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ABSTRACT We present an effective video frame (including reference frame and key frames) acquisi-
tion method for image stitching. The method simultaneously analyzes different types of factors, namely,
the video-level stability, image-level stability, and content scale stability, to take advantage of their com-
plementary strengths. We model the three factors with three modules that are learned from an analysis of
the shooting process. The video stabilization module (VSM) selects a stable segment, while the shooting
distancemodule (SDM) obtains a similar content scale. They collaborate during the reference video sequence
so that they can benefit from each other. Then, the image quality module (IQM) obtains a reference frame
from the above sequence by choosing high-quality images. Finally, to obtain the key frame set, the SDM
and IQM are again used to continuously filter the overlapping video sequences formed by the reference
frame or the latest key frame. In particular, a comprehensive dataset containing a variety of challenges and
scenarios is introduced. We have conducted an extensive set of experiments on this dataset. The results
confirm the effectiveness of each module and their collaboration; our method outperforms current state-of-
the-art methods.

INDEX TERMS Image stitching, effective video frame, image stitching dataset.

I. INTRODUCTION
Image stitching is the study of combining a group of images
to form a single wider field of view (FOV) image [1]. These
images need to have as little parallax as possible, good
image quality, similar content scale, and certain overlap rate.
However, for different reasons, some scenes cannot be shot
to meet these requirements; in these cases, image stitching
must be performed through video. For example, we want
to create a panoramic image of a campus. In this scene,
we cannot take images one by one and we cannot guarantee
that every image we take meets the requirements of stitching.
Typically, unmanned aerial vehicle (UAV) is used to shoot
video around the campus and video frames that are suitable
for stitching are captured from the video. Image stitching
from videos encounters some challenges due to flaws in the
shooting process, and a simple selection of images can create
some problems in the stitching results. Therefore, to obtain
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stable stitching results, it is necessary to select effective video
frames (EVFs) that meet the requirements of stitching.

There are defects that occur during the shooting process.
First, video-level instability: the parallax is directly caused by
changes in the shooting angle and path. Second, the image-
level instability: on the one hand, vibrations, instability con-
trol, and rapid movement of a shooting device can cause an
image to blur; on the other hand, the motion of an object can
bring about motion blur. Finally, the scales of the shooting
content are different: taking an aerial image as an example,
different flying heights usually cause inconsistent subject
sizes. Therefore, although good progress has been made in
image stitching, the above disadvantages still affect the stitch-
ing results. An effective selection of video frames can avoid
the above problems.

Therefore, it is essential to obtain EVFs with good sta-
bility, excellent image quality, and uniform scales for image
stitching. For video-level instability, we find that a bundled
camera path [2](we define bundled camera paths as spatially
varying camera paths) can describe an instability well, and
a video sequence with a small change in the bundled path
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FIGURE 1. The overview of the proposed method.

has excellent stability. For image-level instability, we apply
the principle that the original high-frequency content of a
blurred image is lost [3]. The more high-frequency content of
an original image is lost, the more blurred the image is. The
main reason content is shot with inconsistent scales is that the
distance, called the camera-scene (C-S) distance, between the
camera lens and the scene changes; hence, it is important to
obtain images with similar C-S distances.

Based on the above analysis, we have specifically pro-
posed three modules, namely, the video stabilization module
(VSM), image quality module (IQM), and shooting distance
module (SDM), to address these three issues separately.
Specifically, the VSM uses a ‘‘warping-basedmotionmodel’’
to solve the problem of selecting a stable video segment.
The IQM utilizes a ‘‘no-reference perceptual blur metric’’ to
handle the matter of choosing high-quality images. The SDM
obtains a uniform C-S distance through a simple geometric
calculation to cope with the issue of selecting similar content
scales. The three modules work together to select EVFs for
stitching.

Furthermore, an EVFs include a reference frame (the most
stable video frame in the video sequence that is also the basis
for selecting key frames) and key frames (frames selected
from the local series of ordinary frames to represent the local
frame and to record the local information). In image stitching,
all images are projected onto a reference plane. Generally,
taking the first image or the middle image as the reference
plane, if the reference image happens to be unstable, it may
visually affect the naturalness of the panorama. Because the
reference frame is the most stable video frame in a video
sequence, we use the reference frame as the reference plane.
In the process of reference frame selection, to select a stable
reference frame, a stable video segment needs to be selected
first; hence, we carry out video processing based on fea-
ture point trajectory analysis to segment the complete video
sequence into several video subsequences with stable back-
grounds. An overview of the proposed method is illustrated
in Fig. 1.

