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ABSTRACT Many engineering applications in the automotive, aeronautic, rubber, mechanics, and man-
ufacturing industries collect multiple datasets measuring physical relations between input variables and
performances for modeling purposes. The challenge relies on that such data is often highly dimensional,
non-linear and contain mixed variables, i.e., numerical and categorical features, requiring specific algorithms
and encoding schemes to perform regression task efficiently. Moreover, defining an appropriated similarity
criterion for mixed-type data is a non-trivial task, especially when it is meant to be used in regression
problems. This paper discusses the use of different machine learning algorithms for regression problems,
involving mixed-type variables across multiple datasets. We use tire-related datasets as a case study to
perform a rigorous, statistically founded comparison of different machine learning algorithms with encoding
schemes to handlemixed variables in the prediction of tire-performances acrossmultiple tire-related datasets.
Friedman’s statistic and Nemenyi post-hoc tests are used to test the significance of performance differences
between techniques and encoding strategies. Our contributions come as a series of recommendations for
handling efficiently mixed-type variables while achieving high performances on regression tasks over
multiple datasets. Furthermore, we provide a flexible and efficient similarity function between tires useful
for tire comparison, prediction, and retrieval tasks.

INDEX TERMS Mixed-type variables, categorical encoding, Friedman Nemenyi, regression algorithms.

I. INTRODUCTION
Machine learning (ML) in engineering applications has
grown in popularity during the last decades [1]–[5]. Many
industrial applications use ML tools to build regression mod-
els for product design, performance optimization, variable
design, fault detection, quality assessment, and others. For
instance, the rubber industry, [6] uses non-linear least squares
to estimate the tire-road friction coefficient for tire design.
In automotive design, [7] employs support vector regression
in structural optimization to vehicle crashworthiness design.
More recently [8] performed thermodynamics compressor
performance modeling for engine design with neural net-
works and non-linear support vector regression. A common
characteristic of engineering data is its tabular-like struc-
ture, where rows represent data examples, which are them-
selves described as a mixture of numerical and categorical,
i.e.,mixed-type variables. For instance, in car crashworthiness
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design [9], vehicle structures must be designed to absorb
crash energy through structural deformation asmuch as possi-
ble and attenuate the impact force to lower levels when impact
occurs. The design variables are thickness related (measured
in mm) and steel hardness types. For instance, the B-pillar
inner, reinforce, the floor side and door beltline, are all numer-
ical variables. However material design variables associated
to the steel hardness, i.e., meal, medium, or high strength
steel are categorical variables as well as material types such
as iron, aluminium, plastic steel, glass, rubber and copper
[9]. Besides, engineering problems often involve multiple
inter-related datasets describing complementary performance
measurements of the system of interest (see our case study).
Therefore, assessing the overall performance of a ML algo-
rithm in the regression tasks across multiple engineering
datasets, is a challenging task in particular when the data
contains mixed-type features.

From the data modelling perspective, dealing with
mixed-variables may be problematic for many ML algo-
rithms. As categorical variables do not have explicit ordering
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FIGURE 1. General overview of our approach. 1) having multiple tabular-like datasets with mixed variables, 2) we train different ML
algorithms for regression 3) with different categorical encoding schemes (if necessary). 4) We evaluate the performance of all methods
across multiple datasets and apply 5) statistical tests on the performance rankings in order to assess the overall performance of ML
methods and encoding schemes with mixed-type variables.

or format, operating with them require special treatment to
be transformed in numbers, understandable for algorithms.
Many strategies to handle mixed-type data have been pro-
posed in the literature, including encoding schemes for cat-
egorical features such as ’dummy’ encoding or specialized
metrics for clustering [10], [11]. However, it is unclear from
the literature which encoding schemes are more appropri-
ated for a certain class of regression algorithms, i.e., linear,
tree-based, kernel-based models for regression. Conversely,
deciding about which algorithm is the most appropriated for
a regression task fixing an encoding strategy is critical, espe-
cially when multiple datasets are considered. Hence, in this
paper, we propose a comparison framework to systematically
evaluate and compare regression algorithms and encoding
schemes to handle mixed-type variables datasets. Figure 1
shows a general overview of our approach.

