
Received September 23, 2020, accepted November 17, 2020, date of publication November 30, 2020,
date of current version December 14, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3041276

Quantifiable Isovist and Graph-Based Measures
for Automatic Evaluation of Different Area
Types in Virtual Terrain Generation
ANDREW PECH, CHIOU PENG LAM, AND MARTIN MASEK , (Member, IEEE)
School of Science, Edith Cowan University, Perth, WA 6027, Australia

Corresponding author: Martin Masek (m.masek@ecu.edu.au)

This work was supported by an Australian Government Australian Postgraduate Award Scholarship.

ABSTRACT This article describes a set of proposed measures for characterizing areas within a virtual
terrain in terms of their attributes and their relationships with other areas for incorporating game designers’
intent in gameplay requirement-based terrain generation. Examples of such gameplay elements include
vantage point, strongholds, chokepoints and hidden areas. Our measures are constructed on characteristics
of an isovist, that is, the volume of visible space at a local area and the connectivity of areas within
the terrain. The calculation of these measures is detailed, in particular we introduce two new ways to
accurately and efficiently calculate the 3D isovist volume. Unlike previous research that has mainly focused
on aesthetic-based terrain generation, the proposed measures address a gap in gameplay requirement-based
terrain generation – the need for a flexible mechanism to automatically parameterise specified areas and
their associated relationships, capturing semantic knowledge relating to high level user intent associated with
specific gameplay elements within the virtual terrain. We demonstrate applications of using the measures in
an evolutionary process to automatically generate terrains that include specific gameplay elements as defined
by a game designer. This is significant as this shows that the measures can characterize different gameplay
elements and allow gameplay elements consistent with the designers’ intents to be generated and positioned
in a virtual terrain without the need to specify low-level details at a model or logic level, hence leading to
higher productivity and lower cost.

INDEX TERMS Gameplay elements, terrain generation, level design.

I. INTRODUCTION
Terrain, the physical shape of a piece of ground, has a major
effect on how that ground can be used and interacted with.
In computer games set in a 3D outdoor environment, terrain
is a key means of implementing gameplay design elements
that shape player experience. Some examples of gameplay
design elements, identified by Hullett and Whitehead [1] for
first person shooter levels, include sniper locations, arenas
and choke points. In an outdoor 3D game, these patterns can
be achieved through appropriate shaping of the game terrain.

The process of game terrain creation typically involves
level designers working with environmental artists to achieve
terrains with the required aesthetics and gameplay con-
siderations. Existing work in automating this process has
mainly focused on generation of aesthetic terrains rather than

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

incorporating gameplay elements, as these are hard to quan-
tify. The development of measures that could be used to indi-
cate how suitable an area of terrain is for a gameplay style is a
significant goal. Such measures would give a person creating
the terrain from a design brief an objective assessment of
how their terrain meets the brief. In addition, the measures
could be employed in approaches that seek to automatically
generate a terrain incorporating specific gameplay elements.

In this article, we extend our work from [2] where a set
of measures was introduced to capture the characteristics of
gameplay elements of a terrain. These measures focus on two
aspects of a terrain, namely: the properties of a local area
within the terrain, and the relationships between local areas
within the entire terrain. To characterize local areas, we look
to the field of space syntax [3] and the properties of an
isovist [4]. To examine relationships between the set of areas
on a terrain we utilize measures from graph theory. In [2],
we showed that these measures can be used to categorize

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 216491

https://orcid.org/0000-0001-8620-6779

A. Pech et al.: Quantifiable Isovist and Graph-Based Measures for Automatic Evaluation of Different Area Types

gameplay elements associated with an existing set of game
terrains. The contribution of this article is to provide details
of the algorithms to compute the measures, provide results
of using the measures to drive an evolutionary process that
generates terrain based on gameplay requirements, as well
as provide an expanded review of existing terrain generation
techniques. In particular, we introduce and evaluate two novel
ways of calculating the volume of a 3D isovist that is more
efficient than existing techniques.

The remainder of this article is organized as follows:
Section II serves as an introduction into the field of proce-
dural content generation, focusing on terrain. Also, as our
work introduces new efficient algorithms of computing the
isovist volume, a review of existing methods for such com-
putation is presented. Section III details the measures we
use for characterizing gameplay elements in a terrain and
algorithms for their calculation, including two new isovist
volume estimation methods we have introduced. Section IV
has three sections that describe our evaluations: A) using the
proposed measures to classify area types, B) comparing the
introduced isovist volume estimation methods to existing iso-
vist volume estimation methods, and C) using the proposed
measures in an evolutionary approach towards generating ter-
rains that automatically incorporate user-specified gameplay
elements.

II. BACKGROUND AND RELATED WORK
Procedural Content Generation (PCG) has many uses in game
development from generation of game resources (i.e. textures
and meshes) to the generation of entire game levels, with
generated layouts and objects being automatically placed
around the scene. Originally, simple PCG techniques were
used to generate random dungeon layouts for a game called
‘‘Rogue’’ [5] and a genre of games thereafter referred to as
‘‘Rogue-likes’’ (‘‘NetHack’’, 1987; ‘‘Moria’’, 1994; ‘‘Dia-
blo’’, 1996). Since then, there have been many contributions
to PCG due to its potential in the automation of game devel-
opment. PCG techniques have evolved to be capable of gener-
ating level layouts that meet specific gameplay requirements
such as generating desired player paths or designing levels
based around a story or series of specified events. These are
however mostly constrained to the 2D space and not utilized
in terrain generation. Examples of these include the work of
Ashlock et al. [6] that used a Genetic Algorithm (GA) to
evolve maze-like level layouts according to factors such as
path length and branching factor. Other techniques produce
grammars that are capable of generating game levels that
meet the criteria of a given story or action graph [7]–[9].
Levels generated using these approaches contain a series of
areas that are set out in the logical order for game or story
events to unfold.

Advancements in technology have allowed the creation of
games that feature open worlds, with expansive outdoor envi-
ronments and detailed interior settings. These games have
become increasingly popular and therefore PCG techniques
have been created that aid in the generation of these virtual

worlds. For interior environments, there are techniques that
can generate entire house or building layouts [10]. These
interior levels can then be furnished with other techniques
that place objects such as tables, chairs, and even dinner
plates and cutlery [11], [12]. For exterior environments there
are techniques that can generate roads through an existing
terrain following an optimal path based on a set of cost
functions including terrain slope and the presence of bodies
of water [13]. Other techniques can generate entire road
networks, villages, and even cities [14], [15]. The largest
and one of the most important components of an exterior
environment is the terrain and therefore many techniques that
generate terrain have been developed.

A. AESTHETIC-BASED TERRAIN GENERATION
Most terrain generation techniques focus solely on the ter-
rain’s visual appearance without considering how the terrain
might be used for gameplay. Physics-based methods include
Cordonnier et al. [16], which simulates tectonic uplift and
stream powered erosion to generate realistic terrains. This
approach requires a grey-scale uplift map as input, which
represents the speed at which the terrain is raised by tectonics.
and creates realistic-looking terrains that require post-editing
for use in video games. Cordonnier et al. [17] also introduced
another physics-based terrain generation method that repre-
sents the terrain using a discrete layered model. The layers in
this model collectively represent the state of the scene at each
frame and are updated at each time step by geomorphological
and ecological events such as rain, gravity, temperature, wind,
fire, and lightning that can be adjusted interactively by the
user during the terrain generation process.

