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ABSTRACT Mega-constellations consisting of hundreds to thousands of low-earth-orbit (LEO) satellites are
an attractive solution for providing global ubiquitous network access. Due to good coverage properties for
populated areas, inclined orbits are gaining popularity among commercial constellations. A scalable routing
algorithm with survivability plays a key role in such systems. In this paper, we propose a distributed surviv-
able routing algorithm for mega-constellations with inclined orbits. First, the special topology characteristic
of inclined constellations is identified and formalized. Based on the topology characterization, a basic X-Y
routing algorithm is presented to determine multiple primary and secondary paths towards each destination
utilizing the regularity of the network topology with minimal computation overhead. Then, a failure recovery
mechanism which consists of a restricted flooding mechanism and a pre-detour mechanism is proposed
to reduce end-to-end delay and signaling overhead in case of link failures. Besides, a partial-record loop
avoidance mechanism is proposed to deal with routing loops with minimal overhead. Finally, a vector-based
next hop selection mechanism is proposed to facilitate the selection of next hop while incorporating various
criteria. The performance of the proposed routing algorithm is evaluated through simulation on the Starlink
constellation. Simulation results show that our proposal achieves scalability by reducing signaling overhead

and provides better quality of service in terms of end-to-end delay under link failures.

INDEX TERMS Inclined constellation, mega-constellation, routing, survivability.

I. INTRODUCTION

With the reduction of cost for manufacturing and launch-
ing satellites, low-earth-orbit (LEO) satellite constellations
are regaining popularity from industry and the era of so
called Internet of satellites is coming. Different from their
earlier version in the late 1990s, LEO constellations today
feature a larger number of satellites, hence the name ‘““mega-
constellations” . Larger constellations allow higher frequency
reuse efficiency, which brings larger system capacity. Several
mega-constellations are under development, with Starlink
and OneWeb being the most notable [1].

There are two system architectures for a satellite net-
work [2]. The first is the “‘bent-pipe” architecture in which
the satellites only act as transponders between ground sta-
tions. The second is the space-based architecture where
satellites are equipped with inter-satellite links (ISLs).
The space-based systems have several advantages such as
lower end-to-end delay, less dependence on the ground
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infrastructure and improved system capacity [1]. However,
one of the difficulties of such a system is how to develop an
efficient and robust routing algorithm for the space segment.

Although many routing algorithms have been proposed
for LEO satellite networks, they may face scalability prob-
lem when applied to mega-constellations. With hundreds to
thousands of satellites, the routing algorithm needs to be
efficient. Traditional routing algorithms that compute paths
based on Dijkstra algorithm may incur large computation
overhead. Therefore, a distributed routing algorithm which
utilizes the predictability and regularity of the network topol-
ogy is preferred for a mega-constellation. Besides, the ISLs
may suffer from various kinds of failures in the complex space
environment [3]. The routing algorithm should be able to
alleviate the impact of link or node failures as much as possi-
ble. Traditional flooding-based routing protocol would incur
large signaling overhead, especially in a mega-constellation.
On the contrary, a local detouring mechanism can avoid
large signaling overhead, but would introduce extra delay
to the packets due to the lack of a global view. Therefore,
an efficient routing algorithm with fault-tolerant ability which
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does not degrade quality of service significantly is urged for
recently proposed mega-constellations.

Based on the inclination of the satellite orbits, LEO con-
stellations can be classified into polar constellations and
inclined constellations. Polar constellations have an orbit
inclination of nearly 90 degrees. In a polar constellation,
the ISLs are typically switched off in polar regions due to the
strict requirement of antenna tracking and switched on again
outside the polar regions. Thus, the topology of polar constel-
lations varies with time. Inclined constellations have an orbit
inclination of less than 90 degrees. Through proper selection
of ISLs, the topology can remain permanent in an inclined
constellation [4]. A permanent topology facilitates the space
segment routing. Besides, inclined constellations provide
better coverage at the most-populated mid-latitudes at the
cost of less coverage in polar areas [5]. Previous work on
routing algorithms in LEO networks is mainly focused on
polar constellations whereas inclined constellations receive
less attention. Although routing in inclined constellations
seems simpler because of their permanent topology, inclined
constellations show special topology characteristics, which
need to be taken into consideration when designing a routing
algorithm.

In this paper, we propose a distributed survivable routing
algorithm for mega-constellations with inclined orbits. The
contributions of this paper are summarized as follows:

(1) The spiral shape formed by inter-plane ISLs in inclined
constellations is identified and formalized. Based on this
topology characteristic, a basic X-Y routing algorithm is
proposed for inclined constellations. Each satellite indepen-
dently selects multiple primary paths and secondary paths
towards each destination utilizing the regularity of the net-
work topology with minimal computation overhead.

(2) A failure recovery mechanism is proposed to deal with
link failures which consists of a restricted flooding mecha-
nism and a pre-detour mechanism. In the restricted flooding
mechanism, link state changes are flooded only to limited
areas to reduce signaling overhead. In the pre-detour mecha-
nism, a satellite detours the packets to alternative paths before
actually encountering a link failure to reduce additional end-
to-end delay.

(3) A partial-record loop avoidance mechanism is proposed
to deal with loops in the routing process. In this mechanism,
satellites traversed by a packet are recorded in the packet
header only when necessary. This mechanism reduces the
overhead of recording traversed satellites, especially when
the network is not suffering severe link failures.

(4) A vector-based next hop selection mechanism is pro-
posed to facilitate the selection of next hop while incorporat-
ing various criteria including the selection between primary
and secondary paths, the pre-detouring, and loop avoidance.

(5) The performance of the proposed routing algorithm
is evaluated through simulation based on the Starlink con-
stellation. Simulation results demonstrate the ability of the
proposed routing algorithm to reduce signaling overhead and
reduce end-to-end delay in case of link failures.
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The rest of the paper is organized as follows. Section II
reviews related work on routing algorithms for satellite con-
stellations. In section III, the special topology characteris-
tics of inclined constellations are investigated. In section 1V,
the proposed distributed survivable routing algorithm is pre-
sented in detail. The performance of the proposed routing
algorithm is evaluated in section V and conclusions are drawn
in Section VI.

Il. RELATED WORK

In this section, we present related work on routing algorithms
in LEO satellite networks and focus on distributed routing and
failure recovery mechanisms.

In a distributed routing algorithm, each node in the network
determines next hop towards other nodes independently with-
out the help of a central node. The most common distributed
routing algorithm is the link state algorithm such as OSPF,
which requires global link state to compute shortest paths.
Link state algorithms have been applied to LEO satellite
networks [6]. However, such an algorithm would incur pro-
hibitively large computation and communication overhead
for large-scale networks [7]. Especially, when there is a single
link state change, it is unnecessary to flood the information to
the whole network and reconstruct the routing table of every
node.