Our methodology is presented in a real-life case study
with engineering data from the tire industry. Typically
tire-related data is highly dimensional, non-linear, and con-
tains mixed variables, i.e., numerical and categorical features.
For instance, automobile tires have molded into their sidewall
the ISO code providing a generic description of the tire,
see Figure 2. This code specifies the dimensions of the tire,
i.e., tire width, aspect ratio, wheel diameter, and limitations
such as the load-bearing ability, and maximum speed. A tire
is built with different rubber types and composites describ-
ing their physical composition. Many of these variables are
numerical, and others, such as speed rating, carcass type
or belt type are categorical. Thus, handling adequately such
mixture data is critical for the accuracy of ML algorithms in
tire-performance prediction task.

Typically tire-engineers rely on physical or mechanical
models to understand the relationship between variables and
outcomes [12]. Because understanding the modeling process

FIGURE 2. Sidewall features of a tire P215/65 R15 89H.

is critical in tire designing, we experimented with sim-
ple shallow models that may provide clearer explanations
about the underlying predictions. The regression techniques
we employed in this work are grouped in four categories,
1) linear methods:, Linear regression (LR), 2) kernel-based
methods: support vector regression with linear and Gaussian
kernels (SVR linear, SVR rbf), and an especial kernel capable
of dealingwithmixed-type variables, the clinical kernel (SVR
clinical). 3) We use non-parametric K-nearest neighbors
(KNN), and kernelizedKNN (KNNclinical), and 4) ensemble
methods with Random Forest (RF regressor) and Gradient
boosting (GBoosting). We are particularly interested in the
effect of encoding schemes for handling categorical variables,
such as one-hot (dummy), binary, hashing, and backward
difference encodings, in each group of algorithms mentioned
above.

All techniques are evaluated under a nested cross-validation
scheme with hyperparameter optimization, using the mean
square error (MSE) and the coefficient of determination
(R2-score) as evaluation metrics to the regression task.
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Subsequently, we perform statistical inference on the
reported R2-scores to test the significance of the differences
between 1) regression algorithms for each encoding strategy
and 2) encoding schemes for a given class of algorithms;
across multiple datasets. We follow [13] to assess the dif-
ferences between ML algorithms together with encoding
schemes applying the non-parametric Friedman test and the
Nemenyi post-hoc test. The effectiveness of this approach has
been demonstrated in applications in science [14] and engi-
neering [15] when comparingML algorithms in classification
tasks. Finally, the results are visualized with the significance
diagrams [13] and p-value tables for pairwise comparisons.
It is worth mentioning that our purpose is not to per-

form a thorough investigation of ML methods with numer-
ous encoding schemes. We rather present our contribution
as a methodological approach providing recommendations
for handling efficiently mixed-type data, i.e., categorical and
numerical variables, while achieving high performances on
regression tasks associated with multiple datasets. Because
of the nature of the tire data we used, we consider only
categorical variables ignoring any ordering between levels.
However, the inclusion of ordinal variables is straightforward.
Finally, although the conclusions are drawn in terms of tire-
data, we emphasize that our approach can naturally be applied
to any engineering datasets.

The paper is organized as follows. First, we review some
related work, following by the presentation of the case study
in section III. In section IV we introduce the ML algorithms,
encoding schemes, statistical tests as well as the evaluation
methodology. The experiments and results are presented in
section V and the final conclusions in section VII.

II. RELATED WORK
A large number of ML methods for regression problems
have been proposed and used in diverse engineering appli-
cations [6]–[8], [16], [17] to name some of them. Never-
theless, we focus on existing work that compares different
approaches to regression problems for engineering applica-
tions. For instance, [18] compare four popular regression
algorithms to establish the relationship between tire tread
composites and filler system. More recently in [16], authors
leverage numerical tire-size features to predict force and
moment performances using different regression algorithms.
Conversely, authors in [19] make a comparative study of
categorical variable encodings for predicting vehicle prop-
erties using neural networks. A similarity measure to han-
dle categorical variables is introduced in [20] and validated
in KNN regression problems over twelve datasets. In [21]
authors propose a hybrid decision tree algorithm for mixed
categorical and numerical regression analysis. Their method
is compared against five popular regression algorithms and,
similar to us, they perform a statistical analysis of the per-
formances of such methods over multiple datasets, but they
used a single dummy variable encoding. More recent deep
learning approaches for regression problems have proven to
be very efficient in diverse application such as industrial

TABLE 1. Statistics of the considered datasets. Number of numerical,
categorical and performance variables per dataset.

surface defect detection [22], sustainable smart manufactur-
ing in industry 4.0 [23] and short-long term load electricity
forcasting [24]. Unlike the mentioned approaches, we present
a rigorous statistical-based framework to compare and rec-
ommend regression algorithms considering many strate-
gies to handle appropriately mixed variables over multiple
datasets.