Peytavie et al.’s [18] simulation-based approach offers
high level terrain authoring tools involving physical simu-
lations to automatically stabilise layers of sand and rock to
keep the terrain looking natural and detailed. For example,
the user is able to add sand to the terrain and have the physical
simulation use the sand to automatically fill crevices, or the
user may cut out a section of cliff face and the physical
simulations erode the terrain and place rock piles where the
terrain has crumbled.

A collection of example-based methods that take a basic
sketch of a terrain as input and output a detailed version
of the terrain have been used in [19]–[24]. Most of these
approaches allow the user to sketch a terrain as a series of
lines that represent ridges, roads, or rivers, and use various
algorithms to generate the terrain around them. For example,
Rusnell et al. [19] uses Dijkstra’s pathfinding algorithm to get
the distance between points on the terrain and the sketched
ridges, and uses these distance values to blend the ridges
into the terrain. Other example-based techniques have use
real-time input from the designer, rather than a pre-drawn
sketch. For example, Gain et al. [25] allows users to draw
feature silhouettes in real-time and the terrain will update
with these drawn-in features.

Raffe et al. [26] proposed another sample-based technique
that pieces a terrain together using existing terrain tiles via

216492 VOLUME 8, 2020

A. Pech et al.: Quantifiable Isovist and Graph-Based Measures for Automatic Evaluation of Different Area Types

interactive evolutionary computation (IEC). This technique
represents terrains as a 2D grid of terrain tiles, which are
small square chunks of pre-generated terrain. The IEC used
in this technique initialises a population of generated terrains
as a random selection of tiles. The IEC is similar to a GA
except rather than use an automatic fitness evaluation method
and selection scheme, the user is required to interact with
the process at each generation to select the most desirable
terrains to be used in mutation and crossover. The user is
also able to specify tiles that they do not want to be used
in future generations, giving them finer control over the
process. This technique was developed with gameplay in
mind but is not an automated process, requiring the user
to intervene regularly during the generation process. Also,
the grid-like nature of this technique is apparent in the gen-
erated terrains making them look more uniform and less
natural.

A similar patch-based approach was developed by
Antoniuk and Rokita [27], where each patch was assigned
a base-height, dispersion values, and a terrain type. The
terrain type determined which algorithm was used to gen-
erate the height values of the patch, which were offset by
the patch’s base height. Once the terrain for all the patches
has been generated, the boundaries between patches are
blended to form smooth transitions. Although this tech-
nique does not require frequent user input, it does require
detailed information to be provide. This includes a low reso-
lution height map that stores the base heights of each patch,
a text file containing multiple dispersion values for each
patch, and a type map that stores the terrain type of each
patch.

Most recently, deep learning approaches such as Gen-
erative Adversarial Networks (GANs) [28] have been
explored for terrain generation [29]–[33]. For example,
Guérin et al. [29] proposed an approach that combine the
use of GANs and a sample-based terrain generation method.
Their method uses four types of terrain synthesisers to allow
the user to interactively edit a terrain. These four synthesisers
are used to 1) transform a sketch to a terrain, 2) transform a
levelset to a terrain, 3) erase a section of terrain, and 4) apply
erosion to the terrain for added realism. Each synthesiser is
a Generative Adversarial Network (GAN) [28], which has
been trained on existing terrain exemplars to produce realistic
edits to the generated terrain. This method suffers from the
same drawback as other sample-based methods in that it
requires existing terrain data to train the GANs as well as not
considering any form of gameplay.

The primary downside to these sketch-based or interactive
approaches is the amount of input required from the user
who must design where every river, mountain ridge and road
must go as well as specifying additional parameters such
as the roughness and elevation of the terrain for each of
the sketched features. Also, as the techniques’ focus is on
producing terrain based on physics and aesthetics, the user
must explicitly design their environments to allow for any
desired gameplay elements.

B. GAMEPLAY REQUIREMENT-BASED TERRAIN
GENERATION
Several fully automated techniques that generate terrain con-
taining features to facilitate generic gameplay requirements,
such as balance and accessibility, have also been developed.
One such technique is proposed by Togelius et al. [34]
where a GA is used to generate Real Time Strategy (RTS)
gamemaps, including terrain, resource placement, and player
base placement. The chromosome in this approach uses lists
of integers to represent 2D location coordinates for bases,
resources, and hills, which also include an additional height
dimension. The fitness function evaluated the game maps
based on five objectives, namely, distance between player
bases and resources, distance between player bases and other
player bases, distance between resources and other resources,
elevation of player bases, and map symmetry. These objec-
tives could be selected to be used in a multi-objective eval-
uation producing a Pareto front of solutions from which a
designer could choose from. This is a useful technique except
that it does not produce any aesthetic details and testing has
so far been limited to RTS maps.

Another technique for generating terrain maps for RTS
games is proposed by Olsen [35] who developed an efficient
erosion algorithm to form aesthetic terrain with a high prob-
ability of containing large accessible areas suitable for RTS
gameplay. This technique used Voronoi diagrams to represent
mountain and hill boundaries, and ‘‘pink’’ noise for terrain
detail. An optimised hybrid algorithm was then applied to
simulate thermal and hydraulic erosion to add realism. Owing
to the use of Voronoi cells to represent mountains and hills,
simple image processing techniques could be applied to alter
their elevation and widen paths between them to increase
accessibility. This technique is not only efficient but also
produces aesthetically pleasing terrain while taking accessi-
bility into account. Although, with the right parameters, this
technique is likely to produce terrain with a suitable amount
of accessible area, there are many other game related aspects
that are not considered.

Frade et al. [36] introduced a method of evolving terrain
programs via interactive evolutionary computation. A terrain
program is a program that can generate multiple terrains that
all contain the samemorphological characteristics. This work
initially required user intervention to determine good terrain
programs during the evolution process, but in later works user
intervention was replaced with a fitness function. The fitness
function proposed in Frade et al. [37] evaluates a generated
terrain based on the amount of terrain that is accessible. The
evaluation is performed by creating a binary accessibility
map which represents areas of terrain as either accessible
or inaccessible based on a slope inclination threshold. After
the initial accessibility map has been generated, a compo-
nent labelling algorithm is run to determine the number of
accessible areas in the map, and the number of cells that
contribute to each accessible area. Only the largest accessible
area remains in the map while the smaller areas are removed.
The overall fitness of the terrain is determined by the size

VOLUME 8, 2020 216493

A. Pech et al.: Quantifiable Isovist and Graph-Based Measures for Automatic Evaluation of Different Area Types

of the largest accessible area in comparison to the desired
accessible area size. In a subsequent article, Frade et al. [37]
introduced another method of evaluating generated terrains
based on obstacle edge length, which promoted the inclusion
of inaccessible terrain for the player to navigate around.

Andereck [38] introduced another PCG technique which
generated terrain that conformed to an accessible player path.
This technique allows users to specify path control points
which are then connected by Hermite splines to form a
smooth player path. Once the path is generated, a terrain
fitting algorithm is run which transforms a flat plane into
believable terrain while ensuring the inclusion of the desired
path. Although this technique was not designed with video
games in mind, fitting terrain to desired player paths would
be a valuable tool in PCG for video games.

Smelik et al. [39] introduced a sketch-based approach for
procedurally generating terrains for military training games.
This technique allows users to provide a rough sketch of
the terrain, including locations to place buildings, roads,
and vegetation. It then converts the sketch to an editable
layered terrain map that contains detailed terrain data, and
finally generates the terrain as a combination of a height
map and 3D models. Although designed for creating game
levels, this approach still requires a large amount of user input
with desired game design elements having to be manually
expressed by the user in the sketch.