Given the regularity and predictability of satellite constel-
lations, more efficient distributed routing algorithms can be
implemented. Several distributed algorithms for LEO satel-
lite networks have been proposed. DRA [8] is the earliest
work on distributed routing in LEO networks. In DRA, each
satellite independently determines the next hop towards the
destination based on the logical positions of the satellites
without using Dijkstra algorithm. In [9], the authors proposed
a longer side priority (LSP) routing strategy. The main idea
is to forward packets to the direction with more remaining
hops to reduce congestion. The authors in [10] proposed a
Semi-Distributed Routing Algorithm (SDRA) to reduce the
computation overhead. The source node determines both the
next hop and the hop after the next. It attaches the hop
after the next in the packet header, so the next hop does
not need to conduct path calculation. This process continues
until the packet reaches the destination. These algorithms are
mainly designed for polar constellations. As we will see in the
next section, inclined constellations show different topology
characteristics, which should be taken into account when
designing a routing algorithm.

The satellite networks are exposed to link or node failures
due to several reasons such as electromagnetic interference
and military strike. Several mechanisms are proposed to cope
with such situations from the perspective of routing algo-
rithm. In DRA, once the optimal next hop is unavailable,
the packets are detoured to the suboptimal next hop. How-
ever, this failure recovery mechanism is localized and may
incur additional end-to-end delay, as shown in section IV.
In[11], arouting protocol for hierarchical LEO/MEO satellite
networks is proposed. The MEO layer is responsible for
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collecting link state and calculating routing tables for the
LEO layer. Once there is a link or node failure in the LEO
layer, the state is flooded to MEO satellites which re-compute
routing tables for the LEO layer. In [12], the authors pro-
posed a deadlock-free fault-tolerant adaptive routing based
on minimal-connected-component (MCC) faulty model for
LEO satellite networks. In [3], a survivable routing protocol
for two-layered LEO/MEOQO satellite networks is proposed.
The protocol deals with three failure cases, i.e., LEO satellite
failure, MEO satellite failure and MEO layer failure. Above
failure recovery mechanisms require link state flooding in
the network, either in the LEO layer or in the MEO layer,
which faces scalability problems and limits their applicability
in mega-constellations.

There are a few papers that are concerned with
mega-constellations. References [13], [14] and [15] are
representative work. References [13] and [14] evaluated
the end-to-end delay performance of mega-constellations
and [15] investigated the topology design problem in mega-
constellations. However, routing algorithm is not the focus of
these papers and they all used the shortest path algorithm to
compute end-to-end paths. As mentioned earlier, such a rout-
ing algorithm would incur large computation and signaling
overhead in mega-constellations.

In summary, an efficient survivable routing algorithm for
large-scale inclined constellations is needed, which is the
focus of this work.

Ill. NETWORK MODEL

In this section, we present the satellite constellation network
model and the topology characterization of inclined constel-
lations, which are the foundation of the routing algorithm
proposed in the next section.

A. SATELLITE CONSTELLATION

A satellite constellation comprises N x M satellites dis-
tributed in circular orbits, where N is the number of orbits
and M is the number of satellites in each orbit. The phase
factor, denoted as F, determines the phase offset between
neighboring satellites in adjacent orbits and takes values from
{0,...,N — 1}. LEO constellations can be classified into
polar (Walker star) constellations and inclined (Walker delta)
constellations according to their orbit inclination. Polar con-
stellations have an orbit inclination of nearly 90 degrees and
inclined constellations have an orbit inclination significantly
less than 90 degrees. In an inclined constellation, the N
orbits are spaced along a complete circle, hence the name
27 -constellation [5].

Satellites can communicate with each other with ISLs,
which can be further divided into intra-plane ISLs and inter-
plane ISLs. Intra-plane ISLs connect satellites in the same
orbit and their length and direction keep constant. Inter-plane
ISLs connect satellites in adjacent orbits and have varying
length and direction with the movement of the satellites.
Due to constraint of link distance, each satellite is typically
equipped with four bidirectional ISLs: two intra-plane ISLs
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and two inter-plane ISLs. As optical ISLs have lots of advan-
tages over RF ISLs [16], there is a trend to adopt optical
ISLs in satellite constellations. However, optical ISLs face
challenging problems of pointing, acquisition and tracking
(PAT). In an inclined constellation, with proper selection of
the inter-plane ISLs, the topology of the constellation can
keep constant, which facilitates the use of optical ISLs. In this
paper, we focus on inclined constellations.

In [17], the authors proposed using zero phase factor in an
inclined constellation to obtain stable inter-plane ISLs, which
produces a bi-directional Manhattan street network (MSN).
In [18], the authors deduced the parameter combinations that
achieve a figure-of-eight ring shape of inter-plane ISLs in
inclined constellations, which also produce a bi-directional
MSN structure. The use of a bi-directional MSN structure
can simplify routing. However, the system parameters depend
on many factors including coverage, collision avoidance
between satellites, among others. Thus, in an actual constel-
lation, the bi-directional MSN structure may not be obtained.
In the next subsection, we present a generalization of the
topology of an inclined constellation.

B. TOPOLOGY CHARACTERIZATION

The topology characteristics of a satellite constellation
depend largely on the pattern of ISLs. Because the intra-
plane ISLs are stable, we focus on inter-plane ISLs. Let (n, m)
be the mth satellite in the nth orbit, n = 0,...,.N — 1;
m = 0,...,M — 1. We call m the satellite number and n
the orbit number of the satellite. The phase offset between
neighboring satellites in adjacent orbits, e.g., between (0, 0)
and (1,0), is ¢1 = 27 F /(MN). The phase offset between
neighboring satellites in the same orbit, i.e., between (n, m)
and (n, mod(m + 1, M)) is ¢» = 2w /M.

Suppose satellite (n, m) is connected to (n + 1,m),
n =0,...,N — 2 via inter-plane ISLs, i.e., the satellites in
adjacent orbits with the same satellite number are connected.
An exception occurs for the (N — 1)th orbit because with the
accumulation of phase offset, (N — 1, m) is not necessarily
connected to (0, m). In the following theorem, we will show
that the satellite number is offset by F after the inter-plane
ISLs traverse N orbits.

Theorem 1: Suppose satellite (n,m) is connected to
(m+1,m), n = 0,...,N — 2 via inter-plane ISLs, then
(N — 1, m) is connected to (0, mod(m + F, M)).