In particular, we find that the current datasets used in
image stitching have some shortcomings. On the one hand,
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they lack pertinence, as most datasets are used for visual
object tracking; on the other hand, they only consider sin-
gle challenges, such as only considering the scene diversity.
Therefore, we propose a new dataset for image stitching that
has a total of 32 video sequences, which include challenges
that arise from various changes in flying height, flying speed,
and video stability. We perform a series of experiments on
this dataset, and the experimental results not only show the
superiority of the proposedmethod but also verify the validity
of the dataset.

In this paper, a novel EVF acquisition-based image stitch-
ing method is proposed. Different from the typical image
stitching methods, the proposed method conducts stitching
with a video sequence as the carrier. First, EVFs are obtained
from a video to meet the needs of image stitching. On the
basis of meeting the requirements of the overlap rate, we also
comprehensively evaluate the video-level stability, the image-
level stability and the content scale stability and select EVFs
to improve the stitching performance. Furthermore, the EVFs
are divided into reference frame and key frames. On the one
hand, the reference frame is used as the basis for selecting the
key frames. On the other hand, the reference frame is the most
stable video frame in the video. We use it as the reference
plane of projection during stitching, which can improve the
naturalness of stitching.

The contributions of this paper mainly include three
aspects:

(1) A image stitching framework based on effective video
frame acquisition is proposed, which can realize end-to-end
image stitching with a video as the carrier.

(2) A novel effective video frame acquisition method is
proposed. Based on a comprehensive evaluation of video-
level stability, image-level stability, content scale stability and
overlap rate, effective video frames are selected and divided
into a reference frame and key frames. The VSM, IQM, and
SDM are proposed to address different problems caused by
the shooting process;

(3) A comprehensive dataset containing a variety of chal-
lenges and scenarios is proposed.

II. RELATED WORKS
A. IMAGE STITCHING
The typical image stitching method usually uses a global
transform (such as affine, similarity and projection) to reg-
ister the overlapped areas of an image, we call this method
Homography. Brown and Lowe [4] proposed AutoStitch
algorithm. Similar to Homography, a global transforma-
tion was used, and a bundle adjustment was used to cal-
culate image coordinate transformation parameters. Then,
to deal with parallax and improve the registration accuracy.
Gao et al. [5] proposed a dual homography method that
blends the homography estimated for the distant plane with
the homography estimated for the ground plane adaptively
according to the positions of feature points. Zaragoza et al. [6]
proposed the as projective as possible (APAP) algorithm,
which effectively improves the registration accuracy for large

parallax images by multiple homographies. Lin et al. [7]
improved the stitching performance gradually by using an
iterative warp and seam estimation. Lee and Sim [8] proposed
a video stitching algorithm for a large parallax based on
epipolar geometry. Lee et al. [9] proposed an image mosaic
algorithm with robustness to large disparities based on the
new concept of warping residuals.

Through various registration methods, the overlapping
areas of two images can be well aligned and the nonover-
lapping areas usually have serious distortion. The shape pre-
serving half projection (SPHP) algorithm [10] was proposed;
it corrects the shape of the stitched image and reduces the
projection distortion. Lin et al. proposed a homographic
linearization method [11], which is also a shape correction
problem, and the natural appearance of the stitching results
is improved compared with the natural appearence of the
results of SPHP. Chen et al. [12] estimated the proper scale
and rotation for each image and designed an objective func-
tion for warping estimation based on a global similarity
prior. Li et al. [13] proposed a novel quasi homography
to solve the line blending problem between the homogra-
phy transformation and the similarity transformation by lin-
early scaling the horizontal component of the homography
to create a more natural panorama. In 2019, [14] presented
an illumination-smoothing image stitching method based on
the shape-optimizing hybrid transformation. The single per-
spective warps (SPW) algorithm [15] applies two single-
perspective warps for natural image stitching.

Image stitching has been well developed, especially in
image registration. However, in image stitching with a video
as the carrier, it is not enough only to apply the existing
technology for stitching because a video has redundancy
and some defects in the shooting process, which lead to
stitching failures. Furthermore, the proposed EVF acquisition
method is used to obtain the images meeting the require-
ments of image stitching. Then, multiple images are spliced
together. In the image registration stage, we apply the existing
AutoStitch algorithm.