Another technique proposed by Smelik et al. [40] used
two types of constraints to control the generation process of
virtual worlds: semantic constraints and feature constraints.
Feature constraint is linked to a single feature in the terrain
(e.g. forest) and a semantic constraint is composed of several
feature constraints, Semantic constraints could be specified
by the designer and included line-of-sight, chokepoint, route,
and concealment constraints. Feature constraints govern the
placement and state of virtual world features such as trees and
terrain. Semantic constraints are enforced by an interaction
with feature constraints where the feature constraints are
required to alter their current state to conform to the require-
ments of the semantic constraints. For example, a line-of-
sight constraint may be placed between two locations which
are separated by terrain that contains two feature constraints,
hilly terrain and a forest. The line-of-sight constraint inter-
acts with the hills and forest features, forcing them to alter
their state to conform to the semantic constraint. The hills
feature conforms to the semantic constraint by lowering its
hills appropriately to make line-of-sight possible while the
forest feature removes trees from the line-of-sight, meeting
the constraint requirements. This technique is a step towards
enforcing desired gameplay requirements during a virtual
world generation. However, it is not a terrain generation
technique and contains no procedural generation of virtual
world features.

C. ANALYSIS OF THE STATE OF THE ART
In summary, there are currently many terrain generation
techniques that are focused on aesthetics and very few are

focused on incorporating gameplay requirements. This forms
a noticeable gap in current knowledge and there is still no
method that can generate terrains that meet a wide variety of
gameplay requirements. Limited work has been done in this
area by Olsen [35], Togelius et al. [34], and Frade et al. [37]
but their sole focus is either on accessibility or the RTS
genre. Andereck’s [38] work focused on generating terrain
to conform to a desired path, which may be useful as a terrain
generation component, but is still far from being a complete
terrain level generator that incorporates gameplay elements.
Smelik’s approach includes game design in a terrain and
uses semantic constraints that can interact with the terrain
to ensure it meets the desired design of a user [40]. Their
results showed that using semantic constraints is a viable
approach towards incorporating gameplay elements in terrain
generation, but their approach is not scalable. Their approach
allows game design constraints to be enforced, but the user
is still required to manually design and create each of the
virtual environments and implement the desired constraints.
With accessibility and the RTS genre being the main focuses
in this field there is room for more scalable approaches that
can generate terrains with a wider array of gameplay elements
for other game genres.

D. QUANTIFYING GAMEPLAY ELEMENTS – LOOKING TO
THE FIELD OF ARCHITECTURE
As mentioned earlier, a number of gameplay elements have
been described by Hullett et al. [1], where they are referred
to as design patterns. While various characteristics of these
gameplay elements have been detailed, no attempts were
made in [1] at quantifying them. However, some existing
work in the field of architecture have examined using isovist
measures to characterize areas of physical space.

An isovist is defined as the visible (non-occluded) volume
of space surrounding a given point within an environment.
The properties of an isovist have been used to inform the
design and analysis of landscapes and urban environments.
Various measures can be calculated for an isovist, such as
its size and the maximum distance that can be seen from the
isovist’s origin and these can be mapped to characteristics of
the area. For example, Benedikt [4] suggests that the privacy
of an area could be determined by the volume and skewness
of its isovist.

Example applications of isovists include Conroy-Dalton
and Dalton [41], where isovists were generated from 2D
floor plans of buildings or urban spaces, allowing the user to
see various measures associated with the generated isovists.
Van Bilson and Poelman [42] also proposed using isovist
fields in 3D virtual environments, presenting measures from
a field of isovists as 2D images for further analysis. However,
neither of these approaches have used space analysis for
automatic classification of area types.

Volume becomes an important measure when we work
with 3D isovists. Little existing work has involved using 3D
isovists so techniques for calculating the volume of a 3D
isovist are limited [43]–[47]. The isovist volume technique

216494 VOLUME 8, 2020

A. Pech et al.: Quantifiable Isovist and Graph-Based Measures for Automatic Evaluation of Different Area Types

in [43] depends on having a voxel-based world model, where
isovist volume calculation simply becomes a voxel summa-
tion exercise. This is similar to the work in [44], where isovist
volume, referred to as the ‘spatial openness index’, is calcu-
lated by dividing space using a discrete grid and summing
volumes. In [45] the isovist, referred to as the ‘volume of
sight’ is decomposed into 3D segments whose volume is
calculated and summed. Rodriguez et al. [47] introduced the
Rayburst Sampling algorithm, in the context of calculating
volume within medical images, but directly transferable to
isovist volume calculation, where a set of radials are cast
from a central point within a structure in a volumetric image
towards the surface of that structure. These radials were used
to define a triangular surface mesh, and to form a set of
pyramidal volumes that, for a star-convex shaped structure,
could be summed to determine the volume.

The main limitations with current techniques are the com-
plexity of these techniques, in terms of either complexity
of the volume calculation or complexity of transforming the
environment into a form for the calculation (as in voxel-based
method). An attempt at a fast isovist calculation method was
made by Dalton et al. [46], whose method involves summing
the radial lengths of an isovist. This method does not result in
the actual isovist volume, rather in a value that has a strong
correlation to it.

III. ISOVIST AND GRAPH-BASED TERRAIN MEASURES
As discussed in the Section II C, existing work has mainly
focused on generation of aesthetic terrains rather than those
incorporating gameplay elements that capture high-level
designers’ intent as these elements are hard to quantify. The
development of measures for characterization and automatic
evaluation in terms of suitability of an area of terrain for
a gameplay style is an important step towards automatic
gameplay requirement-based terrain generation. To charac-
terize local areas, we employ properties of an isovist [4]
and to examine relationships between the set of areas on a
terrain measures from graph theory are used. Details of the
algorithms to compute these measures are detailed in the
following sections.

The input for calculating the proposed set of terrain mea-
sures are: (1) a terrain heightmap and (2) a layout graph. The
heightmap is a two-dimensional array of values representing
the surface of a terrain as a series of uniformly spaced height
values. An example is shown in Fig. 1. (a), where the height
value of each array cell is represented using grayscale shad-
ing. This is a common representation used for terrain in com-
puter games. The layout graph is a set of nodes and edges that
encodes the expected areas and paths that would be traversed
by a player. This layout graph can be designed manually by
a game designer or automatically through an algorithm [48].
Each node in the layout graph represents an area of terrain that
can contain a gameplay element, with attributes that specify
the coordinates of the area on the terrain surface. The edges
in the graph represent the physical connectivity of the areas
(i.e. traversable paths) in the terrain. An example layout graph

FIGURE 1. Examples of the two inputs required to characterize a terrain’s
areas. (a): height map (b): the layout graph (superimposed on the
rendered terrain).

is shown in Fig. 1(b), overlaid on the 3D rendering of the
terrain, with green spheres representing nodes of graph, and
green curves showing the edges between nodes.

Table 1 lists the complete set of measures utilised in
this approach for characterizing an area in the terrain. Each
measure, apart from the Area Radius, belong to one of two
categories; graph measures (G1-G4), and isovist measures
(I1-I11). The following sub-sections discuss the calculation
of these measures.

A. THE ‘AREA RADIUS’ MEASURE
We define the Area Radius measure for a node in the lay-
out graph as the radius of a circular area centered on the
location of the node on the terrain where the area is at least
90% traversable. This represents a measure of the extent
of traversable terrain from the center of the specific area.
To calculate the Area Radius, we use the terrain heightmap

VOLUME 8, 2020 216495

A. Pech et al.: Quantifiable Isovist and Graph-Based Measures for Automatic Evaluation of Different Area Types

TABLE 1. List of measures used to characterize an area of Terrain.

to calculate an Accessibility Map of the terrain and apply a
32 steps binary search process on the Accessibility Map to
iteratively refine an initial value of the radius, aiming for 90%
traversability.