Proof: Suppose (N — 1, m) is connected to (0, s). The
phase offset between (0, s) and (0, m) can be calculated as
¢3 =1 XN =2nF/M = F¢y. Thus, s = mod(m+ F, M),
i.e., the satellite number is offset by F after the inter-plane
ISLs traverse N orbits. ]

Based on the above theorem, the inter-plane ISLs will
form a spiral shape. In Fig. 1, the first phase of Starlink
constellation with 32 x 50 satellites is shown. The yellow line
is part of this spiral formed by 32 contiguous inter-plane ISLs.
If we continue interconnecting satellites by such inter-plane
ISLs, a closed spiral will be formed. In Fig. 2, the abstracted
topology of a smaller constellation with 8 x 6 satellites is
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shown to demonstrate this concept. By simple calculation,
the total number of closed spirals in a constellation equals the
greatest common divisor of M and F. For example, in Fig. 2,
M = 6,N = 8 and F' = 3, so there are 3 closed spirals which
are marked by different colors.

FIGURE 1. The spiral shape in Starlink constellation.
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FIGURE 2. Closed spirals in an 8 x 6 constellation.

So far we have discussed the case where (72, m) is connected
to(n+ 1,m), n = 0,...,N — 2. However, in practice,
the inter-plane ISLs can be selected such that they provide
better connectivity for a certain direction [19]. For example,
the inter-plane ISLs shown in Fig. 1 provide good East-
West connectivity. One can connect satellites in adjacent
orbits whose satellite numbers are offset by —2 (e.g., connect
(0, 0) and (1, 48)) to achieve better North-South connectivity,
as shown in Fig. 3. The spiral shape and the offset of satellite
number under such situation can still be formalized by renum-
bering the satellites, as shown by the following theorem.

Theorem 2: Suppose (n, m) is connected to (n+ 1, mod(m-+
8+M,M)), n=0,..., N—2viainter-plane ISLs. Renumber
each satellite (n, m) as (n, m’) with (1):

, m, n=0
m = (1)
mod(m —né + kM, M), n #0,

where k is the minimum nonnegative integer that satisfies
m —né + kM > 0. Then (n, m') is connected to (n + 1, m’),
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n=0,..., N=2.Inthe renumbered constellation, (N —1, m")
is connected to (0,mod(m’ + F + SN + kM,M)),
where k is the minimum nonnegative integer that satisfies
m +F + 8N + kM > 0.

Proof: The phase offset between (n, m’) and (n + 1, m')
now becomes ¢ = ¢1 + 8¢p2. Again suppose (N — 1, m') is
connected to (0, s). Then the phase offset between (0, s) and
(0, m") can be calculated as ¢} = ¢ xN = (F+38N)¢>. Thus,
s = mod(m’ + F 4+ 8N + kM, M), where k is the minimum
nonnegative integer that satisfies m' + F + SN + kM > 0.0

For example, in Fig. 3, § = —2 and s = mod(m’ + 41, 50).
For m’ = 0, we have s = 41, i.e., (31,0) is connected
to (0, 41).

FIGURE 3. Inter-plane ISLs that achieve better North-South connectivity
(red: before renumbering; green: after renumbering).

IV. DISTRIBUTED SURVIVABLE ROUTING ALGORITHM

In this section, a distributed survivable routing algorithm
for inclined constellations is proposed. First, a basic X-Y
routing is proposed in which multiple primary and secondary
paths towards each destination are determined. Then, a failure
recovery mechanism which consists of a restricted flooding
mechanism and a traffic pre-detour mechanism is proposed
to deal with link failures. In order to cope with routing
loops, a partial-record loop avoidance mechanism is pro-
posed. Finally, a vector-based next hop selection mechanism
is proposed to incorporate various criteria efficiently when
the next hop is decided.

A. BASIC X-Y ROUTING

In our proposed distributed routing algorithm, each satellite
independently selects the next hop for forwarding a packet
it generated or received. The dominant part of the end-to-
end delay that a packet experiences in a satellite network
is the propagation delay. Therefore, the main concern is to
forward the packets along a minimum hop count path. The
mesh-like topology of a satellite constellation can be utilized
to compute routes efficiently without using common routing
algorithms such as Dijkstra shortest path (DSP) algorithm.
For any source-destination pair, one or two X-Y paths with
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FIGURE 4. Minimum hop count X-Y paths in a satellite constellation.

minimum hop count exist, as shown in Fig. 4. The X com-
ponent means forwarding a packet along inter-plane ISLs
and takes values as left, right or zero (zero means no inter-
plane ISL is traversed); the Y component means forward-
ing a packet along intra-plane ISLs and takes values as up,
down or zero (zero means no intra-plane ISL is traversed).
Finding an X-Y path is to determine the X component and
Y component. Note that for a pair of nonzero X component
and Y component, two X-Y paths exist based on whether to
take the X component first or to take the Y component first.
These two paths have the same hop count. In a bidirectional
MSN network, the minimum hop count X-Y path(s) can
be obtained by comparing the orbit numbers and satellite
numbers of the two satellites [20]. However, as pointed out
in section III, an inclined constellation features the offset of
satellite number. For example, in Fig. 5, for source (0, 0) and
destination (19, 0), there exist two X-Y paths with different X
component (one goes left and the other goes right, as shown
by the red line and the yellow line, respectively) although the
two satellites have the same satellite number. Thus, the offset
of satellite number needs to be taken into account when
computing an X-Y path in an inclined constellation.

Dst: (19,0) °

Src: (0,0)

FIGURE 5. Illustration of two X-Y paths with different X component.

To describe the proposed routing algorithm, some defini-
tions are given below first.

VOLUME 8, 2020

(1) Primary direction: Among the four directions that a
packet can take (i.e., up, down, left and right), a primary
direction is one that takes the packet closer to the destination.

(2) Secondary direction: A secondary direction is one that
does not take the packet closer to the destination.

(3) Primary path: A primary path is a path whose next hop
from the current satellite is a primary direction.

(4) Secondary path: A secondary path is a path whose next
hop from the current satellite is a secondary direction.

In the proposed X-Y routing, each satellite determines
one or two primary X-Y paths and secondary paths towards
each destination. Suppose the current satellite is s and the
destination is d. The primary X-Y paths are determined as
follows.

(1) If s and d are on the same orbit, then there is only
one primary X-Y path which is along the orbit. The X com-
ponent is zero and the Y component is determined by the
satellite number of s and d. The corresponding Y component
is selected as the primary direction.

(2) If s and d are not on the same orbit, then the X
component can be either left or right. Let P; be the X-Y
path with X component of left and P, be the X-Y path with
X component of right. For each path, the Y component is
determined by the satellite number of s and d. Let L; and L,
be the hop count of P; and P, respectively. Then we select
the shorter one to be the primary X-Y path. Note that if both
the X component and Y component of the primary path are
nonzero, then there is another primary path with the same X
component and Y component but in the reverse order. The
corresponding X component and Y component are selected
as primary directions.