III. A CASE STUDY: TIRE-PERFORMANCES PREDICITON
A. TIRE DATASETS
Our proposed methodology is presented in a case study
from the tire industry. For this study, we collected several
tire-related data from the automobile industry, containing
tire-size features Figure 2, with performances tested at differ-
ent conditions. Table 1 shows some statistics of the datasets
we used in our study. Each dataset (rows) contains tire
measurements for specific engineering target performances.
Columns show the number of numerical and categorical fea-
tures per dataset, and the associated performances to predict.
For a complete description about tire tests in the automotive
industry we refer the reader to [25].

In the following, we provide a brief description of the
datasets.
• D1: This dataset contains measurements of the stretch-
ing force of a tire bead with different rim diameters, also
known as bead compression test.

• D2: Consists of several measurements related to the
rolling resistance force. This is a fundamental force
acting in opposition to the motion when the tire rolls on
a surface. Here we estimated two performances, denoted
as D2_p0 and D2_p1

• D3: Was used before in [16], and contains relevant force
and moments (F&M) measurements. Tire F&M are fun-
damental to characterize tire performance characteris-
tics that highly influence the dynamics of the vehicle.
That is, force and moment characteristics have to be
designed such that the vehicle can easily be kept under
driver control under diverse driving conditions. Three
tire performances are estimated on this dataset, denoted
as D3_p0, D3_p1 and D3_p2.

• D4: Consists of data related to plunger test, where a steel
plunger is forced perpendicular to the tread of a mounted
tire until the tire ruptures, or the plunger is stopped
by reaching the rim. Here, seven performances are
estimated, denoted as D4_p0, D4_p1, D4_p2, D4_p3,
D4_p4, D4_p5 and D4_p6.
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• D5: This dataset has measurements of the high-speed
test, where the tire is exposed to different maximum
speed scenarios where the tire can sustain.

• D6: Contains information of the contact patch of the
tire which is touching the road surface. It is within this
interaction area that tire forces and moments arise and
that wear occurs.

• D7: This dataset contains measurements of the standard
bead unseat test to determine the conditions to which a
tire will stay on the rim.

• D8: Contains regulatory measurements related to noise
perturbations of the tire in diverse speed conditions and
surfaces of contact.

• D9: Contain diverse measurements of the tire wet grip
associated with the ability of a tire to adhere to the road
in wet conditions.

B. DATA PREPROCESSING
Once the datasets were collected by tire-engineers, data
cleaning and preprocessing were carried out to remove incon-
sistencies and improve the quality of the data. To do so,
we applied a series of transformations necessaries to make
the data modelling more efficient [26]. First, tire features
were handcrafted and selected beforehand by tire-engineer
experts, respecting physical constraints between variables
and tire-performances. Second, anomalous observations were
removed [27] by re-scaling and centering the data around zero
and looking at points whose distance to the origin was larger
than three times the standard deviation of the data, i.e., the
z-score. Third, all datasets were standardized by removing
its mean and scaling with its standard deviation. For certain
kernel matrices such as the clinical kernel, we centered the
matrix by normalizing to have zero mean.

C. TASK DESCRIPTION
We focus on building regression models on tire-related mea-
surements to predict tire-performances across the datasets
mentioned in Table 1. Also, the datasets include a mix of
numerical and categorical variables. We use a well known
family of regression algorithms from non-parametric, ensem-
ble methods, and kernel-based algorithms. For the methods
that do not handle directly categorical variables, we prepro-
cess the datasets with different encoding schemes so that the
considered algorithms can do computations on such data.
Subsequently, we perform a rigorous statistical analysis on
the performances of the methods across datasets, to state
the significance of the machine learning methods and the
encoding mechanism in tire-performance prediction.

IV. METHODS
In this section, we present our approach with the algorithms,
the encoding schemes, and the statistical approaches we use
in our analysis.

A. REGRESSION ALGORITHMS
The proposed methodology is applied to regression problems
for the prediction of tire-performances. We have considered
a wide range of linear and non-linear regression models

grouped in categories according to its nature: parametric
(linear regression), non-parametric (K nearest neighbors),
ensemble methods (Random Forest, Gradient Boosting), and
kernel-based methods (support vector regression). A brief
description of the techniques is introduced below.