The Accessibility Map is a 2D array of binary values
indicating the traversable (accessible) and non-traversable
sections of the associated terrain which is determined using
terrain gradient and a gradient threshold. It is generated from
the input terrain height map by calculating the gradient of
the terrain at uniformly spaced locations and using a gradient
threshold to determine if the terrain is too steep to be traversed
at each point. Terrain gradients are first calculated using a
Sobel filter, which returns gradient values, in the range of
[0, 1], which linearly maps to an angle in the range of [0, 90]
degrees. For example, a gradient threshold of 0.5 means any
terrain with a gradient of 45 degrees or greater is too steep
and thus non-traversable. The Sobel operator is employed in
our approach, as it is one of the simplest and most commonly
used first order derivative operators for computing gradient
in the literature. All first order derivative operators work sim-
ilarly and suffer from sensitivity to noise. However, the Sobel
operator with its larger convolution kernel (3 × 3 instead
of 2×2 in Robert) makes it less sensitive to noise but is slower
to compute. The Prewitt operator, uses a slightly different
kernel to the Sobel operator but works in a similar way.

B. GRAPH BASED MEASURES
This section briefly details the methods of calculating the
four graph-connectivity measures that are listed in Table 1
(G1-G4). Graph measures are calculated for each area in the
Layout Graph. These include Degree Centrality, Eigenvector
Centrality,Betweenness Centrality, andCloseness Centrality.
These measures can be used to determine various characteris-
tics of an area, such as the likelihood of the area being visited.
The discussion is brief as we have used standard means of
calculation for these established graph measures, which can
be found in various texts, such as [49].
Degree Centrality is calculated by counting the num-

ber of edges that are connected to the node. Eigenvector
Centrality is a measure of how much influence a node has
in a graph. Calculation of this measure works off the concept
that a node’s influence is determined by the influence of its
neighboring nodes. Calculating this measure is an iterative
process, where each iteration further refines the influence
of each node based on the influence of neighboring nodes.
This means performing more iterations will result in a more
accurate centrality measure. We chose 16 iterations in the
calculation for Eigenvector Centrality.
In order to calculate Betweenness Centrality, the shortest

path between each node in the graph to every other node in
the graph is required. The Betweenness Centrality for any
given node is then calculated as the number of these paths that
travel through the given node (excluding the paths that begin
or terminate at the given node). For undirected graphs, such as
a layout graph, this value must be halved as paths get counted
twice (e.g. a node that exists on the path between node A
and node F will also exist on the path between node F and
node A). Once Betweenness Centrality has been calculated it
is normalized to be in the range of [0, 1].

In order to calculate Closeness Centrality of a given node,
a set consisting of the shortest path between the given node
and every other node in the graph is required. The Closeness
Centrality is then calculated as the sum of the lengths of the
paths in this set. This value is then normalized by dividing
the number of paths in the set by the sum of path lengths. The
length of a path is defined as the sum of its edges’ lengths,
where each edge length is the distance of traversable terrain
separating two areas.

C. ISOVIST-BASED MEASURES
This section details the calculation of the 11 isovist measures
that are listed in Table 1 (I1-I11).

1) GENERATING AN ISOVIST
An isovist associated with an area is first generated before
calculating the measures associated with the area. As in [4],
we represent an isovist as a set of radial vectors. Our repre-
sentation consists of a number of randomly distributed 3D
vectors cast out from the origin (a point in 3D space) of
the isovist, as shown in Fig. 2., where green lines represent
the radials of the isovist. The length of each radial vector

216496 VOLUME 8, 2020

A. Pech et al.: Quantifiable Isovist and Graph-Based Measures for Automatic Evaluation of Different Area Types

is set to a maximum view distance unless terminated by
intersection with the geometry of the environment. Fig. 2.
demonstrates this, where some radials reach the maximum
view distance, while others intersected with occluding obsta-
cles and terminate early.

FIGURE 2. An example of a three-dimensional isovist represented as a
collection of radial vectors (green lines). While some vectors reach a
maximum view distance, others hit occluding obstacles and terminate.

In our approach, outlined using pseudocode in Table 2,
four inputs are required in the GenerateIsovist function for
generating an isovist; the origin of the isovist, the maximum
view distance, maxViewDistance, the resolution (the number
of radials), and the environment (e.g. terrain). The origin is
a point in 3D space that the radial vectors are cast out from
and is set to the center of the specified area retrieved from the
corresponding node in the Layout Graph. The height of the
origin is set to the eye-height of a theoretical game character
that is standing at the center of the area. The maximum view

TABLE 2. Pseudocode for Generating an Isovist.

distance is the maximum allowed length of a radial based
on visibility considerations. The resolution is the number
of radials to cast, where greater resolutions result in more
accurate isovist measures, but also an increased computation
time. The environment (i.e. the terrain) is used to perform
intersection tests with radials to determine any occlusion.

The process of generating an isovist in the GenerateIsovist
function involves creating a new isovist variable, which is a
composite datatype consisting of:

• A 3D point to hold the isovist origin using (x,y,z) coor-
dinates.

• A container holding a set of 3D vectors, each vector
representing one of the radials using (x,y,z) components.

First, the isovist origin is set to the value of the origin variable
from the input to the function. This is followed by a loop that
sets the components of each radial vector, where resolution
number of vectors are created.

For each radial, it is first initialized by setting its x, y,
and z components to random values from a pseudo-random
number generator, with the vector then normalized to give
it a length of 1. This determines the direction of the radial.
Next, the length of the radial is determined by casting a ray
from the isovist origin in the direction of the radial vector,
to determine where the ray intersects with artefacts in the
environment. If the distance between the origin and the first
ray intersection point is less than themaximum view distance,
then the radials length is set to the distance to the intersection
point, otherwise it is set to the maximum view distance. This
is done by multiplying the unit length initial direction radial
by the desired length.

Once all of the radials have been initialized with direc-
tion and magnitude, the isovist variable is returned from the
function.

2) CALCULATING ISOVIST MEASURES
The collection of isovist measures used in this research has
been selected from those used by [3], [35], and [36] along
with four newmeasures. These newmeasures include Volume
and Sphericality, which replace their 2D counterparts, area
and circularity, from the above works, and the Drift 2D and
Drift 3D measures, which are variations of the drift measure
from [41].

TheMinimum Radial Length andMaximum Radial Length
measures are the smallest and largest, radial lengths of the
radials of an isovist, respectively. The Average Radial Length
is the sum of radial lengths divided by the number of radials.
Variance is the standard statistical variance calculated

using the radial lengths of an isovist. It is calculated as
the sum of squared differences between each radial length
and the Average Radial Length, then divided by the number
of radials minus one. Equation (1) shows this calculation,
where N equals the number of isovist radials, rn is a single
isovist radial, and arl equals the Average Radial Length. The
Standard Deviation can then be calculated as the square root

VOLUME 8, 2020 216497

A. Pech et al.: Quantifiable Isovist and Graph-Based Measures for Automatic Evaluation of Different Area Types

of the Variance.

Variance =

∑N
n=1 (|rn| − arl)

2

N − 1
(1)

Skewness is calculated, in the same manner as Variance,
using (2).