With the above procedure, the primary paths and primary
directions are obtained, which lead packets closer to the des-
tination. However, to deal with link failures, two secondary
directions are determined for each satellite pair which are
used as backup directions. The secondary directions and paths
are determined as follows.

——4
P Y A
—@—0

(a) (b) (©)

FIGURE 6. Primary and secondary paths in the basic X-Y routing.

(1) If there is one primary path (as shown by the orange
line in Fig. 6(a) and (b)), i.e., s and d are on the same line
formed by intra-plane ISLs or inter-plane ISLs, then the two
directions orthogonal to the primary direction are selected
as secondary directions. The secondary paths containing the
secondary directions are shown as yellow lines in Fig. 6.
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(2) If there are two primary paths (as shown by the orange
lines in Fig. 6(c)), then the two directions besides the two pri-
mary directions are selected as secondary directions. The sec-
ondary paths containing the secondary directions are shown
as yellow lines in Fig. 6.

The calculation of primary and secondary paths yields
minimal computation overhead because the regularity of the
topology can be utilized. Note that a satellite does not need to
record every node on each path. It just needs to be “aware”
of how the path is formed. In the following subsections,
the usage of the primary and secondary paths is further
described.

B. FAILURE RECOVERY

The routing protocol can be aware of a link failure or link
recovery either by a notification from the lower layers or by a
detecting mechanism such as sending and receiving “hello”
packets to and from neighboring nodes. In case of link failure,
some kind of routing strategy is needed to avoid the impact
of the failed link. In a distributed routing algorithm, a typical
strategy is to detour the packets to other directions in case
that the primary direction is suffering a link break. However,
path optimality can be violated with such a strategy, which
introduces additional delay. For example, in Fig. 7, if the link
between node 1 and node 2 is broken and other nodes do not
have knowledge of the broken link, then a packet may take a
path like the red one. However, if node s knows the broken
link and starts to detour in advance, then the packet would
take the green path, which is shorter than the red one.

s @ S ¥

L O & ®

& —6 6 ¢

FIGURE 7. Paths with and without pre-detour.

Based on the above observation, we propose a failure
recovery mechanism which consists of a restricted flooding
mechanism and a pre-detour mechanism to deal with link
failures. Our goal is to reduce the signaling overhead of flood-
ing link state and to reduce additional delay for detouring the
packets. The main idea is to flood the link state information to
neighbors within a limited hop count away and to pre-detour
the packets to avoid actually encountering the failed link.
Note that a satellite failure can be viewed as a special case
of link failure where the four links connected to the satellite
are all broken.
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1) RESTRICTED FLOODING MECHANISM
The restricted flooding mechanism consists of the following
procedure.

(1) Once a link fails, each of the two nodes that are con-
nected to this link generates a link state packet containing
the information of the failed link. The link state packet is
flooded to neighbors that are within f;;; hops away. This is
achieved by adding a Time To Live (TTL) field in the packet
and decrementing its value by 1 with each forwarding. Each
link state packet has a sequence number associated with the
source of the packet to suppress the flooding storm.

(2) For each primary and secondary path towards a desti-
nation, a satellite maintains a state variable, Npjock, indicating
the number of broken links on this path. Once a satellite
receives a link state packet indicating a link break, it checks
for each destination whether the broken link is on any of its
primary and secondary paths. If so, the corresponding Npjock
is incremented by one.

(3) When a link recovers, each of the two nodes that are
connected to this link generates a link state packet containing
the information of the recovered link and floods it to neigh-
bors that are within f;;; hop away. Once a satellite receives
a link state packet indicating a link recovery, it checks for
each destination whether the recovered link is on any of its
primary and secondary paths. If so, the corresponding Npjock
is decremented by one.

Note that when a satellite receives a link state packet,
it needs to determine whether or not the indicated link is on a
path. It can achieve this by simple calculation based on the
index of the satellites due to the regularity of the network
topology. Therefore, a satellite does not need to record every
node on each path that is determined in the basic X-Y routing.

Let us take Fig. 7 as an example. If the link between
node 1 and node 2 fails, then node 1 and node 2 would be
aware of that and each generate a link state packet indicating
the broken link. Suppose f;;; = 5, then node s would receive
the link state packet. For destination d, the value of Npjock
for the first primary path (i.e., right direction first and down
direction next) would be incremented by one, whereas the
value of Npjocx for the second primary path (i.e., down direc-
tion first and right direction next) would remain unchanged.

2) PRE-DETOUR MECHANISM

When a satellite generates or receives a data packet, it deter-

mines the next hop for forwarding the packet based on the

state of each available path. Suppose the current satellite is s

and the destination is d. Two cases are discussed separately.
(1) If there is one primary path from s to d, then the criterion

for selecting the next hop is as follows.

« If the primary path has no broken link, i.e., Npjpek = O,
then the primary direction is given priority over other
directions.

o If the primary path has any broken link, i.e., Npjock > O,
then the two secondary paths are taken into considera-
tion and s gives priority to the path without link break.
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If all of the three paths have any broken link, then s gives
priority to the primary direction.

o If the primary direction is unavailable (i.e., the corre-
sponding link is broken), then s gives priority to the
secondary directions over the direction that is opposite

the primary direction.
(2) If there are two primary paths from s to d, then the

criterion for selecting the next hop is as follows.
« Among the four paths (two primary paths and two sec-

ondary paths), s gives priority to the two primary paths.
Among the two primary paths, s gives priority to the path
without broken link.

« If both of the primary directions are unavailable, then
s considers the two secondary paths. Among the two
secondary paths, s gives priority to the path without
broken link.

Note that we say ‘“‘give priority to” here because the
direction is not the final next hop and other factors have
to be taken into consideration which will be covered in
section IV-C. A complete next hop selection mechanism is
presented in section IV-D.

For example, in Fig. 7, satellite s prefers down direction
towards satellite d over right direction because Npjocr for
down direction is 0 and Ny for right direction is 1.

C. LOOP AVOIDANCE

In a distributed routing algorithm, a common problem is
routing loops. Each satellite forwards packets independently
without the global view and a packet may thus return back to a
satellite that it has traversed. For example, in Fig. 8, a packet
from s to d may circulate in a loop shown as the red line.
The occurrence of loops causes packet loss and consumes link
resources. Therefore, a mechanism to avoid loops during the
routing process is needed.

s . . d

FIGURE 8. Routing loop phenomenon.

Typically, two mechanisms are used to deal with routing
loops [21]. The first ensures that a packet is not sent back
to the satellite where it just came from. The second sets a
TTL field in the packet header so that packets that have tra-
versed too many hops are discarded. However, there are some
problems related to these mechanisms. In the first approach,
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although loops no longer exist between directly connected
nodes, they may still happen in a larger ““circle”. On the other
hand, the TTL field in the second approach is a mechanism
to alleviate the impact of the loop (i.e., to avoid the packet
occupying the network resource forever), not a mechanism to
“jump out” the loop.

