)
area(Bpre ∪ Btrue)

, OR ∈ [0, 1], (16)

where OR is the coincidence rate between the object tracking
result Bpre and the ground truth Btrue. When the coincidence
rate of a frame is greater than the set threshold, the frame is
considered to be successful. The total number of successful
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FIGURE 6. Some examples of two datasets.

frames as a percentage of all frames is the success rate.We set
this threshold to 0.5.

We use the One Pass Evaluation (OPE) to express the
average success rate and accuracy. However, the tracker may
be very sensitive to initialization, with different initializa-
tions at different start frames. Therefore, we also use Tem-
poral Robustness Evaluation (TRE) and Spatial Robustness
Evaluation (SRE) to represent the success rate of the object
state.

There are usually three evaluation indicators for VOT
dataset: accuracy, robustness, and Expected Averaged

Overlap (EAO). Accuracy refers to the average overlap rate
of the tracker under a single test sequence. Robustness is used
to evaluate the stability of the tracker’s tracking object, that
is, the number of times the tracker needs to be reinitialized
when the tracker loses (or drifts) the visible object. EAO is
the expected value of the non-reset overlap of each tracker
on a short-time image sequence. Given a video sequence of
length Ns, the EAO calculation equation is:

φ̂Ns =
1
N

Ns∑
i=1

φNi , (17)
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FIGURE 7. Visual results of OTB dataset samples, Dog, Woman, Car.

where φNi expressed as the overlap rate of the tracker at
frame i of this video.

C. IMPLEMENTATION DETAILS
The YOLO used by our tracker is trained on ImageNet data
of 1000 classes, and fine-tuning on the VOC dataset can
detect 20 types of objects. We select a subset of 30 videos
from the benchmark, and the objects belong to these cate-
gories. First, we follow the YOLO architecture, with a total
of 32 layers. In the second stage, we combine detection with
LSTM-PF network trained with benchmark OTB and VOT
for fine tuning. The training is carried out as the epoch grad-
ually increases, so when the iteration shows the best tracking
performance, we need to terminate the iteration.

From the OTB-100 benchmark, we select a set
of 30 sequence videos with special visual challenges, such
as object deformation, lighting changes, scale changes, local
occlusion, and fast motion. We use 20 sequences to train the
LSTM-PF model and tested with another 10 sequences. And
after our experiments, it is found that the number of sequence
frames (step size) of the input network has a great impact on
the overall performance and running time. We set the step
size to 6 in the experiment, and the algorithm performance is
the best. Our training rate is set to 0.0001, the dropout is 0.5,
and the number of particles is 30. Our method is implemented
in Python using TensorFlow, and test it on a computer with
NVIDIA GeForce GTX 1050 Ti.

D. TRACKING RESULTS ON OTB100
In order to verify the effectiveness and robustness of our
proposed method for tracking objects, we use 3 benchmark

trackers and 4 advanced trackers to compare with our tracking
methods, which are OAB [40] and TLD [22], STRUCK [41],
SiamFC [42], ROLO [17], YOLO+SORT [43] and KCF [44]
are on the OTB100. The visual tracking results are shown
in Figure 7, where the object in Dog and Car video sequences
has obviously changed in scale. Compared with other track-
ing algorithms, our tracker can accurately track the object,
and the size of the tracking frame changes adaptively with the
change of object scale. However, TLD and STRUCK trackers
cannot update the size of the object annotation frame in time,
which leads to poor object tracking effect. It can be seen that
the TLD has a tracking deviation at frame 252 of the Car
video sequence. In the Woman video sequence, the object is
partially occluded. From the video test results, it can be seen
that the TLD and STRUCK trackers can only detect the part
that is not blocked at frame 117, and even the phenomenon
of tracking loss occurs in TLD at frame 163. The results
show that our tracker performs well on the OTB-100 dataset
and has good robustness, because our algorithm extracts deep
abstract features from the spatiotemporal background, which
can effectively solve the occlusion problem.

We show the OPE accuracy graph and success graph in
Figure 8, where ourmethod is expressed asDPFT. The tracker
is ranked according to its area under the curve (AUC) score.
From the test results, AUC of our proposed tracker is slightly
higher, the accuracy score is 0.821, compared with the second
SiamFC score of 0.725, increased by 13.24%, the success
rate score is 0.623, compared with the second place increased
by 9.3%. The SRE and TRE results are shown in Figure 9
and are used for robustness evaluation. The results show that
we approximate the posterior state distribution of the long
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FIGURE 8. Accuracy graph and success graph of OPE (One Pass Evaluation) on the OTB benchmark.

FIGURE 9. TRE (Temporal Robustness Evaluation) and SRE (Spatial Robustness Evaluation) success graphs on the OTB benchmark.

short-term memory network as a set of particles, and use
random particle filtering algorithm to update the memory
cells, fully exploit the potential of the cyclic neural network
to deal with the uncertainty of moving objects, and improve
the estimation accuracy.