Skewness =

∑N
n=1 (|rn| − arl)

3

(N − 1) ∗ sd3
(2)

Dispersion is calculated as the Average Radial Length
minus the Standard Deviation. Sphericality is calculated as
the volume of a sphere, where the radius of the sphere is equal
to the Average Radial Length, divided by the actual volume of
the isovist. Equation (3) shows this calculation, where arl is
the Average Radial Length, and v is the Volume of the isovist,
which is calculated using (5).

Sphericality =
4π
3 (arl)3

v
(3)

Drift 3D and Drift 2D are calculated as the magnitude
of the average of the radials of an isovist. The difference
between Drift 2D and Drift 3D is that Drift 2D only uses
the x and z components of the isovist radials, while Drift
3D includes the y component (the up axis). Equation (4)
demonstrates this.

DriftXD =

∣∣∣∣∣
∑N

n=1 rn
N

∣∣∣∣∣ (4)

D. NOVEL ISOVIST VOLUME ESTIMATION METHODS
As discussed previously, there is limited existing work asso-
ciated with the calculation for the volume of a 3D isovist.
In this section, we introduce two methods that can be used to
approximate the volume of 3D isovist.

1) METHOD 1: ISOVIST METHOD
Our method estimates volume of a 3D isovist using only the
set of N isovist radial vectors, shown in (5). The approxi-
mation can be interpreted as follows: each radial defines a
spherical volume where the surface of that sphere touches the
isovist surface at the end of that radial. The estimated volume
of the isovist is obtained by taking the average of the spherical
volumes.

Volume =
4π
3

N∑
n=1
|rn|

3

N
(5)

This technique represents the volume of an isovist, or any
volume that has the property of being a star-convex set [50]
with respect to the origin of the radials. The volume approx-
imation does not hold for non-convex volumes that are not
star-convex, as in such volumes some of the cast out radials
will be occluded from interrogating the complete surface of
the shape.

The algorithm is efficient, as it relies on knowing only the
radials, which would in any case need to be obtained to com-
pute other measures of the isovist, such as those discussed

in [4] and [41], in order to characterize the space it represents.
The algorithm is also simple, as it does not depend on any
relationship between the radials as is needed by techniques
that use triangulation, such as in [47].

2) METHOD 2: MONTE CARLO-BASED METHOD
Based on the Monte Carlo principle [51], Monte Carlo inte-
gration is an established method of calculating volume [52]
of objects, that based on our search of the literature has not
been applied to isovist volume computation. Monte Carlo
integration relies on the unknown volume being enclosed by
a known volume and being able to test whether a point is
within the unknown volume. A set of random points is taken
fromwithin the known volume and the number of these points
that also lie inside the unknown volume is determined. The
unknown volume is then approximated as the known volume,
multiplied by the ratio of points in the unknown volume to
the total number of points. As the number of random points
approaches infinity, the volume approximation approaches
the true volume. In the calculation of the volume of a 3D
isovist, the known volume equates to the volume of a sphere
with a radius equal to the maximum view distance. A random
point is considered being inside the 3D isovist if its distance
to the origin of the isovist is less than the maximum view
distance, and if there are no occluding obstacles between the
point and the origin. The calculation of 3D isovist volume
then entails the added computational burden of testing a
multitude of random points against the environment.

IV. EXPERIMENTS AND RESULTS
The measures proposed in this article were first evaluated
using an existing set of terrain-based levels with manu-
ally identified gameplay elements. Section A contains the
details of this evaluation, based on our discussion from [48].
Section B describes evaluations for the novel 3D isovist
volume estimationmethods. Lastly, Section C contains evalu-
ations for demonstrating the application of the set of proposed
measures for incorporating gameplay elements into a user-
specified terrain, including a measure of the time taken to
produce the complete set of measures. The performance times
obtained for the experiments are from running on a computer
with an Intel Core i7-4700HQ CPU with 32 GBRAM.

A. EXPERIMENTS AND RESULTS OF USING PROPOSED
MEASURES TO CLASSIFY AREA TYPES
To determine the suitability of the proposed measures in
being able to identify gameplay elements, we used a set of
terrains containing areas that mapped to specific gameplay
elements, as defined in [1]. The terrains consisted of publicly
available height maps for the video game ‘‘Savage: The Battle
for Newerth’’ [53]. For each terrain, we used the player
traversable regions to manually construct the layout graph
and the gameplay element descriptions from [1] to identify
areas on the terrain corresponding to hidden areas, open areas,
vantage points, choke points, and strongholds. The number of
instances of each gameplay element is shown in Table 3.

216498 VOLUME 8, 2020

A. Pech et al.: Quantifiable Isovist and Graph-Based Measures for Automatic Evaluation of Different Area Types

TABLE 3. Gameplay element Instances in the Testing dataset.

For each gameplay element instance, the area radius and
isovist-based measures were calculated from a point in the
centre of the area, 50 units up from the terrain height at
that point (defined as eye-height for a character). The graph-
based measures were calculated from the layout graph of the
corresponding terrain. This produced a dataset, where each
data point consisted of the set of measures along with the
gameplay element type.

The measures were first evaluated using an information
theory-based approach, calculating the information gain of
each measure with respect to gameplay element type. The
information gain of each attribute is shown in Table 4, with
the attributes ranked in descending order of information gain.

TABLE 4. The measures, ranked by information gain with respect to game
element type.

Based on information gain, the most influential attribute
is the area radius, followed by the graph-based measure of
degree centrality. Of the isovist-based measures, Sphericality
had the largest information gain with respect to gameplay
element type. These showed that the amount of accessible
terrain, shape of the visible volume and the location of the
area with respect to the rest of the terrain can characterize the
gameplay elements, which is supported by their descriptions
from Table 3.

Both the minimum and maximum isovist radial lengths
had an information gain of zero. This is due to the particular
nature of the terrain as every area has an equal value for

both of these attributes, whichmeans they cannot differentiate
between different areas. All of the areas are based on outdoor
terrain environments with no occlusion from above, and guar-
anteed occlusion below by the ground. As such, we found
that in each area type, the minimum radial length was the
distance from the isovist centre to the ground and the max-
imum distance resulting from radials facing directly up, with
these distances being capped to the maximum view distance.
Although theminimum andmaximum radial lengths were not
essential in the context of our chosen terrain environments,
it is important to include them in our proposed measures as
they can play a more definitive role in different environments,
such as indoor game levels and outdoor games with features
such as caves and tree canopies.

To further test the ability of the proposed measure to differ-
entiate gameplay elements, the gameplay element dataset was
used to construct classifiers whose performance was mea-
sured. Four different classifiers were evaluated, J48 decision
tree, naïve Bayes, multi-layer perceptron (MLP), and a proba-
bilistic neural network (PNN). The classifiers used were from
the WEKA [54] software package. Each classifier was evalu-
ated using 10-fold cross validation and parameters related to
the classifiers and training process were left at their default
values. Table 5 shows the classification accuracy and Cohen’s
Kappa [55] for each of the classifiers. Cohen’s Kappa pro-
vides a measure of how closely the classifier matches the
ground truth class for nominal data, in this case how closely
the game element type predicted by the classifier based on the
proposed measures matches the actual game element type as
manually labeled when constructing the dataset. It is argued
in [56] that a Kappa between 8.1 and 1 corresponds to an
‘almost perfect’ strength of agreement, and this is achieved
by three of the four classifiers, with only the J48 classifier
scoring below.

TABLE 5. Classification accuracy and Cohen’s Kappa for the gameplay
element classifiers.