In [22], the authors proposed a loop avoidance mechanism
along with their routing protocol, which well solved the above
problems. Each node traversed by a packet is recorded in the
packet header. Once a satellite receives a packet, it checks
the packet header to see if the candidate next hop has been
traversed. If so, another next hop is selected. If both candidate
next hops have appeared in the packet header, the satellite
finds the first position where the current satellite’s ID appears,
and forwards the packet to the node whose ID appears just
before the found position. However, with this mechanism,
each packet has to record every node it traverses in the
packet header. This would incur overhead, especially when
the network is in a good state, i.e., when the link failure is
sparse and the packets would not suffer loops even without
recording the satellites’ IDs.

To reduce the overhead of recording each node in the
packet header, we propose a partial-record loop avoidance
mechanism. The main idea is to record the nodes only when
necessary. Accordingly, we call the loop avoidance mecha-
nism proposed in [22] a full-record loop avoidance mecha-
nism. The partial-record loop avoidance mechanism consists
of two parts, i.e., setting of the packet header and packet
forwarding rule.

1) SETTING OF THE PACKET HEADER
Each packet contains a nNodeTraversed field indicating the
number of nodes recorded and a list of satellite IDs, nodeList,
in its header. When a packet originates from the source
satellite, nNodeTraversed is set to 0 and nodelList is set to
empty. When forwarding a packet, the satellite records itself
in nodeList and increments nlNodeTraversed by 1 when either
a) nNodeTraversed is not zero, or b) the satellite selects a
direction to forward the packet that is not a primary direction.
With this mechanism, the traversed nodes are not neces-
sarily recorded in the packet from the beginning. Only when
a satellite selects a direction that is not a primary direction,
does it “trigger’ the recording of the traversed nodes, i.e., the
satellite records itself in the packet header and all subsequent
satellites along the path record themselves in the packet
header. The intuition is that when a satellite selects a direction
that is not a primary direction to forward the packet, there is
more chance that a loop would happen in the future.

2) PACKET FORWARDING RULE

With the above node-recording mechanism, the packet for-
warding rule is enhanced as follows to avoid endless loops.
First, define backtracking node as follows. When satellite s
receives a packet from satellite p, s checks nodeList field in
the packet header and looks for the position where its own ID
first appears.
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(a) If the position is 0 (i.e., s is the first node that was
recorded in nodeList) or s has not been recorded in nodeList,
then p becomes the backtracking node.

(b) If the position is not 0, then the node whose ID appears
before the position becomes the backtracking node.

When deciding the next hop to forward the packet, s prefers
next hops that have not been traversed. If all of the available
next hops have been traversed, then s forwards the packet to
the backtracking node.

With the partial-record loop avoidance mechanism, only
a portion of the traversed nodes are recorded in the packet
header. Thus the overhead can be reduced, especially when
there are only a few link failures in the network. A proof
is given in the appendix to show that the proposed loop
avoidance mechanism is endless-loop-free.

D. VECTOR-BASED NEXT HOP SELECTION

As discussed above, there are several criteria to be taken into
consideration when deciding the next hop for forwarding a
packet. These criteria include: a) whether the next hop has
been traversed, b) whether the next hop is the backtracking
node, c) whether the direction is a primary one, d) whether
the path has broken links. These criteria may be intertwined
together. However, we have some kind of priority with respect
to these criteria when deciding the next hop. For example,
a secondary direction that has not been visited is preferred
over a primary direction that has been visited. In order to
facilitate the selection of the next hop while incorporating all
the criteria, we proposed a vector-based next hop selection
mechanism. The main idea is to encode the criteria into a
numeric vector for each available direction. The next hop
can then be selected by comparing the vectors of all the
directions.

First, an assessment vector is generated for each available
direction when a satellite receives a packet. Suppose the
current satellite is s and the destination is d. Two cases are
separately dealt with.

(1) If there is one primary path from s to d, then
the assessment vector for each direction contains five ele-
ments: (not_traversed, backtracking_node, no_blockage, pri-
mary_direction, secondary_direction). Each element is either
0 or 1. The values of these elements are determined as
follows:

o not_traversed: if the neighboring satellite in the direc-
tion has not been traversed (i.e., it is neither the previous
hop nor has it appeared in nodeList), then this element
is set to 1, otherwise 0.

o backtracking_node: if the neighboring satellite in the
direction is the backtracking node, then this element is
set to 1, otherwise 0.

e no_blockage: if the direction is either the primary direc-
tion or a secondary direction, then this element is set to
1 if Npjper = O for the direction and O if Npjper > 0;
otherwise, this element is set to 0.

o primary_direction: if the direction is the primary direc-
tion, then this element is set to 1, otherwise 0.
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o secondary_direction: if the direction is one of the
secondary directions, then this element is set to 1,

otherwise 0.
(2) If there are two primary paths from s to d,

then the assessment vector for each direction contains
four elements: (not_traversed, backtracking_node, pri-
mary_direction, no_blockage). The values of these elements

are determined as follows:
o not_traversed: if the neighboring satellite in the direc-

tion has not been traversed (i.e., it is neither the previous
hop nor has it appeared in nodeList), then this element
is set to 1, otherwise 0.

o backtracking_node: if the neighboring satellite in the
direction is the backtracking node, then this element is
set to 1, otherwise 0.

o primary_direction: if the direction is one of the primary
directions, then this element is set to 1, otherwise 0.

e no_blockage: if Npjocx = 0 for the direction, then this

element is set to 1, otherwise 0.
After the determination of the assessment vectors, their val-

ues are compared with lexicographic ordering. For example,
(1, 0,0, 0) is greater than (0, 1, 1, 1); (0, 1, 0, 0) is greater than
(0, 0, 1, 1). The direction with the largest assessment vector
is chosen as the final direction to forward the packet.

BRSNS
l l |

(a) (b)

FIGURE 9. lllustration of the priority of the criteria.

Note that in the first case, no_blockage is given priority
over primary_direction. This is because when the primary
path has any broken link, the hop count of the final path would
increase anyway compared to the hop count of the primary
path (as shown in Fig. 9(a)). Therefore, it is reasonable to
select a secondary path. In the second case, primary_direction
is given priority over no_blockage. This is because when
a primary path has any broken link, the hop count of the
final path may not necessarily increase compared to the hop
count of the primary path (as shown in Fig. 9(b)). Therefore,
we prefer a primary path over a secondary path even when
there is any broken link on the primary path.

Let us take Fig. 10 as an example to illustrate the
vector-based next hop selection mechanism. Suppose node
1 receives a packet from node s that is destined to d. For each
of the available directions (up, down and left) from node 1,
the assessment vector is determined. The assessment vector
for direction down has the largest value. Therefore, node 1
forwards the packet to down to node 2.