B. EFFECTIVE VIDEO FRAME ACQUISITION
Currently, the most common EVF acquisition method
is based on the fixed interval method. For example,
Yang et al. [16] used a fixed time interval (every two seconds)
to extract video frames as key frames. This method can
solve the problem of video redundancy to a certain extent
but cannot guarantee a constant overlap rate between frames.
The most basic requirement of images used in stitching is
that a certain overlap rate should be met between images.
To ensure a constant overlap rate, some new EVF acquisition
methods were proposed. Bang et al. [17] focused on pre-
processing in image stitching. By understanding the height
and speed of a UAV, the triangulation principle is utilized
to choose key frames with a certain overlap between the
images. Dhanda et al. [18] proposed a method to analyze
the overlap between images and filter out images through
image metadata when analyzing the aerial data of UAVs to
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reduce video redundancy and inconsistencies. Bu et al. [19]
employed monocular simultaneous localization and map-
ping (SLAM) to perform real-time stitching based on UAV
images. During the selection of EVFs, they calculated the
relative distance between two frames through the weighted
combination of translation and rotation in large scale direct
SLAM (LSD-SLAM). The key frames were selected by
judging the relationship between the relative distance and
threshold.

Although these methods can ensure a constant overlap rate
among frames, they fail to take into account some important
factors that affect the performance of the panorama, such
as video stability, image quality, and image content scale,
as shown in Fig. 2(a).Moreover, thesemethods all use the first
frame in the video as the reference frame and then select the
key frames. When the image quality of the first frame is poor,
it will lead to catastrophic consequences for the stitching
results, as shown in Fig. 2(b).

FIGURE 2. The challenges of effective video frames in image stitching.
Images of the first and second columns are stitched, and we show results
on the third column. Top: (a) The challenge of large scale at the level of
image content in image stitching. Bottom: (b) The challenge of the
reference-frame quality in image stitching.

C. THE DATASET
In addition, the datasets used in image stitching research
are mainly derived from public datasets and datasets created
by authors. Literature [20] introduced an efficient stitching
system and experimented on the publicly available VIVID
dataset [21]. In literature [16], a valid graph-based frame-
work stitching method is presented, and VIRAT benchmark
aerial video dataset [22] is used. The SkyStitch algorithm
proposed by Meng et al. [23] in 2015 provides users with a
panoramic video stream by stitching together multiple aerial
video streams. The data come from a drone video taken by the
author. Bang et al. [17] attempted to select EVF parts to create
high-quality panoramas. The experimental data were derived
from the author’s aerial videos but not disclosed. In 2016,
Bu et al. [19] developed the NPU DroneMap Dataset, which
includes original data consisting of videos, flight logs, GCPs,
and camera calibration data.

By analyzing the data sources in these articles, it is found
that the VIVID dataset is a tracking dataset proposed by
Robert T. Collins et al. The VIRAT dataset, initially provided
by Defense Advanced Research Projects Agency (DARPA),
is used for video surveillance. The challenges faced by
the NPU DroneMap Dataset are not comprehensive, the

classification is not precise, and there is no flight control
information. These datasets either lack challenges or lack
scene types.

III. THE PROPOSED APPROACH
Our proposed method is EVF acquisition, which improves
the performance of the stitching results. An overview of the
method is described in Fig. 1. The whole process is divided
into two stages: the reference frame selection stage and the
key frame selection stage. There are three main functional
modules (VSM, IQM and SDM) that address video-level
stability, image-level stability and content scale stability.
The VSM estimates the stability of the video subsequence.
Inspired by Liu et al. [2], we use bundled camera paths to
evaluate the stability of a video segment. Additionally, a video
sequence is first divided into several video subsequences with
stable backgrounds. The IQM calculates the blur value of
a video frame. We use the ‘‘no-reference perceptual blur
metric’’ method to obtain the blur value. The SDM helps to
select EVFs with small differences in image content scale.
This chapter describes eachmodule and provides an overview
of the proposed method in detail.

A. VIDEO PREPROCESSING
In the reference frame selection stage, to find a stable refer-
ence frame, since it is impossible to calculate whether a video
frame is stable in the video, we find a stable video segment
and select the reference frame from the stable video segment
to ensure that the reference frame is stable. Here, we divide
the video into several video segments based on feature point
trajectory analysis. A schematic diagram is shown in Fig. 3;
Vi represents the i-th video segment.

FIGURE 3. Video segmentation diagram. A dotted line segment
represents a trajectory. A rectangular box represents a video frame.