Overall, the classifiers performed similarly with the num-
ber of correctly classified instances in the lowest performing
classifier (J48) being 59 and in the highest performing classi-
fier (MLP) being 61, out of a total of 70 instances. To provide
a feel for the individual gameplay area classifications, and
their miss-classifications, the confusion matrices of the worst
(J48) and best (MLP) performing classifiers are shown in
Table 6 and Table 7. For each confusion matrix, the label
of the actual class an area belongs to is in the far-right

VOLUME 8, 2020 216499

A. Pech et al.: Quantifiable Isovist and Graph-Based Measures for Automatic Evaluation of Different Area Types

FIGURE 3. Three scenarios, where an isovist has been generated in a complex environment. (a) an isovist generated in the middle of a street in an urban
environment. (b) an isovist generated in a hidden alcove. (c) an isovist generated at a vantage point on top of a building.

TABLE 6. Confusion matrix for the J48 classifier.

TABLE 7. Confusion matrix for the MLP classifier.

column, with each other column listing the number of area
instances classified as a particular area. For example, for the
J48 classifier confusion matrix in Table 6, the first row of
numbers correspond to the 11 hidden areas present in the
dataset. Out of the 11, 10 were correctly classified as hidden
areas and one was miss-classified as a vantage point,

By examining the confusion matrices for both J48 and
MLP, we can see most areas correctly classified, with the
most misclassification between the Strong hold and the Open
Area classes. For J48, three of the 10 strong holds were
miss-classified as open areas and two of the 15 open areas
were miss-classified as strong holds. The MLP classifier
performed better in terms of differentiating these two areas,

with only one of the strong holds being miss-classified as an
open area, whilst still two open areas miss-classified as strong
holds.

B. EVALUATIONS OF VOLUME ESTIMATION METHODS
Three methods for estimating volume of an isovist are
examined. These methods are: Rodriguez’s Rayburst Sam-
pling algorithm [47], Isovist method and Monte Carlo-based
method. Three outdoor scenarios were used, where the ter-
rain is populated by a variety of boxes to occlude visibility.
Fig. 3. displays these three complex scenarios and their asso-
ciated isovists. The scenarios are labelled (a) Urban Street,
(b) Hidden Area, and (c) Vantage Point. The isovist in the
Urban Street scenario was placed in the middle of a street
intersection, while the isovist in the Hidden Area scenario
was placed in an alley cul-de-sac. The isovist in the Vantage
Point scenario was placed on top of a building.

To measure the accuracy of the isovist volume estimation
methods, a measure the ground truth was obtained. Here,
we have relied on the property of Monte Carlo integration,
where as the number of points tends to infinity, the esti-
mated volume converges to the actual volume. An estimate of
the ground truth was obtained using the Monte Carlo-based
method where the resolution was increased to a large number
(64000000 points).

In terms of the experimental setup, each experiment
involved three methods to estimate the volume of an isovist
at one of four resolutions, 256, 1026, 4098 and 16386. Each
volume estimation was repeated 2048 times due to the non-
determinism in the algorithms.

Evaluation of the results from these experiments is divided
into two parts. First, we compare the distribution of estimated
volume across the 2048 runs associated with each of the three
methods, then we examine the computation times of each
method.

Results from the urban scenarios are visualized as box
and whisker plots in Fig. 4. Each box and whisker repre-
sent the distribution of estimated volume from one partic-
ular algorithm at a particular resolution for the 2048 runs.

216500 VOLUME 8, 2020

A. Pech et al.: Quantifiable Isovist and Graph-Based Measures for Automatic Evaluation of Different Area Types

FIGURE 4. The box and whisker plots of the three urban scenarios, dotted horizontal line indicated actual volume.

A dotted horizontal line indicates the ‘ground truth’ volume.
These figures show that, the Rayburst Sampling method was
the least accurate in terms of median volume estimations.
Even at the highest resolution, Rayburst was typically less
accurate than Monte Carlo based method and the Isovist
Method, although it does have the least variance in its estima-
tions as shown by its small interquartile range. Monte Carlo
based method had produced the greater variance, with the
largest interquartile ranges, but produced accurate median
values similar to those of the Isovist Method. The Isovist

Method had estimations with smaller interquartile ranges
than the Monte Carlo based method, making its estimations
more reliable, and also produced the most accurate median
estimations.

Fig. 5. illustrates why the Rayburst method is less accurate
at lower resolutions. This figure shows a 2D example of
how the Rayburst method triangulates space. The Rayburst
method sums the area of each triangle to calculate the area
of the isovist, but this leaves pockets of space that do not
have their area included in the calculations. This means that

VOLUME 8, 2020 216501

A. Pech et al.: Quantifiable Isovist and Graph-Based Measures for Automatic Evaluation of Different Area Types

FIGURE 5. Example of how the Rayburst volume estimation method
cannot capture an isovist’s true volume.

higher resolutions are required to minimize the amount of
uncaptured space.

To summarize, the proposed Isovist Method produced the
most accurate median values with smaller interquartile ranges
thanMonte Carlo integration. The Rayburst method produced
the smallest interquartile ranges, but its volume estimations
were less accurate than either the Isovist Method or Monte
Carlo integration. From the plots (Fig. 4.) it can be seen
that all three methods (Rayburst, Monte Carlo, and Isovist)
showedmore variability in their respective volume estimation
at lower resolutions and increasing accuracy as the resolution
increases. The Isovist Method consistently outperformed the
other methods across the four resolutions and scenarios with
increasing complexity.

Besides evaluating the methods in terms of their accu-
racy in volume estimation, computation efficiency of these
methods is examined. For a ‘fair’ comparison where each
volume estimation method was given the same four inputs
(the origin of the isovist, the resolution, the maximum view
distance, and the environment), Monte Carlo integration was
typically the fastest method, on average taking just under
half the time of the next fastest method, the Isovist Method.
The Rayburst method was the slowest, especially at high
resolutions. At resolution 16386 the Rayburst method took,
on average, 7.6836 seconds to calculate the volume of a single
isovist, compared to the Isovist Method and Monte Carlo
method, which took 0.261, and 0.1122 seconds respectively.

In the ‘fair’ comparison, the time taken for the Isovist
and Rayburst methods include the time required to generate
the isovist vectors. To make the comparison more mean-
ingful to our application, where the isovist vectors need to
be computed anyway so as to obtain the other isovist-based
measures, the comparison was re-done, removing the isovist
calculation times. This reduced the computation time for the
Isovist Method and Rayburst method, at resolution 16386,
to 0.0012 and 0.0039 seconds respectively. As such, we have
used the Isovist Method in our work.

C. RESULTS FROM USING PROPOSED MEASURES IN AN
EVOLUTIONARY TERRAIN GENERATION APPROACH
To demonstrate how the proposed measures can be used to
automatically generate a terrain containing a specific set of
gameplay elements, we incorporated the measures in an evo-
lutionary approach [48]. The Genetic Algorithm (GA) based
approach evolves a set of modifications that, when applied to
a specific initial terrain, incorporates areas of user-specified
types (examples include: Hidden Area, Strongholds, Vantage
Point and Open Area) and associated constraints, also spec-
ified by the user. This approach takes three inputs, an initial
terrain, an input graph, and an area type dataset. The initial
terrain is a terrain represented as a height map to which the
evolved modifications are applied. The input graph consists
of a collection of nodes, where each node corresponds to
a desired area type, and a collection of edges, where each
edge represents a desired constraint between two areas, which
influences the layout of areas in the terrain. The constraints
used were: geographic (straight line) distance, path distance,
traversability (whether its possible to traverse from one area
to the other), and line-of-sight (whether one area is visible
from the other). The area type dataset used was the same
as developed for the initial testing of the measures, sum-
marized in Table 3. The area type dataset is used in the
fitness evaluation of the approach, where evolved areas are
characterized using the 16 proposed measures and compared
to the measures corresponding to area instances in the dataset
using the Euclidian distance to determine how similar the
evolved area is to its desired type.