E. THE PROTOCOL DESCRIPTION
To put things together, the distributed survivable routing
algorithm consists of 3 parts: (1) Path pre-calculation.
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FIGURE 10. Example of vector-based next hop selection.

Each satellite determines multiple primary and secondary
directions and paths towards each destination with the basic
X-Y routing. (2) Link state update. In case of link failure or
recovery, the link state is flooded in a restricted area and the
notified satellites update the state of affected paths. (3) Packet
forwarding. When a satellite generates or receives a packet,
the next hop is selected with the vector-based next hop selec-
tion mechanism and the packet header is updated for loop
avoidance. These three parts are described in Algorithm 1 to 3
respectively.

F. COMPLEXITY OF THE ALGORITHM

We discuss the complexity of the proposed algorithm from
three aspects. First, in the basic X-Y routing, each satellite
needs to determine at most four paths towards every destina-
tion. For each destination, the path calculation is done based
on the orbit number and satellite number of both satellites,
which needs O(1) time complexity. Therefore, the time com-
plexity of the basic X-Y routing for each satellite is O(MN).
As a comparison, the routing calculation for each satellite in
DSP algorithm using a linked list takes time complexity of
O(M?N?) [23]. The second part is the updating of the path
state. When a satellite receives a link state packet, it checks
whether the indicated link is on any path for each destination.
This process takes O(MN) time complexity, whereas a com-
plete routing table update in DSP algorithm takes O(M2N?)
time complexity. The third part is the next-hop selection.
When a satellite needs to forward a packet, it computes the
assessment vector for at most four directions. The time com-
plexity is O(1). To conclude, the proposed routing algorithm
achieves low computation overhead, which is desirable for
mega-constellations.

V. PERFORMANCE EVALUATION

A. SIMULATION SETUP

In this section, the performance of the proposed distributed
survivable routing algorithm is evaluated through simulation.
The main performance metrics include end-to-end delay and
signaling overhead. Besides, the influence of the algorithms
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Algorithm 1 Path Pre-Calculation
1: Suppose current satellite is s
2: for each destination d do
3: if orb(s) == orb(d) then
4: Compute primary direction D), and primary path
P according to sat(s) and sat(d)

5: else

6: Compute path length L; of the X-Y path P; in
which X component is left

7: Compute path length L, of the X-Y path P, in
which X component is right

8: if L; < L, then

9: P=P

10: else

11: P=P,

12: end if

13: if Y component of P is zero then

14: Get one primary path P, and one primary
direction D),

15: else

16: Get two primary paths P; and P>, and two
primary directions Dy1 and Dy

17: end if

18: end if

19: if there is one primary path from s to d then

20: The directions orthogonal to D), are set as sec-
ondary directions Dy and Dy

21: else

22: The two directions besides D,1 and D,y are set as
secondary directions Dg1 and Dy

23: end if

24: end for

on throughput and packet loss is also investigated. Two rout-
ing algorithms are selected as the comparison terms:

(1) Link state algorithm. Each time a link state change
happens (i.e., a link fails or recovers), the satellites connected
to the link generate a link state packet and flood it to the
whole network. When a satellite receives the link state packet,
DSP algorithm is used to update the routing table. This
algorithm has the global view and is able to obtain optimal
routing in case of link failures. However, the signaling and
computation overhead is large for flooding the link state
packet and conducting DSP algorithm. In our implementation
of this algorithm, once a satellite receives a link state packet,
it waits for 2 s for more link state packets to arrive so that one
update of the routing table takes into account multiple link
state changes.

(2) Local distributed routing algorithm. In this algorithm,
each satellite only has a local view of its adjacent links. The
method for determination of primary and secondary paths is
the same as that in the proposed routing algorithm. A node
detours a packet only when it actually encounters a failed
link. No signaling packet is needed to flood the link state.
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Algorithm 2 Link State Update
1: Suppose the link between 51 and s, is broken or recovered
2: s1 and s, each construct a link state packet pkt. Set the
TTL field to f;;;. Send pkt to all available neighbors
3: A satellite s receives pkt. Get the TTL field, f, and the
broken or recovered link /

4: for each destination d from s do
5: for each primary and secondary path P to d from s do
6: if / is on P then
7 if link_state == failure then
8 Nbpiock + +
9: else

10: Npiock — —

11: end if

12: end if

13: end for

14: end for

15 f — —

16: if f > O then

17: s sets TTL field of pkt to f and sends pkt to all
available neighbors

18: end if

Algorithm 3 Packet Forwarding

1: Suppose satellite s receives a packet pkr destined to d
2: if s is not d then

3: Get value of nNodeTraversed field, n, from packet
header
4: for each available direction D do
5: Compute assess_vec(D)
6: end for
7: D,, = arg min(access_vec(D))
8: if nis notzero or Dy, is not a primary direction then
9: Set nNodeTraversed field to n + 1, add id(s) to
nodelList field
10: end if
11: Forward pkt to D,
12: end if

This algorithm is equivalent to setting fi; to O in the proposed
routing algorithm.

The simulation is conducted on the first phase constella-
tion of Starlink, which is a representative mega-constellation
with inclined orbits. The constellation parameters are listed
in Table 1. The phase factor is set in accordance with [13].
Note that although SpaceX has updated the parameters of
the constellation in later Federal Communications Commit-
tee (FCC) filings, the parameters used in this paper do not
loss generality. The ISL rate is set to 100 Mbps, which is a
conservative value and achievable with current laser commu-
nication terminals. The user data link (UDL) rate is also set
to 100 Mbps. The queue size of both ISL and UDL is set to
100 packets. The data packets generated by ground terminals
and satellites have a size of 1000 bytes.
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TABLE 1. Parameters of the simulated constellation network.

Constellation parameters

Number of orbit planes 32
Number of satellites per orbit plane 50
Altitude (km) 1150
Inclination 53°
Phase factor 5
Link parameters

ISL rate (Mbps) 100
UDL rate (Mbps) 100
Queue size (packets) 100

B. SIMULATION RESULTS

1) OVERALL PERFORMANCE

In this experiment, the data packets are generated on satellites
and the destination of each packet is selected randomly. The
packet inter-arrival time is set according to an exponential
distribution with an average of 1 packet per second. This low
sending rate is used because our main concern is to investigate
the ability of the algorithms to deal with link failure, i.e., to
find short end-to-end paths. The simulation time is set to
2 hours to cover as many source-destination pairs as possible.

110 T T T T
D
—=©— Local distributed algorithm
105 ¢ ——7— Proposal (fn[:2)
100 | Proposal ( f;tl:S) |
——a&— Proposal (fm=10)
95 | | —#%—— Link state algorithm

90

85

Average end-to-end delay (ms)

80

75"

Link failure percentage (%)

FIGURE 11. Average end-to-end delay at different link failure
percentages.