1) Linear regression [28]: LR fits a linear model with
real-valued coefficients to minimize the sum of squares
of residuals between the observed targets in the data,
and the predicted values by the linear approximation.

2) K-nearest neighbors [29]: This non-parametric algo-
rithm is one of the simplest algorithms in ML. It uses
features similarity to predict the target variable of new
points. This means that a new point is assigned a value
based on the average value of its K closest points in the
training set. The Euclidean distance is used by default
but can be extended to more general distances.

3) Support vector regression [30]: SVR algorithm is
a variant of the popular support vector machines for
classification. In its basic form SVR aims to fit an
hyper-plane subject to all residuals having a value
less than a non-negative coefficient ε determining the
fitting accuracy. This model can be extended to a
non-linear formulation whose basic principle is to map
non-linear data to a higher dimensional space where
the problem becomes linear. This transformation is
done through a kernel function that has the property
of being a dot product of feature mappings from the
input to a Euclidean space. The problem is modeled
as a quadratic optimization problem, and its solution
provides real coefficients characterizing the so-called
support vectors, i.e., training examples with associated
null coefficients. A typical non-linear kernel is the
radial basis function (Rbf) [30]:

k(x, y) = exp
(
−
‖x−y‖2

σ 2

)
(1)

for any x, y ∈ Rp and σ a scaling parameter.
4) The clinical kernel [31]: This kernel has been pro-

posed in the context of analyzing clinical data for
patients. The main advantage is that it allows mod-
elling numerical and categorical variables in a compact
formulation without using any categorical encoding
scheme. That is, for two data points x, y ∈ Rp with p
features, the clinical kernel [31] is defined as:

CK (x, y) =
1
p

p∑
f=1

Kf (x, y) (2)

where Kf is the kernel matrix of the feature f .
Furthermore:

Kf (x, y) =


(maxf − minf )− |xf − yf |

maxf − minf
,

for f continuous
δ(xf = yf ), for f categorical

(3)

where δ(z) = 1 when z is true and 0 otherwise, and xf
and yf are the f th feature of x and y. Themaxf andminf
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represents their respective maximum and minimum
value.
The choice of the appropriated kernel function may
affect the performance of the ML algorithms in regres-
sion [32]. For this reason, we experimented with dif-
ferent linear and non-linear kernels within the SVR
formulation, in particular the linear and Rbf kernels
with different encoding schemes. In addition, the SVR
clinical and KNN clinical are formulations of KNN
and SVR when using the clinical kernel to handle
mixed-variables in the regression tasks.

5) Random Forest [33]: RF is a popular algorithm based
on aggregation principles for classification and regres-
sion problems. RF operates by constructing and train-
ing an ensemble of decision trees over a subset of
randomly selected features. The decision trees outputs
are combined to estimate a target value using any
aggregation mechanism such as averaging individual
responses.

6) Gradient Boosting [34]: GBoosting is an ensemble
technique for classification and regression that aggre-
gates the estimation of individual models (typi-
cally decision trees) improving the prediction from
inaccurate inter-media estimations in a sequential
manner.

B. ENCODING SCHEMES
Using categorical variables in regression problems is not a
trivial task as there is not an explicit notion of ordering or
semantic between its values or with the response variable.
However, there are two main approaches used in the literature
to deal with this difficulty. The most common is transforming
categories into numerical values applying encoding schemes
keeping semantic between categories’ levels. The second one
is designing specific algorithms for regression that handle
internallymixed data, i.e., clinical kernel. In this work wewill
cover both alternatives focusing on the following encoding
schemes:

1) One-hot (dummy) encoding [35]: This is one of the
most popular encoding methods. For a categorical vari-
able of cardinality C It creates C − 1 new binary
features, with a value of 1 for the actual value and zero
otherwise. It works well on linear models but is not
suitable for variables with large C .

2) Binary encoding [35]: Similar to one-hot, but category
levels are treated as positive integers and subsequently
converted to binary digits. Each binary digit gets one
column. For a variable of cardinality C it will add p
new binary digits such that p = min{i : C ≤ 2i, i ≥ 0}
and C = p+ 1.

3) Hashing encoding [36]: This method utilizes hash
functions to map the levels of a categorical variable to
numbers, which are themself encoded to binary strings
of a given dimension. As the levels are not memorized,
it can deal with new levels gracefully and therefore
scale to categories with large cardinality.