E. TRACKING RESULTS ON VOT2016
We also test the versatility of our proposed method on the
VOT2016 dataset. According to the VOT challenge proto-
col [36], when tracking failure is detected, the tracker will
re-initialize. We compare our method with 9 state-of-the-art
trackers, including SiamRPN [45], ASRCF [46], MAM [47],
SiamFC [42], KCF [44], ROLO [17], TLD [22], RFL [48],

DSST [49], the visual tracking results are shown in Figure 10.
In the Book video sequence, the object mainly produces
scale changes. The fish video sequence object is mainly the
interference of similar background. In the Dinosaur video
sequence, the object clearly appears motion blur. Experi-
mental results show that when YOLO detection error occurs
due to motion blur, the DPFT tracking results remain stable.
In addition, LSTM considers historical position information,
which is different from traditional time correction methods
(such as Kalman filtering, whose prediction is only based on
the previous position).When dealingwith occlusion, the loca-
tion of occluded object can be determined better by using
spatio-temporal information, and the drift phenomenon can
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FIGURE 10. The visualization results of the VOT dataset samples, namely Book, Fish, Dinosaur.

be reduced. In the case of scale changes, motion blur, similar
background and occlusion, the algorithm can obtain more
robust and accurate tracking results.

On this basis, the three performance indicators of accuracy,
robustness and expected average overlap (EAO) are used to
evaluate the algorithm. Different trackers are sorted accord-
ing to EAO criterion, we invite readers to [36] for more
detailed information. We use the ‘‘VOT-toolkit’’ to conduct a
comprehensive analysis of these results. Table 1 summarizes
our analysis results. The second and third rows contain the
accuracy and robustness of the entire dataset, and the last
column is the EAO of each tracker. The best results are shown
in red,the second best and the third best results are shown
in green and blue respectively. Compared with other state-
of-the-art trackers, accuracy of our proposed tracker is the
highest, the accuracy score is 0.568, compared with the sec-
ond ASRCF score of 0.563, increased by 0.9%. Although our
robustness and EAO performance are not as good as ASRCF,
our tracker has reached the best accuracy level. The closer the
tracker to the upper right corner, the better the performance.
This is also verified in Figure 11.

F. ABLATION STUDY
In order to verify the effectiveness of the proposed LSTM-PF
in object tracking, we conduct a thorough ablation study on
the OTB-100 dataset. We use ROLO as a baseline to achieve
and evaluate the contributions of the following components.

Number of particles: The network employs a set of
weighted particles to approximate the potential state. The
number of particles directly determines the size of network
memory. We set the number of particles to P1, P5, P10,
P20, P30, in order to search for the best latent state size and

FIGURE 11. Accuracy-Robustness plot on VOT2016.

get the best result. The result is shown in Figure 12a. The
result shows that performance of our LSTM variant is better
than that of the standard LSTM, and the AUC of ROLO is
the lowest,which shows that LSTM-PF approximates beliefs
as a set of weighted particles, and trains approximate rep-
resentations from data to optimize regression performance.
Secondly, we can also find that as the number of particles
increases, the accuracy score increases gradually. When the
number of particles is 30, the tracker has the highest accuracy
with a score of 0.623.

Soft resampling: In order to illustrate the advantages of
our method that the resampling steps can be miniaturized,
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TABLE 1. Accuracy (A), robustness (R) and expected average overlap (EAO) scores of different trackers on VOT-2016.

FIGURE 12. Ablation study on OTB-100.

TABLE 2. Running time.Runtime is the processing time of forward propagation of an image.The unit is fps.

we designed a variation of LSTM-PF (NoResample) for com-
parative experiments. The results are shown in Figure 12b.
It can be seen from the test results that soft resampling
improves the performance of the tracker.

ReLU activation and batch normalization: To test the
results of using the combination of ReLU activation and batch
normalization instead of hyperbolic tangent, we implemented
a comparative experiment with the LSTM-PF (NoBNReLU)
proposed by Ma et al. [50]. The results are shown in
Figure 12c. The results show that batch normalized ReLU
activation is helpful for training LSTM-PF.

G. RUNTIME
A good tracker not only needs to achieve good accuracy, but
also needs good tracking performance and real-time tracking
speed. We compared the running time of 6 trackers, including
Struck [41], ROLO [17], KCF [44], SiamFC [32], TCNN [51]
and MDNet [25] are compared, and the results are shown
in Table 2. As can be seen from Table 2, although the tracker
proposed by us is not the fastest tracker, our tracker can not
only ensure the tracking accuracy, but also track with the real-
time speed. The frame rate of our improved method is 49 fps,
which is 40% faster than ROLO.

VI. CONCLUSION AND FUTURE WORK
The purpose of this study is to propose a visual tracking
framework for long short-term memory networks based on
particle filtering, called DPFT. In essence, it is based on
the tracking-by-detection methonds. The main idea is to
obtain the position of the initial frame through the detection
algorithm, and then use the improved LSTM for a post-
processing, and use the particle filter to update the posterior
state probability of the object position to make the tracking
more robust. We conduct detailed experimental evaluations
on two challenging large datasets. The accuracy of OTB100 is
0.821, compared with the state of the art tracker increased by
13.24%, the accuracy score on the VOT2016 dataset is 0.568,
compared with the state of the art tracker increased by 0.9%.
Both qualitative and quantitative experimental results prove
that our proposed tracker can perform well in most cases.

In future work, we will propose improvements to these two
aspects of research. One is to use a more accurate detection
method instead of YOLO, and the detection tracking method
is largely affected by the detection accuracy. When tracking,
the accuracy of selecting a bounding box from YOLO is not
high, which may lead to the wrong selection of bounding box
among multiple detection frames. The second is to explore
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data correlation technology and expand DPFT to the field of
multi-object tracking.
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