Fig. 11 shows the average end-to-end delay of the pack-
ets in different routing algorithms under various link failure
percentages. For each scenario with link failure, the graph
constructed by the satellite nodes and ISLs is ensured to
be connected. For the proposed routing algorithm, the per-
formance under different values of f;; is evaluated. It can
be seen that the proposed algorithm outperforms local dis-
tributed algorithm. With fi; = 5, the end-to-end delay is
reduced by 15.5% compared with local distributed algorithm
under 20% link failure. This is mainly due to the pre-detour
mechanism used in our algorithm. When a link breaks, its
state is flooded to satellites within several hops away and the
notified satellites can detour the packets to alternative paths
in advance before encountering the broken link. This reduces
the extra delay caused by local detouring. When f;;; increases
from 2 to 5, the end-to-end is slightly improved. However,
when fi; increases to 10, the end-to-end delay becomes larger
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when the link failure percentage is large. This is because
when the network is severely damaged, all of the primary
and secondary paths may contain broken links. A larger f;
may not be able to provide better guidance to the packet than
a smaller one and may even cause extra detours. Link state
algorithm achieves the smallest end-to-end delay because
each satellite has a global view of the network and routes
packets along shortest paths.

The signaling overhead is measured by the number of
link state packets flooded in the network when there is any
link failure. Fig. 12 shows the total number of link state
packets flooded in different routing algorithms under various
link failure percentages. Local distributed algorithm does not
generate link state packets. It can be seen from Fig. 12 that
the proposed algorithm floods much fewer link state packets
than link state algorithm. For link failure percentage of 20%,
the number of link state packets sent in the proposed algo-
rithm is about 1/10 that in link state algorithm with f;; = 10
and about 1/50 with fiy = 5. In the proposed algorithm,
the flooding of link state packets is well restricted to a limited
area, which greatly reduces signaling overhead in a large-
scale constellation.
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FIGURE 12. Signaling overhead at different link failure percentages.

2) PERFORMANCE OF END-TO-END SESSION
In this experiment, two ground terminals communicate
through the satellite constellation network. Terminal A is
located at 66.1°W, 10.1°S and terminal B is located at 71.8°E,
14.9°N. The access satellite of each ground terminal remains
the same during the simulation time of 2 minutes. Terminal
A sends packets to terminal B with a rate of 100 packets
per second. Within the rectangular region formed by the
access satellites of A and B, random link failure and recovery
are generated dynamically. Both the link failure interval and
link failure duration follow an exponential distribution with
an average of 5 s.

The end-to-end delay versus simulation time is shown
in Fig. 13 and the total number of link state packets sent dur-
ing the simulation is shown in Table 2. The smooth change in
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end-to-end delay is due to satellite movement and the abrupt
change is due to packet detouring in case of link failure and
recovery. It can be seen that the proposed algorithm achieves
similar end-to-end delay with the link state algorithm most of
the time. However, it achieves this with much less signaling
overhead. The local distributed algorithm has larger end-to-
end delay at the beginning of the simulation because of its
inefficient local detouring mechanism.

Local distributed algorithm

80 T T T
ol il '
>
<70 7
(=)
65 1 1 1 1 1
20 40 60 80 100 120
Time (s)
Proposal (fttl =2)
80 T T T T T
E st |‘| I‘I .
>
=170 L =
(=)
65 A A A A A
20 40 60 80 100 120
Time (s)
Proposal ( ft 0= 5)
80 T T T T T
E 75t .
z
< 70 ! =
(=)
65 1 1 1 1 1
20 40 60 80 100 120
Time (s)
Link state algorithm
80 T T T T T
E st J’L _
g 70 =
-
[a)
65 A A A A A
20 40 60 80 100 120
Time (s)

FIGURE 13. End-to-end delay between ground terminals.

TABLE 2. Signaling overhead during the simulation.

Algorithm Number of link state packets
Local distributed algorithm | 0

Proposal (fis1 = 2) 4425

Proposal (fi1; = 5) 43034

Link state algorithm 1953597

3) EFFECTIVENESS OF SECONDARY PATHS

In the proposed routing algorithm, besides the primary paths,
each satellite maintains two secondary paths towards each
destination. When a satellite receives a link state packet,
the value of Npjocr for each path is updated. When a satellite
selects the next hop for a packet, it takes the state of both
primary and secondary paths into consideration. In this exper-
iment, we investigate the impact of the secondary paths. The
proposed algorithm is modified such that the initial value of
Npiock for each secondary path is set to a value larger than zero
and it will not be updated when a link state packet is received.
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By such modification, we only maintain the state of primary
paths and the secondary directions are selected only then the
primary directions are unavailable. We call the modified algo-
rithm proposal-2. In Fig. 14, the average end-to-end delay of
the two algorithms is shown. The traffic model is the same
as in the first experiment. When the link failure percentage is
low, the delay performance of the two algorithms is similar.
As link failure increases, the proposal achieves smaller delay
because the satellite takes the state of secondary paths into
consideration when determining the next hop and therefore
has more chance to forward the packet along a path with fewer
detours. This experiment demonstrates the effectiveness of
the maintenance of the state of secondary paths.

105 T T T T
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FIGURE 14. Average end-to-end delay with and without maintenance of
the state of secondary paths.

4) EFFECTIVENESS OF PARTIAL-RECORD LOOP

AVOIDANCE MECHANISM

The partial-record loop avoidance mechanism proposed in
our routing algorithm aims to reduce the overhead of record-
ing node IDs in the packet header. To illustrate the effective-
ness of this mechanism, we compare the performance of the
proposed routing algorithm with full-record loop avoidance
mechanism and partial-record loop avoidance mechanism.
Fig. 15 shows the end-to-end delay of different mechanisms.
The traffic model is the same as in the first experiment.
It can be seen that the partial-record loop avoidance mech-
anism achieves similar performance with the full-record loop
avoidance mechanism. To evaluate the overhead of the two
mechanisms, we plot the average number of additional bytes
per packet for recording traversed satellites in the packet
header in Fig. 16. fi; is set to 5 in this experiment. Each
satellite ID occupies 2 bytes. It can be seen from Fig. 16
that the partial-record loop avoidance mechanism has much
less overhead when there is few link failure. Even for link
failure percentage of 20%, the overhead of the partial-record
loop avoidance mechanism is about a half that of the full-
record loop avoidance mechanism. To conclude, the partial-
record loop avoidance mechanism reduces overhead without
degrading the network performance.
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FIGURE 15. Average end-to-end delay of different loop avoidance
mechanisms.
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FIGURE 16. Overhead of different loop avoidance mechanisms.
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FIGURE 17. Throughput under various sending rates for scenario 1.