4) Backward difference: This is a kind of the so-called
contrast encoding methods [37]. For a categorical vari-
able with C levels, it creates new C − 1 variables of
inter-level differences. That is, for each level, it cal-
culates the difference between the mean output given
a category, and the overall expected value of the
dependent variable. It can be used with ordinal and
categorical values.

C. MODEL COMPARISON AND STATISTICAL TESTS
Beyond the performances achieved for different algorithms,
we use hypothesis testing techniques to provide statistical
support to our analysis. Concretely we use non-parametric
methods given that the strong assumptions required by para-
metric methods may not be satisfied in our datasets. Here
we use the Friedman-Nemenyi test for comparing mul-
tiple algorithms across datasets [13]. The Friedman test
provides evidence that the outcome of different regres-
sion models is statistically different. The Nemenyi post-hoc
test assesses significant differences between individual
algorithms.

The Friedman test is a non-parametric test based on
the average ranked performances (Rj) of the regres-
sion models on each dataset. The Friedman statistics is
calculated as

Q =
12D

K (K + 1)

K∑
j=1

(
Rj −

K + 1
2

)2

(4)

where D denotes the number of datasets, K the number of
regression algorithms, and Rj = 1

D

∑D
i=1 r

j
i as the average

rank of the algorithm j, where r ji denotes the rank of the j−th
algorithm in the i − th dataset. Under the null hypothesis
that all algorithms perform equally, theQ statistics is approx-
imately distributed as a Chi-square X 2

K−1 distribution with
K − 1 degree of freedom. Therefore we can reject the null
hypothesis and conclude that some algorithms perform better
than other when Q is large enough, with the probability that
X 2
K−1 ≥ Q as p−value.
If the null-hypothesis is rejected, we can proceed with

a post-hoc test. The post-hoc Nemenyi test [13] is applied
to report any significant difference between individual algo-
rithms. This test states that the performance of various algo-
rithms is significantly different if their average rank differs
by at least the critical difference (CD):

CD = qα,K

√
K (K + 1)

12D
(5)

where the critical values qα,K are based on the Studentized
range statistic divided by

√
2. Finally, the results of the

Friedman-Nemenyi test can be visualized with the diagrams
proposed by Demsar [13]. These diagrams show the mean
ranked performances of the algorithms along with the crit-
ical difference such that the lower the ranking, the better
the method. Horizontal lines connect algorithms that are not
significantly different.
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TABLE 2. R2-score of regression task with one-hot encoding.

D. EVALUATION METHODOLOGY
We evaluate the performance of the regression techniques
using nested cross-validation (CV) approach. This method
is commonly used to reduce the bias in the generalization
error induced by the random splitting of the dataset. The inner
CV is used to select the optimal model and the outer CV to
estimate the generalization error of the method. In the outer
5-fold CV loop, 80% of the data (four folds) is provided
as a training set to the inner 5-fold CV, and the remaining
20%, i.e., the hold-out fold, is used as testing set to evaluate
the performance of the model. Within the inner 5-fold CV,
we tune the parameters of theMLmodels. i.e., The ε, σ andC
for SVR, number of trees for Random Fores and GBoosting,
and k for KNN, selecting the best model using the inner
hold-out fold as validation set within a grid-search hyperpa-
rameter optimization scheme [38], [39]. That is, grid-search
exhaustively generates a combination of parameters from a
grid of predefined values in order to train ML algorithms
and select the best model. Finally, we report the average
and standard deviation of the mean square error (MSE)
and the coefficient of determination (R2-score) of the outer
CV folds.

V. EXPERIMENTS AND RESULTS
In this section, we present our comparison methodology
and results. That is, following the scheme of Figure 1,
for each dataset of Table 1, we transform the categorical
variables applying the encoding schemes of section IV-B.
Subsequently, we perform regression tasks applying the algo-
rithms introduced previously in section IV-A, following the
evaluation setting of section IV-D. For the algorithms that
can handle mixed variables, we perform regression without
any encoding. Finally, we provide the overall evaluation of
our models, applying the statistical tests presented in IV-C.
Such tests were performed on the R2-scores only, but similar
conclusions are achieved when applied on mse. In this paper,
the Friedman test is evaluatedwith a significance level of 0.01
followed by the post-hoc Nemenyi test with a significance of
0.05 [13]. Our approach was coded in Python 3.7 with sklearn
0.22.2, and run on a standard Laptop Intel(R) Core(TM) i7-
8665U CPU @ 1.90GHz with 16Gb of RAM.