In this paper, a standard Kanade-Lucas-Tomasi (KLT)
tracker is used to track feature points and depict motion tra-
jectories, and each motion trajectory is a video segment. The
KLT algorithm also performs well in tracking, especially in
real-time computing. Because the video is dynamic, the mov-
ing foreground may appear in the shot content, which affects
the segmentation results. In addition, considering the vigor-
ous motion of objects and cameras, the exposed part of the
background is constantly changing, whichmakes background
tracking impossible. Therefore, to make our segmentation
more robust, we need to use features from the background
region to remove the foreground interference that may be
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generated in the video. Then, we use the robust background
identification method [24], which can reliably identify back-
ground features in complicated videos, allowing us to per-
form our work only on the background area, thereby avoiding
the negative impact of the foreground features.

B. VIDEO STABILIZATION MODULE
A videomay be unstable if the shooting angle or path changes
during the shooting process. When we select a reference
frame, we want to select it in a stable video segment. If the
reference frame is in an unstable video segment, it is possible
that there will be a large parallax between the reference
frame and the key frame, and the stitching results may be
unnatural due to the large parallax. To ensure that the selected
reference frame is in a stable video segment, we use the idea
of bundled camera paths to calculate the stability of each
video segment. We use an image projective transform model
to represent motion between successive video frames. Based
on the proposed motion estimate model, we construct a bunch
of camera paths. Each camera path is a cascade of projective
transform models at each frame over time. By estimating the
projective transform model, we can define a spatially varying
camera path for each video subsequence.

Suppose that the reference image and target image are
denoted as I and I ′, respectively. Given a correspondence
(p, p′), p is a point in I and p′ is a point in I ′, where p = [x y]T

and p′ =
[
x ′ y′

]T . A projective warp transforms p to p′

following the relation.

p̃′ ∼ Hp̃ (1)

The homogeneous coordinates of p and p′ are p̃ = [x y 1]T

and p̃′ =
[
x ′ y′ 1

]T , respectively. ∼ indicates equality up to
scale. A projective transform model H ∈ R3×3 is given.

H =

h1 h2 h3
h4 h5 h6
h7 h8 h9

 (2)

Let Fi(t) be the projective transform model estimated from
the tth frame to the t − 1th frame in the video segment Vi.
Additionally,

Fi(1) =

1 1 1
1 1 1
1 1 1

 (3)

Let Pi(t) be the bundled camera path of the video segment Vi.
It can be written as:

Pi(t) = Pi(t − 1)Fi(t) (4)

Pi(t − 1) = Fi(1) · · ·Fi(t − 1) (5)

Es(i) =
3∑
i=1

3∑
j=1

aij (6)

where aij is the element in the ith row and jth column of Pi(t),
and Es(i) is the stable value of video segment Vi.

C. IMAGE QUALITY MODULE
Blurred images are an essential factor that causes poor quality
stitching results [4], [25], [26]. In this section, we follow
the principle that a blurred image loses its original high-
frequency content, and the blurriness of an image is quan-
tified without reference to other models. Algorithm 1 shows
the process for calculating image blur values.

Algorithm 1 The Process of Calculating Image Blur
Input: The original image F
Output: The blur value of image F
1: The original image F is smoothed using a Gaussian filter

to get the filtered image B.
2: Get the intensity difference in the vertical and horizontal

directions of image F .
D−Fver (row, col) = ‖F(row, col)− F(row− 1, col)‖
D−Fhor (row, col) = ‖F(row, col)− F(row, col − 1)‖

3: Get the sum of the intensity difference in the vertical and
horizontal directions of image F .
S−Fver =

∑rov
i=1

∑col
j=1D−Fver (i, j)

S−Fhor =
∑row

i=1
∑col

j=1D−Fhor (i, j)
4: Get the intensity difference in the vertical and horizontal

directions of image B.
B−Fver (row, col) = ‖B(row, col)− B(row− 1, col)‖
B−Fhor (row, col) = ‖B(row, col)− B(row, col − 1)‖

5: Calculating the sum of the intensity of the high-frequency
information lost in the vertical and horizontal directions.
S−Vver =∑row

i=1
∑col

j=1max (0,D−Fver (i, j)− D−Bver (i, j))
S−Vhor =∑row

i=1
∑col

j=1max (0,D−Fhor (i, j)− D−Bhor (i, j))
6: Calculating the proportion of high-frequency informa-

tion left.
b−Fver = (S−Fver − S−Vver ) /S−Fver
b−Fhor = (S−Fhor − S−Vhor ) /S−Fhor

7: The larger of b−Fver and b−Fhor is used as the blur value.
blur−F = max (b−Fver , b−Fhor )

The smaller blur−F is, the more blurred the image. Here,
we do not need to define a threshold value to judge whether
the image is blurred or unblurred, and we only need to
calculate the blurred value of an image. In the process of
EVF acquisition, we comprehensively evaluate whether the
video frame is suitable to be an effective frame from many
aspects, rather than judge whether the video frame can be an
effective frame based on the image quality alone. For ease of
expression,we use Eb(f ) to represent the blur value of video
frame f .