5) THROUGHPUT AND PACKET LOSS RATIO

In this experiment, the impact of different routing algo-
rithms on system throughput and packet loss ratio is inves-
tigated. The traffic generation model is as follows. Each of
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FIGURE 18. Packet loss ratio under various sending rates for scenario 1.
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FIGURE 19. Throughput under various sending rates for scenario 2.
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FIGURE 20. Packet loss ratio under various sending rates for scenario 2.

100 ground terminals randomly deployed within 60°S and
60°N on the earth surface sends packets to a randomly
selected destination. The packet inter-arrival time is set
according to an exponential distribution with varying average
values. The simulation duration is set to 30 s. 10% of the ISLs
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are failed at the beginning of the simulation. Two scenarios
with different distribution of the ground terminals and link
failures are simulated. The throughput and packet loss ratio
under various sending rates for both scenarios are shown
in Fig. 17 to Fig. 20. It can be seen that the algorithms perform
similarly in terms of throughput. However, there is no algo-
rithm that is superior than other algorithms for both scenarios.
Since all of the simulated algorithms here are not designed
specifically for load balancing, their performance in terms
of throughput depends on the actual traffic condition. The
integration of a load balancing mechanism into the algorithms
is an interesting topic and deserves further study.

VI. CONCLUSION

In this paper, a distributed survivable routing algorithm is
proposed for mega-constellations with inclined orbits. The
proposed algorithm includes a basic X-Y routing algorithm,
a failure recovery mechanism, a partial-record loop avoidance
mechanism and a vector-based next hop selection mecha-
nism. Simulation conducted on Starlink constellation demon-
strated that our proposal achieves a good tradeoff between
end-to-end delay and signaling overhead in case of link fail-
ures. On one hand, with a flooding area of within 5 hops away,
the end-to-end delay is reduced by 15.5% compared with
local distributed algorithm under 20% link failure. On the
other hand, with a flooding area of within 5 hops away,
the number of link state packets flooded in the network is
only 1/10 that in link state algorithm under 20% link failure.
The survivability and scalability of the proposed algorithm
are appealing features for mega-constellation networks.

The proposed routing algorithm is designed for inclined
constellations. In the future, its applicability to polar con-
stellations and even hybrid constellations which have more
intermittent topology will be investigated.

APPENDIX
In this appendix, the endless-loop-free property of the pro-
posed routing algorithm is proved.

Theorem 3: The proposed routing algorithm is endless-
loop-free as long as the destination is reachable.

Proof: We proof that two types of endless loop cannot
happen as shown in Fig. 21. In the first type, the packet
is forwarded back and forth between two adjacent nodes.
In the second type, the packet circulates in a multi-hop ring.

Type 1:

Suppose node B receives a packet from node A, as shown
in Fig. 21(a). B finds that all of its available directions have
been traversed. Thus, B starts to look for the backtracking
node. There are 3 cases:

(1) B is the source node and has not been recorded in
nodelList. In this case, A must have been recorded in nodeList
because it forwarded the packet to the source, meaning that
a detour has happened somewhere along the path. In this
case, the backtracking node of B is A. B forwards the packet
to A. After receiving the packet from B, A determines the
next hop and prefers directions that have not been traversed.
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FIGURE 21. Two types of routing loop.

When all of the available directions from A have been tra-
versed, A starts to look for the backtracking node. Note that
B cannot appear before A in nodeList in this case. We discuss
two subcases:

a) The position where A first appears in nodeList is not
zero. Then A forwards the packet to the backtracking node,
which is not B. Thus, an endless loop between A and B cannot
be formed. This case is illustrated in Fig. 22(a).
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FIGURE 22. Different cases for type 1 loop.
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b) The position where A first appears in nodeList is zero.
This case happens only when the path taken by the packet is
B->A->B->A, which implies that the destination is not reach-
able. This contradicts to the assumption that the destination
is reachable. This case is illustrated in Fig. 22(b).

(2) B is the source node and is the first node that is recorded
in nodeList. This means that the destination is not reachable
because we have backtracked to the first node that is recorded
and all of the available directions from that node have been
tried. This contradicts to the assumption that the destination
is reachable. This case is illustrated in Fig. 22(c).

(3) B is not the source node and has not been recorded in
nodeList. Then, the backtracking node of B is A. B forwards
the packet to A. After receiving the packet from B, A deter-
mines the next hop and prefers directions that have not been
traversed. Note that B cannot appear before A in nodeList in
this case. We discuss three subcases:

a) A has been recorded in nodeList and is not the first node
that is recorded. If A finds that all of the available directions
have been traversed, then A can forward the packet to the
backtracking node, which is not B. Thus, an endless loop
between A and B cannot be formed. This case is illustrated
in Fig. 22(d).

b) A is the source node and has not been recorded in
nodeList or is the first node that is recorded in nodeList.
If A finds that all of the available directions have been tra-
versed, then this means that the path taken by the packet is
A->B->A, which implies that the destination is not reachable.
This contradicts to the assumption that the destination is
reachable. This case is illustrated in Fig. 22(e) and Fig. 22(f).

¢) A is not the source node and has not been recorded in
nodeList or is the first node that is recorded in nodeList. In this
case, the node from which A first receives the packet is not
recorded in nodeList. Therefore, A can forward the packet to
that node, which is not B. Thus, an endless loop between A
and B cannot be formed. This case is illustrated in Fig. 22(g)
and Fig. 22(h).

Type 2:

Suppose node B receives a packet from node S, as shown
in Fig. 21(b). The packet is then forwarded along the path
B->C->...->A. We discuss three cases:

(1) Node S has been recorded in nodeList. In this case, all
the nodes along the path B->C->. . .->A have been recorded.
When node A receives the packet and finds that all of its avail-
able directions have been traversed, it starts backtracking.
Suppose that the packet is backtracked along the reverse path
A->...->C->B. When node B receives the packet, it sends
the packet to the backtracking node S. Thus, an endless loop
inside the ring is not formed.

(2) Node B is the first node that is recorded in nodeList.
When node A receives the packet and finds that all of its
available directions have been traversed, it starts backtrack-
ing. Suppose that the packet is backtracked along the reverse
path A->...->C->B. When node B receives the packet, it can
send the packet to node S because S has not been recorded in
nodeList. Thus, an endless loop inside the ring is not formed.
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(3) The first node that is recorded in nodeList is some node
that appears after B in the path B->C->.. .->A. Suppose it is
E. When node A receives the packet, it continues forward-
ing the packet until the packet again reaches D. From D,
the packet starts backtracking. When it again reaches B, B
can send the packet to S because S has not been recorded in
nodeList. Thus, an endless loop inside the ring is not formed.

The theorem is proved. 0
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