FIGURE 3. Results of Nemenyi test for one-hot encoded algorithms.
Groups of algorithms that are not significantly different at p = 0.05 are
connected.

A. BEST ALGORITHM FOR ENCODING STRATEGY
The first part of our experimental setting aims to answer
the question: For a given encoding scheme, which machine
learning algorithm is the most appropriated to predict tire-
performances?. As the strategy to manage mixed-variables is
critical, we complete our analysis for each encoding scheme
and summarize the overall outcome in the discussion section.

1) RESULTS WITH ONE-HOT ENCODING
Table 2 shows the Mean and standard deviation of the
R2-score for the regression tasks.

The critical value of X 2
7 is 18.47, which is lower than

Friedman’s statisticQ = 67.259. As a consequence, we reject
the null hypothesis that all algorithm’s performance is equiv-
alent. Regarding this rejection, the post-hoc Nemenyi test
is applied. The significance diagram in Fig. 3 shows the
average performance ranks of the algorithms along with the
Nemenyi’s critical difference tail (CD = 2.474).
From the figures 3, 4, we can see that:
• GBoosting and Random Forest are significantly better
than KNN, LR and SVR linear.

• The SVR clinical and SVR Rbf kernels are equivalent
and significantly better than SVR linear.

• The SVR linear is significantly worse than KNN clini-
cal, SVR clinical, SVRRbf, RandomForest andGBosst-
ing.

2) RESULTS WITH BINARY ENCODING
Table 3 shows the Mean and standard deviation of the
R2-score for the regression task across datasets. The Fried-
man statistics isQ = 71.093, which is greater than the critical
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TABLE 3. R2-score of regression task with Binary encoding.

FIGURE 4. The p−values for the one-hot encoding obtained with the
post-hoc pairwise multiple comparison according to Nemenyi’s test.

FIGURE 5. Results of Nemenyi test for binary encoded algorithms.
Groups of algorithms that are not significantly different at p = 0.05 are
connected.

value X 2
7 = 18.47. Thus, the null hypothesis is rejected with

a significance of 0.01, and we proceed with the Nemenyi test.
From the significance diagram of Figure 5 and 6 we can state
that:
• GBoosting, Random Forest and SVR Rbf are
significantly better than KNN, LR and SVR linear.

• The SVR clinical significantly better than SVR linear
• The SVR linear is significantly worse than KNN clin-
ical, SVR clinical, SVR Rbf, Random Forest and
GBoosting.

3) RESULTS WITH HASHING ENCODING
Table 4 shows the Mean and standard deviation of the
R2-score for the regression task across datasets. The critical
value ofX 2

7 is 18.47, which is lower than Friedman’s statistic
Q = 70.074. We reject the null hypothesis and conclude that

FIGURE 6. The p−values for the binary encoding obtained with the
post-hoc pairwise multiple comparison according to Nemenyi’s test.

the algorithm’s performance is not equivalent. The critical
difference, according to the Nemenyi test, is CD = 2.474. Its
significance diagram is shown in Fig. 7 showing the following
results:
• Random Forest is significantly better than KNN, LR,
SVR clinical, SVR linear.

• The SVR Rbf is significantly better than LR and SVR
linear

• The SVR linear is significantly worse than KNN clin-
ical, SVR clinical, SVR Rbf, Random Forest and
GBoosting.

4) RESULTS WITH BACKWARD DIFFERENCE ENCODING
Table 5 shows the Mean and standard deviation of the
R2-score for the regression task across datasets.

Here, the Friedman statistics Q = 70.033 is greater than
the critical value X 2

7 = 18.47. Thus, we reject the null
hypothesis with a significance of 0.01, and we conclude that
the algorithms perform differently. The critical difference
for the Nemenyi test is CD = 2.4747. Thus, regarding the
significance diagram of Figure 9, we can conclude that:
• GBoosting and Random Forest are significantly better
than KNN, LR and SVR linear

• The SVMRbf is significantly better than KNN and SVR
linear
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TABLE 4. R2-score of regression task with hashing encoding.

TABLE 5. R2-score of regression task with Backward difference encoding.

FIGURE 7. Results of Nemenyi test for hashing encoded algorithms.
Groups of algorithms that are not significantly different at p = 0.05 are
connected.