A series of experiments was conducted to demonstrate
the use of the proposed measures for generating a terrain
incorporating game designers’ intent using our evolutionary
approach. Each of the experiments attempted to evolve a
terrain with a certain number of area types with constraints
between them. For each experiment, the GA run was repeated
30 times, with each repetition starting from a random initial
population for 2000 generations. This repetition of the same
experiment gives a balanced insight into the performance of
the approach, as GA is stochastic. The GA parameters used
for these experiments are summarized in Table 8.

TABLE 8. Genetic Algorithm Parameters for the experiments.

In general, it was found that the approach produces ter-
rains that meet the target requirements, though as the num-
ber of requirements (area types and constraints) increases it

216502 VOLUME 8, 2020

A. Pech et al.: Quantifiable Isovist and Graph-Based Measures for Automatic Evaluation of Different Area Types

becomes more likely that some of the requirements are not
met in totality in a particular solution. Taking the terrains
corresponding to the highest fitness for each run, for each
experiment we now provide a brief analysis of the accuracy.

For the geographic distance constraints between areas, our
results showed that on average, it attained within 4% of
specified values in approximately 75% of the evolved terrains
across experiments involving these constraints.

In terms of the path distance constraints between areas,
the difference between evolved and desired path distance was
on average less than 2% in approximately 75% of the evolved
terrains.

The line of sight and traversability constraints are both
Boolean, so these are either met or not. For each experiment,
out of the 30 terrains resulting from each run, between 1-4 of
the terrains did not meet all of these constraints, meaning they
were all met in the majority of cases.

In terms of the look of the final terrain, we present here
the results for three of them, with the goal for each of these
experiments summarized in Table 9. Experiment 1 was a
simple test, to see if a single area type, a hidden area, with
no constraints could be evolved into a terrain. Experiment 2
and 3 add more areas and constraints in order to provide a
more comprehensive test of our approach.

TABLE 9. Experiments and their desired areas and constraints.

In all experiments, the initial terrain that modifications
were applied to was generated using Perlin noise [57] and
is showing in Fig. 6. (a). The generated terrain for EXP 1 is
shown in Fig. 6 (b), viewed from above in order to showcase
the entire terrain. This terrain corresponds to the solution
with the highest fitness out of the 30 runs of the experiment.
The generated terrain is annotated with a set of spheres, each
corresponding to a distinct area type that was evolved into the
original terrain. The hidden area is represented as a yellow
sphere, with grey spheres representing other areas that were
evolved into the terrain in the process. To enable evaluation of
how hidden the area really is, Fig. 6.(c) shows the hidden area
from the view point of a player standing on the terrain. The
hidden area is shown to be a small area with a single access
point that is surrounded by elevated terrain to keep it hidden.
These are desirable traits for a hidden area. It should be noted
that whilst incorporating the hidden area, the evolved terrain
has maintained the overall aesthetics of the original terrain.

EXP2 attempted to evolve two strongholds and two hidden
areas into the same initial terrain as EXP1 (as was shown
in Fig. 6. (a)). This experiment also attempted to maintain
geographical distance, path distance, traversability, line-of-
sight, and reverse line-of-sight constraints between all areas,

FIGURE 6. The input and output terrain of a simple experiment that
evolved a single hidden area into an initial terrain. (a) initial terrain
generated using Perlin noise. (b) the generated terrain, with the hidden
area represented as a yellow sphere. Grey spheres represent other areas
that were evolved into the terrain. (c) A close-up of the hidden area from
a player character’s point of view.

resulting in a total of 30 constraints. Fig. 7.(a) shows the
evolved terrain, where orange spheres represent strongholds
and yellow spheres represent hidden areas. Fig. 7. (b) shows
the terrain once it has been populated with objects, such as
trees and rocks, to demonstrate how a game designer may
make use of the evolved terrain. Fig. 7. (c) and Fig. 7. (d)
show the terrain from the perspective of a player character.
Fig. 7. (c) is looking towards a path leading to a hidden
area. Fig. 7. (d) is a view from the path leading to the small
hidden area where helpful items may be placed. The geo-
graphical distance constraints between the two strongholds
were deliberately set high in order to force the strongholds to
opposite sides of the terrain, which is evident in the evolved
terrain. Further geographic constraints were put in place to
ensure each stronghold was located near a hidden area. The
strongholds are afforded protection by elevated terrain and
have limited access points making them easier to defend.
Both hidden areas are small, out of the way, and well covered,
making them more difficult to see, but within reach of a
stronghold making them suitable places to place items that
a player defending a stronghold may venture out to collect
(such as health power ups or ammunition).

EXP3 attempted to evolve five gameplay elements, four
vantage points and an open area, into the same initial ter-
rain as used in EXP 1 and EXP 2, while maintaining all
five types of constraint (geographical distance. Path distance,

VOLUME 8, 2020 216503

A. Pech et al.: Quantifiable Isovist and Graph-Based Measures for Automatic Evaluation of Different Area Types

FIGURE 7. (a) A generated terrain that incorporates two strongholds and
two hidden areas. (b) the generated terrain populated with trees and
rocks. (c) A first-person view of the entrance to a path leading to one of
the hidden areas. (d) A first-person view of the path leading to the hidden
area.

traversability, line-of-sight, and reverse line-of-sight con-
straints between all areas) between each gameplay element.
This makes for a total of 50 individual constraint values.
These constraints forced the vantage points to surround the
open area, while maintaining line-of-sight to allow players
to utilize the vantage points to gain combat advantages over
players in the open area. Fig. 8. (a) shows the initial terrain
used in EXP3. Fig. 8. (b) shows the evolved terrain for
this experiment, populated with objects similar to the terrain
shown in Fig. 7. (b). Fig. 8. (c) shows the open area from the
perspective of a player who is positioned at one of the vantage
points. This figure shows the player has good vantage over
three other players (white capsules) who have been positioned
in the open area. A fourth player (white capsule) has been
positioned in another of the vantage points and is circled in
red. Fig. 8. (d) shows the terrain from the perspective of one
of the three players in the open area, looking up at the fourth
player positioned in the vantage point, again circled in red.
These images show that the vantage points were placed at
high locations that overlook the hidden area, as is desired.

We now provide some insight into the computation time
taken to evaluate a terrain using the proposed measures in
our experiments. The time taken to calculate the 16 proposed
measures for a terrain varied between the experiments due to
the differing complexity of the level layouts. Factors affecting
this performance include the number of areas (nodes) in the
terrain, as the isovist measures are calculated for every node
in the layout graph, and the complexity of the layout graph,
which affects the time taken to calculate the graph-based
measures. Average perfomance times, as obtained on an an

FIGURE 8. (a) The initial terrain used in EXP3. (b) A generated terrain that
incorporates four vantage points and one open area, populated with trees
and rocks. (c) A first-person view from one of the vantage points
overlooking three other players (represented as white capsules) and
another player at another vantage point circled in red. (d) A first-person
view from one of the three players at the open area, looking up at a
player positioned at a vantage point (circled in red).