Eb(f ) = blur−F (7)

D. SHOOTING DISTANCE MODULE
The SDM can address the challenge of unstable content scale,
that is, inconsistent content scale. The main reason for the
inconsistent content scale is that the C-S distance between the
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FIGURE 4. The challenges of the shooting distance in image stitching.Up:
(a)The shooting distance is 34.6m and 34.9m.Bottom: (b)The shooting
distance is 34.6m and 28.7m.

camera lens and the scene changes. The larger the differences
in the C-S distances are, the larger the difference in the scale
of the image content is. If images with large differences
in content scale are stitched, it may result in unsuccessful
stitching or misalignment. As shown in Fig. 4, Fig. 4(a)
uses two images with C-S distances of 34.6 m and 34.9 m
and applies the AutoStitch [4], SPHP [10], and ELA [27]
algorithms to obtain good results. Fig. 4(b) uses two images
with C-S distances of 34.6 m and 28.7 m. Both AutoStitch
and SPHP have different degrees of misalignment, and the
stitching result of ELA is seriously distorted.

In our proposed method, one of the criteria for selecting
a reference video segment is close C-S distances among the
frames in the video segment. Therefore, we calculate the
average distance among frames in a video segment to evaluate
the stability of the video segment in terms of the shooting
distance, as shown in Eq. (8).

Eh(i) =

∑
t∈Vi ‖h(t)− h(t − 1)‖

len(Vi)− 1
(8)

where h(t) represents the C-S distance of the t-th frame. Our
work is based on the aerial dataset, and the C-S distance,
which is the flying altitude of the UAV, can be obtained from
the flight control information. len(Vi) is the number of frames
in video segment Vi.
When selecting the key frames, we calculate the C-S

distance difference between the video frame and the ref-
erence frame. The smaller the difference is, the closer the
content scale between the video frame and the reference
frame.We use Eq. (9) to constrain the C-S distance difference
between a key frame and the reference frame to make the
image content scales as similar as possible.

Eref−h(t) = ‖h(t)− h(ref )‖ t ∈ �j (9)

where h(ref ) represents the C-S distance of the reference
frame, �j represents the video sequence that satisfies the
overlap rate, and Eref−h(t) represents the C-S distance dif-
ference between video frame t and the reference frame.

E. EFFECTIVE VIDEO FRAME ACQUISITION
Based on the description of each module above, in this
section, we introduce the selection process of EVFs.

An overview of the EVF acquisition method is shown
in Fig. 1. The three modules (the VSM, IQM, and SDM)
cooperate to complete an effective frame selection from
coarse to finely divided in two stages.

In the reference frame selection stage, first, the video is
divided into several video segments, and then the video sta-
bility and content scale changes in each video segment are
measured with the VSM and the SDM so that a reference
video segment Vref can be obtained, as shown in Eq. (10).

Vref = argmin
i

(Es(i)+ Eh(i)) (10)

where Es(i) represents the stability of the video segment Vi,
as shown in Eq. (6), and Eh(i) represents the average
C-S distance difference of the video segment Vi, as shown
in Eq. (8).

Then, in the reference video segment Vref , the video frame
with the best image quality is selected as the reference frame
Fref through the IQM, as shown in Eq. (11).

Fref = argmax
t

(Eb(t)) t ∈ Vref (11)

where Eb(t) represents the blur value of video frame t .
In the key frame selection stage, the key frames must meet

the overlap rate requirement, and we first calculate the video
sequence�j, whichmeets the overlap rate requirement. In the
overlapping video sequence �j, we select the key frames
by evaluating the C-S distance difference between the video
frame and the reference frame as well as the image quality
with the help of the SDM and the IQM, as shown in Eq. (12).

Fkey = argmin
t

(
Eref−h(t)+ (1− Eb(t))

)
t ∈ �j (12)

where Eref−h(t) represents the C-S distance difference
between the video frame t and the reference frame, as shown
in Eq. (9).

The EVF acquisition procedure is described in
Algorithm 2.