• The SVR linear is significantly worse than KNN clin-
ical, SVR clinical, SVR Rbf, Random Forest and
GBoosting

5) DISCUSSION OF ENCODING SCHEMES
In this experimental setting, we have shown the effect
of different strategies for handling mixed variables in the
precision of the regression algorithms. Overall, the experi-
ments reveal that ensemble methods for regression, i.e., Ran-
dom Forest and GBoosting, perform significantly better than
non-parametric (KNN) and linear models, i.e., linear regres-
sion (LR) and SVR linear, in all encoding schemes. This can
be explained because tire-related data is highly dimensional
and non-linear, i.e., tire performances have complex physical
dependencies with tire features and compounds, and thus
non-linear ensemble models will outperform simpler linear
models. Besides, the Random Forest model uses a collection
of trees to make its predictions selecting a random subset

FIGURE 8. The p−values for the hashing encoding obtained with the
post-hoc pairwise multiple comparison according to Nemenyi’s test.

of input features, reducing the search space where each tree
is optimizing. Hence, ensemble methods can better handle
the curse of dimensionality introduced by different encoding
schemes, therefore improving its generalization capability.
On the other hand, there is not enough evidence to claim
that ensemble methods are better than non-linear kernels,
i.e., SVR Rbf and SVR clinical. Besides, it is clear that SVR
linear performance is significantly the worst of all methods,
no matter the encoding strategy used. Finally, SVR Rbf and
SVR clinical are equivalent methods under one-hot encoding,
and unlike ensemble methods, they provide ameaningful way
to compare tires for further mining purposes. This will be
discussed with more details in section VI.
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FIGURE 9. Results of Nemenyi test for backward difference encoded
algorithms. Groups of algorithms that are not significantly different at
p = 0.05 are connected.

B. BEST ENCODING FOR CLASSES OF ALGORITHMS
In the second part of our experiments, we address the problem
of choosing the best encoding for classes (groups) of algo-
rithms, in particular for the most performing methods from
the previous section. We consider ensemble, kernel-based,
and non-parametric models as groups under analysis.

1) ENSEMBLE METHODS
Here we investigate the best encoding scheme for Random
Forest and GBoosting algorithms.1 We apply the Friedman
test independently on Random Forest and GBoosting per-
formances from Tables 2,3,4,5 to test the hypothesis that
the selected algorithm has equivalent performances across
encoding strategies.

Starting with Random Forest, the critical value of X 2
3 for

a significance level of 0.01 is 11.34, which is greater than
the Friedman’s statistic Q = 5.267, meaning that we fail
to reject the null hypothesis. Similarly, Friedman’s statistic
for GBoosting is Q = 1.80, so that we fail to reject the
hypothesis that all encoding methods perform equally. As a
consequence, we verify that there is not a favorite encoding
strategy to perform regression with ensemble methods in this
tire-performance data.

2) KERNEL-BASED REGRESSION
Here we investigate the effect of encoding schemes on SVR
Rbf and SVR linear methods. As before, we perform the
Friedman test independently on the performance from tables
2,3,4 and 5, to test the hypothesis that the performance of
the given algorithm is equivalent across different encoding
systems.

The critical value for the X 2
3 with a significance of 0.01

is 11.34, which is greater than the Friedman’s statistics Q =
2.799. Thus, we fail to reject the null hypothesis that the SVR
linear performances are equivalent across encodings. On the
other hand, Q = 20.847 for SVR Rbf (including the SVR
clinical), which is greater than the critical valueX 2

4 of 13.276
at 0.01 of significance. The null hypothesis is rejected and
the Nemenyi critical difference CD = 1.43 is shown in the
significance diagram, Figures 11 and 12

Here we observe that the considered encoding schemes
are equivalent under SVR linear models, which is expected
because this kernels can handle large dimensional data better

1Although tree based methods are known for nativity handle categorical
variables without any transformation, most of implementations require an
encoding reprocessing step.

FIGURE 10. The p−values for the backward encoding obtained with the
post-hoc pairwise multiple comparison according to Nemenyi’s test.

FIGURE 11. Results of Nemenyi test for SVR Rbf. Groups of encodings
that are not significantly different at p = 0.05 are connected.

FIGURE 12. The p−values for the SVR Rbf regression obtained with the
post-hoc pairwise multiple comparison according to Nemenyi’s test.

than other models, impart due to the excessive regular-
ization that occurs [40]. On the other hand, the binary
encoding is significantly better than backward difference,
clinical, and one-hot encoding for the SVR Rbf. Indeed,
the Gaussian kernel is more sensitive to the curse of
dimensionality, performing better in encoding schemes with
lower dimensions.

3) K-NEAREST NEIGHBOR REGRESSION
Here we investigate the effect of the considered encodings
on KNN regression (including KNN clinical). As before,
we perform the Friedman test on the performances taken from
tables 2,3,4 and 5, to test the hypothesis that KNN performs
similarly across different encoding strategies.
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TABLE 6. MSE of regression task with one-hot encoding.

FIGURE 13. Results of Nemenyi test for KNN. Groups of encodings that
are not significantly different at p = 0.05 are connected.

FIGURE 14. The p−values for KNN regression obtained with the post-hoc
pairwise multiple comparison according to Nemenyi’s test.

The critical value for the X 2
4 with a significance of 0.01

is 13.276, which is lower than the Friedman’s statistics
Q = 19.520. Thus, we reject the null hypothesis, and after
applying the Nemenyi post-hoc test, we achieve a critical
difference of CD = 1.43 which is shown in the significance
diagram, Figures 13 and 14

KNN is well known to be sensitive to high dimensions.
Therefore, it is shown that KNN clinical is significantly better
than backward difference and one-hot encoding.

VI. A TIRE-SIMILARITY FUNCTION
As a side benefit, the previous analysis allows us to define
a similarity metric for tire-comparison. Similarity in data
mining is an important concept for searching, comparing,
and retrieving objects from a database. Designing a similarity
measure for tire-based data is not a trivial task as the mixed-
type nature of its variables and because there is not a general

FIGURE 15. K-nearest neighbors with clinical kernel (MDS projection).

rule of what a ’good’ similarity should be. Roughly speaking,
a similarity function f : Rp

× Rp
−→ R is a real-valued

function that takes two input tires x and y and assigns a
high value when they are ’close’ whereas assigns a lower
value when x, y are far away in a Euclidean space. As we
showed in section 3, this notion is implicit in the definition
of kernels. Although the intuition of kernels as measures of
similarity is not always obvious [41], there are cases where
this notion coincides. In addition, we hypothesize that a good
similarity function for tires should be good enough to pre-
dict tire performances. Thus, supported by our results from
the previous section, we consider the Gaussian (Rbf) and
the clinical kernel functions as relevant similarity measures
for tires.

QUERYING A REFERENCE TIRE
We show the proposed tire-similarity qualitatively in a com-
mon industrial application of the query by example principle.
That is, given a reference existing tire from the dataset,
we retrieve the nearest tires according to the similarity func-
tion. As a proof of concept, we provide a visualization of the
D3 from Table 1, i.e., the force and moments data, by embed-
ding the tires in a three-dimensional space preserving the
clinical-kernel similarity. The pairwise dissimilarity matrix is
projected to 3d coordinates bymeans of theMultidimensional
scaling (MDS) [42] algorithm so that the embedded tires
preserve the original clinical-kernel distances.
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TABLE 7. MSE of regression task with binary encoding.

TABLE 8. MSE of regression task with hashing encoding.

TABLE 9. MSE of regression task with backward difference encoding.

In the above figure can be seen the embedded tire space,
the reference tire (in red) and its ten closest tires retrieved
from the F&Mdataset with the clinical kernel used previously
in regression tasks.

VII. CONCLUSION
In this work, we proposed a comparison methodology to
select the most appropriate ML regression algorithm when
dealing with mixed-type variables across multiple datasets.
Our approach was presented with a case study of the tire

industry for tire-performance prediction. We have shown that
non-parametric Friedman and Nemenyi statistical tests allow
us to decide about the appropriateness of encoding strategies
for certain classes of regression algorithms. In particular,
we showed that ensemble methods, i.e., Random Forest and
Gradient Boosting perform significantly better than linear
models and KNN and its performance across categorical
encodings are equivalent. In contrast, kernel-methods for
regression are sensitive to encoding schemes. The SVR lin-
ear performance is significantly the worst of the considered

214912 VOLUME 8, 2020



L. Gutiérrez-Gómez et al.: Comparison Framework of Machine Learning Algorithms

methods with any encoding and SVR Rbf is comparable
marginally with ensemble methods when used with binary
encoding. Besides, kernels have the benefit of being used
for both regression and similarity tasks for data mining
applications.

APPENDIX
MEAN SQUARE ERROR TABLES
See Table 6–9.
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