F. MULTIPLE IMAGE STITCHING
Our main work is to acquire EVFs, and multi-image stitching
is an improvement to AutoStitch, called R-AutoStitch. The
first step of multi-image stitching is to find the reference
plane [28], [29]to which all images are projected through
a basic homographic warp [30]. Generally, taking the first
image or the middle image as the reference plane, if the image
selected as the reference plane happens to be unstable, it may
visually affect the naturalness of the panorama or the registra-
tion accuracy. An example is shown in Fig. 5(a), the green line
is in the horizontal direction, and the red line is in the direction
of the stand, which is tilted. To avoid this phenomenon as
much as possible, we use the reference frame as the reference
plane for image stitching because it is the most stable frame
in the video sequence. An example is shown in Fig. 5(b),
the whole scene is on a horizontal line.
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TABLE 1. Compared methods and characteristics. Since ICE is a software by Microsoft, we don’t know whether we have discussed three problems when
selecting effective video frames, so we use ‘‘?’’ to represent.

Algorithm 2 The Effective Video Frames Selecting
Input: Video sequence
Output: The effective video frames
1: The video is divided into n video segments with the stable

backgrounds Vn by section 3.1
2: for each video segment Vi do
3: Computer the stable value of video and the average C-

S distance difference by (8)
4: end for
5: Get a reference video segment Vref
6: for each frame t in the reference video segment Vref do
7: Compute the blur value of image t by section 3.3
8: end for
9: Get a reference video frame Fref by (11)
10: Fbase = Fref
11: for each frame t in the video segment�j that satisfies the

range of overlap with Fbase do
12: Get the key-frames Fkeyby (12)
13: Fbase = Fkey
14: end for

FIGURE 5. The challenges of the reference plane in multiple image
stitching. Left: (a)The result of the first frame as a reference plane. Right:
(b)The result of the reference frame as a reference plane.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
We demonstrate the effectiveness of our proposed method in
two aspects. First, we show a qualitative comparison of the
stitching performance results. Second, we show a quantita-
tive evaluation of the alignment accuracy. We also conduct
ablation experiments to verify the necessity of each module.
In our experiments, an aerial video dataset is used and has
been made public on the website.

A. DATASET
We use DJI Phantom 4 Pro to capture videos on different
terrains. The dataset has scene diversity, and it is also compre-
hensively challenging with variations in flying height, flying

speed, video stability, and image quality. The dataset contains
a total of 32 pieces of data and is publicly available on the
website.

Each piece of data includes the following:
(1) The original aerial video and the converted image.
(2) The flight control file. We parse the flight control file

into a CSV file.

B. QUALITATIVE COMPARISON
We compare the performance of the proposed algorithm
with the following state-of-the-art algorithms: image com-
posite editor (ICE) [31], AutoStitch [4], PhotoShop [32],
SPHP [10], ELA [27], and SPW [15]. ICE is an advanced
panoramic image stitcher created by the Microsoft Research
Computational Photography Group. PhotoShop is a com-
mercial tool for image processing that can complete image
stitching. AutoStitch, SPHP, ELA and SPW are state-of-the-
art and classical methods in the field of image stitching.
The characteristics of the state-of-the-art methods are shown
in Table 1, including the input and output of the algorithm,
whether there is a function for selecting EVFs, and whether
the three challenges are considered.

1) COMPARISON WITH ICE
In this section, we compare the proposed image stitching
method based on EVF acquisition with ICE. Some stitching
results are shown in Fig. 6.We choose two challenging videos
for comparison, and the results show that the performance of
our method is better than that of ICE, which shows serious
registration errors and image quality problems (red boxes).
Even though the stitching result cannot express the complete
content (the ICE result of the ‘‘stand’’ data), the blue box
indicates that the panorama is not good due to poor image
quality.

2) COMPARISON OF THE EFFECTIVE VIDEO FRAME
ACQUISITION METHOD
In this section, we verify the effectiveness of our selected
EVF method with the stitching results. The proposed method
is compared with the fixed interval method, and the results of
EVF selection are verified by state-of-the-art image stitch-
ing methods (AutoStitch [4], PhotoShop [32], SPHP [10],
ELA [27], and SPW [15]). The fixed interval method sets
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FIGURE 6. The Performance of image stitching method. Left: the results
of ICE. Right: the results of our image stitching method based on effective
video frame acquisition.

a fixed frame interval and fixed overlap ratio range in
advance, it sets the first frame as the reference frame, and
then it selects a video frame that meets the overlap rate as a
keyframe.

The comparison results are shown in Fig. 7. The first
row shows the stitching results of the proposed method, and
the second row shows the stitching results of the fixed interval
method. Each problematic region is marked with a different
color box, and the same region is marked in the other result.
The red box indicates the phenomenon of misalignment,
the blue box shows that the poor image quality leads to
an inferior panorama, and the green box shows the local
distortion. The fixed interval method does not address the
challenges (video-level stability, image-level stability, and
content scale stability); however, the proposed method fully
addresses these challenges and difficulties. It is proven that
our proposed method is effective and better than the fixed
interval method. Specifically, the ELA results with the fixed
interval method show local distortion; however, the ELA
results with the proposed method somewhat mitigate the
distortion. The shape of the building in the PhotoShop result
is destroyed when the fixed interval method is used; however,
the shape of the building in the PhotoShop result obtained
with the proposed method is presented perfectly. The results
of the fixed interval method also suffer from the influence of
image quality.

C. QUANTITATIVE COMPARISON
We quantitatively evaluate all the data in the dataset and
compare the fixed interval method with the proposed method.
The results are measured with the root mean squared error
(RMSE). The RMSE is an effective parameter for evaluating
registration accuracy.

RMSE =
1

M − 1

M−1∑
j=1

√√√√ 1
N

N∑
i=1

∥∥f (pi)− p′i
∥∥2 (13)

where f :R2
7→ R2 is a planar warp.M is the number of EVFs.

N is the number of a set of point correspondences
{
pi, p′i

}N
i=1.

TABLE 2. RMSE Value Comparisons.

The RMSE comparison between the proposed method
and the fixed interval method is shown in Tables 2. The
smaller the value of the RMSE is, the better the stitching
result. The red font indicates that the RMSE value is less
than the corresponding value of the fixed interval method,
which means that the EVFs selected by the proposed method
are more suitable for mosaics than those of the fixed interval
method, and the registration accuracy of the stitching result
is higher. ‘‘-’’ indicates that the EVFs selected by the fixed
interval method could not be stitched; it can be said that
our proposed dataset is somewhat challenging. The values in
blue font are the RMSE values of the proposed method that
correspond to the ‘‘-’’ of the fixed interval method. Only a
few RMSE values of the proposed method are higher than
those of the fixed interval method, but the average difference
is less than 0.1 pixels. It can be seen in the table that 18.75%
of the data mosaics fail when the fixed interval method is
used to select the EVFs, and 59.38% of the data show that the
results using our proposed method are superior to those using
the fixed interval method. This proves that the EVFs selected
with our proposed method are more helpful for stitching and
obtaining better registration accuracy, and the dataset we have
established is comprehensive and challenging.

D. ABLATION EXPERIMENTS
The proposed EVF acquisition method takes into full account
the factors of video-level stability, image-level stability and
content scale stability, including the VSM, IQM and SDM.
In this section, we perform ablation experiments to verify the
necessity of each module. In the ablation experiment, the pro-
posed EVF acquisition method is named New, the method
with the VSM removed is named New-without-s, the method
with the IQM removed is named New-without-b, and the
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FIGURE 7. Comparisons with the fixed interval method. Up:The stitching result with our proposed method of selecting effective video frames. Bottom:The
stitching result with the fixed interval method.

FIGURE 8. Compare the NEW method with the New-without-s method. Up:The stitching results with NEW method. Bottom:The stitching results with
New-without-s method.

TABLE 3. Ablation experiments method.

method with the SDM removed is named New-without-h,
as shown in Table 3.

1) NEW-WITHOUT-S
In the process of obtaining the reference frame, the New
method first locates the reference video segment through the
VSM and the SDM and then selects the reference frame in the
reference video segment.Whereas theNew-without-smethod
has no VSM, only the SDM is considered when selecting

the reference video segment. We use Eq. (14) to locate the
reference video segment; then, Eq. (11) is used to obtain the
reference frame.

Vref = argmin
i

(Eh(i)) (14)

where Eh(i) represents the average C-S distance difference of
video segment Vi, as shown in Eq. (8).

We compare the EVFs selected by the New method and
New-without-s method on six existing image stitching meth-
ods. The comparison results are shown in Fig. 8 and Fig. 9.

In Fig. 8, the comparison results all have registration errors,
which are marked with red boxes. In particular, for the ELA
stitching result of the EVFs selected with the New-without-
s method, the distortion is more serious. However, the ELA
stitching result of the EVFs selected with the New method
obtains good results. For the SPHP result of the EVFs selected
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FIGURE 9. Comparison with PhotoShop. Left:The stitching results with
NEW method. Right:The stitching results with New-without-s method.

with the New-without-s method, registration artifacts are gen-
erated due to inaccurate registration. The SPHP result of the
EVFs selected with the New-without-s method can alleviate
the problem to some extent.

Similarly, in Fig. 9, the PhotoShop result with the
New-without-s method also has registration errors, which are
marked with blue boxes; correspondingly, PhotoShop with
the New method can obtain good stitching results. In par-
ticular, the red line represents the centerline of the building,
the center of the building is in line with the center of the front
square, and the green line in the right picture represents the
centerline of the front square. It can be seen that the centerline
of the whole scene in the right picture is inconsistent; that is
to say, the whole scene is distorted. The reason for this phe-
nomenon is the instability of the video. Therefore, the VSM
plays a vital role in selecting EVFs.

2) NEW-WITHOUT-B
The New-without-b method still uses the VSM and the SDM
in Eq. (10) when selecting the reference video segment. Since
this method does not have the IQM, we take the first frame in
the reference video segment as the reference frame, as shown
in Eq. (15). When selecting the key frames, the New method
comprehensively measures the image quality, the shooting
distance and the overlap rate. In the New-without-b method,
the frame with the smallest C-S distance from the reference
frame, which satisfies a certain overlap rate, is selected as the
key frame in the video segment, as shown in Eq. (16).

Fref = Vref (1) (15)

where Vref (1) represents the first frame in the reference video
segment.

Fkey = argmin
t

(
Eref−h(t)

)
‖ t ∈ �j (16)

where Eref−h(t) represents the C-S distance difference
between the video frame t and the reference frame, as shown
in Eq. (9). �j represents the video segment that satisfies the
overlap rate.

We compare the effect of the New-without-b method and
the New method with the two stitching methods, as shown
in Fig. 10. The red box shows the inferior part in the results

FIGURE 10. Compare the NEW method with the New-without-b method.
Up: The stitching results with NEW method. Bottom: The stitching results
with New-without-b method.

of ELA and PhotoShop with New-without-b. The reason for
this phenomenon is due to image-level instability; there are
poor quality frames in the video, and this challenge is not
addressed when selecting reference frame and key frames.
The New method is fully focused on this challenge, so the
stitching performance obtained with the New method can
yield very good results. The ELA result with New-without-
b has local distortions, which are indicated by the green box.
It can be seen from the comparison results in Fig. 10 that the
IQM module is necessary and critical.

3) NEW-WITHOUT-H
The New-without-h method ablates the SDM, so when select-
ing the reference video segment, only the video stability
module is considered; Eq. (17) is used to select a stable video
segment.

Vref = argmin
i

(Es(i)) (17)

where Es(i) is a measure of the stability of the video seg-
ment Vi, as shown in Eq. (6).

When selecting key frames, it is necessary to main-
tain a constant overlap rate. In a video sequence �j that
meets the overlap rate, Eq. (18) is used to select the key
frames.

Fkey = argmax
t

(Eb(t)) t ∈ �j (18)

where Eb(t) represents the blur value of video frame t .
If the shooting distance is varied, the image content

has different content scales, which can lead to registration
errors or distortion.We test the Newmethod against the New-
without-h method with six existing stitchingmethods, and the
comparison results are shown in Fig. 11. The ELA results
with the New method and the AutoStitch results with the
New method all have distortion problems, and the stitching
results with the New-without-s method on the SPW, SPHP,
PhotoShop and R-AutoStitch algorithms all have registra-
tion errors and artifacts. The New method performs bet-
ter than the New-without-s method with all six existing
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FIGURE 11. Compare the NEW method with the New-without-h method. Up: The stitching results with NEW method. Bottom: The stitching results with
New-without-h method.

stitching methods. Therefore, the shooting distance module
plays an important role in the process of EVF acquisition.

V. CONCLUSION
We have proposed an image stitching framework based on
EVF acquisition, which is end-to-end image stitching algo-
rithm with a video as the carrier. Specifically, we focus on
the effective video frame acquisition method based on the
collaboration of three modules with multifaceted stability.
The modules take advantage of different levels (e.g., video,
image, and content) of stability during the reference frame
and key frame selection process and thus can account for
most challenges in stitching. In particular, the VSM, the SDM
and the IQM are used collaboratively in a reference frame
selection stage, forming a collaborative reference-frame stage
that is not vulnerable to image redundancy and can make
the reference plane of stitching more stable. Furthermore,
the SDM and the IQM are again used collaboratively to find
high-quality and similar-scale images, forming the key-frame
selection stage, which increases the stitching reliability. The
reference frame selection stage and the key frame selection
stage determine the EVFs, and an optimal frame is estimated
via a novel coarse-to-fine search strategy. The experiments
on the challenging dataset, which was made public, confirm
that the collaboration of the three modules actually improves
performance, and our method generally outperforms most
existing methods.
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