Intel Core i7-4700HQ CPU with 32 GB RAM, for each of
the three experiments are presented in Table 10.

TABLE 10. Time taken to calculate all 16 measures for an entire terrain.

V. DISCUSSION AND CONCLUSION
This article has described a collection of isovist and graph
measures capable of characterizing an area of terrain and how
they are calculated. Importantly, this article also introduced
two efficient methods for estimating the volume of an isovist,
one based on Monte Carlo integration, and a completely
novel technique where the volume is calculated from the
isovist radials. Analysis of the proposed isovist volume esti-
mation methods against an additional, known volume esti-
mation method revealed that the proposed volume estimation
methods are accurate and efficient to compute. These meth-
ods are useful for any isovist based application, such as in
urban space analysis and design, or any applications that use
star-convex sets.

Use of the measures was demonstrated in an evolution-
ary approach towards generating terrains that automatically
incorporate gameplay elements into an initial terrain. Across

216504 VOLUME 8, 2020

A. Pech et al.: Quantifiable Isovist and Graph-Based Measures for Automatic Evaluation of Different Area Types

three scenarios of increasing complexity, the measures were
used to guide evolution to add gameplay elements, in the
form of distinct areas to an initial terrain. The initial terrain
was chosen for its aesthetic value, without incorporating the
needed gameplay elements. The final evolved terrain kept
the aesthetics of the original terrain whilst incorporating the
desired gameplay elements.

Time taken for the calculation of the measures depends on
the complexity of the level layout, but is fast in general, being
in the order of 2 milliseconds for a terrain with five gameplay
elements with 50 constraints between them.

The proposed measures have a variety of applications due
to their ability to differentiate between gameplay element
types with low computational overhead. We have focused
on gameplay elements that are typically desired in games of
the FPS genre, making this approach particularly useful for
games of this genre. The same elements however, are also
typically used in other game genres. For example, a puzzle
or exploration game may use a vantage point to view the
layout of a level so that a player has an idea on how to get
to their destination. As another example, open areas are used
in RTS games for placement of player bases, or in role playing
games (RPG) to place buildings or small towns.

Besides being able to be incorporated in the evolutionary
process, as demonstrated in our work, the measures can also
be incorporated into a manual terrain creation process. For
example, the measures could be integrated into a terrain
editing tool, so as to display the suitability of areas within
the terrain to particular gameplay types. The artist can then
proceed to shape the terrain, using the measures for guidance,
to incorporate a desired gameplay element into the terrain.

Applications also exist for these measures outside of the
computer games domain, for example in the fields of urban
planning, landscape design andmission planning. Such appli-
cations in the real world are possible as detailed topographic
data, in the form of height maps, exists for much of the
surface of the Earth. By evaluating the terrain height maps
of actual real-world locations, geographic areas that suit a
particular purpose could be identified. For example, in a
military scenario when seeking to establish a base an area
may be sought that displays the properties of a stronghold,
and does not have any line of sight with vantage points that
the enemy could occupy.

Ultimately, the versatility of our approach, comes from the
ability for the measures to be used to categorize gameplay
types using examples of those gameplay types in existing
terrains. This means that when wishing to categorize any new
gameplay element besides the ones that we have investigated,
one does not need the exact values of themeasures for the new
element, just examples of terrain that include the particular
element.

REFERENCES

[1] K. Hullett and J. Whitehead, ‘‘Design patterns in FPS levels,’’ in Proc.
5th Int. Conf. Found. Digit. Games, 2010, pp. 78–85, doi: 10.1145/
1822348.1822359.

[2] A. Pech, P. Hingston, M. Masek, and C. P. Lam, ‘‘Identifying attributes for
characterizing game area types in virtual Terrain,’’ in Proc. 7th Workshop
Procedural Content Gener., 2016, pp. 1–12. [Online]. Available:
https://www.dropbox.com/s/0zb9qx1mphdfdbo/PCG2016_paper_3.pdf?
dl=0

[3] A. D. King, ‘‘The social logic of space,’’ Landscape Urban Planning,
vol. 13, pp. 247–249, Jan. 1986, doi: 10.1016/0169-2046(86)90038-1.

[4] M. L. Benedikt, ‘‘To take hold of space: Isovists and isovist fields,’’
Environ. Planning B, Planning Des., vol. 6, no. 1, pp. 47–65, 1979,
doi: 10.1068/b060047.

[5] M. Toy and G. Wichman. (1980). Rogue. Epyx, Coventry,
U.K. Accessed: Dec. 1, 2020. [Online]. Available: https://store.
steampowered.com/app/1443430/Rogue/

[6] D. Ashlock, C. Lee, and C. McGuinness, ‘‘Search-based procedural gener-
ation of maze-like levels,’’ IEEE Trans. Comput. Intell. AI Games, vol. 3,
no. 3, pp. 260–273, Sep. 2011, doi: 10.1109/TCIAIG.2011.2138707.

[7] J. Dormans, ‘‘Level design as model transformation: A strategy for auto-
mated content generation,’’ in Proc. 2nd Int. Workshop Procedural Content
Gener. Games, 2011, pp. 1–8, doi: 10.1145/2000919.2000921.

[8] K. Hartsook, A. Zook, S. Das, and M. O. Riedl, ‘‘Toward supporting
stories with procedurally generated game worlds,’’ in Proc. IEEE Conf.
Comput. Intell. Games (CIG), Aug. 2011, pp. 297–304, doi: 10.1109/CIG.
2011.6032020.

[9] R. Der Van Linden, R. Lopes, and R. Bidarra, ‘‘Designing procedurally
generated levels,’’ in Proc. AAAI Workshop, 2013, p. 15.

[10] R. Lopes, T. Tutenel, R. M. Smelik, K. J. de Kraker, and R. Bidarra,
‘‘A constrained growth method for procedural floor plan generation,’’ in
Proc. 11th Int. Conf. Intell. Games Simulation, 2010, pp. 13–20.

[11] T. Tutenel, R. Bidarra, R. M. Smelik, and K. J. De Kraker, ‘‘Rule-
based layout solving and its application to procedural interior gener-
ation,’’ in Proc. CASA Workshop 3D Adv. Media Gaming Simulation,
2009.

[12] J. Taylor and I. Parberry, ‘‘Randomness + structure = clutter: A procedural
object placement generator,’’ in Proc. Int. Conf. Entertainment Comput.,
Sep. 2011, pp. 424–427, doi: 10.1007/978-3-642-24500-8_57.

[13] E. Galin, A. Peytavie, N. Maréchal, and E. Guérin, ‘‘Procedural generation
of roads,’’ Comput. Graph. Forum, vol. 29, no. 2, pp. 429–438, May 2010,
doi: 10.1111/j.1467-8659.2009.01612.x.

[14] Y. I. H. Parish and P. Müller, ‘‘Procedural modeling of cities,’’ in Proc.
28th Annu. Conf. Comput. Graph. Interact. Techn., 2001, pp. 301–308,
doi: 10.1145/383259.383292.

[15] A. Emilien, A. Bernhardt, A. Peytavie, M.-P. Cani, and E. Galin, ‘‘Proce-
dural generation of villages on arbitrary Terrains,’’ Vis. Comput., vol. 28,
nos. 6–8, pp. 809–818, Jun. 2012, doi: 10.1007/s00371-012-0699-7.

[16] G. Cordonnier, ‘‘Large scale terrain generation from tectonic uplift and
fluvial erosion,’’Comput. Graph. Forum, vol. 35, no. 2, pp. 165–175, 2016,
doi: 10.1111/cgf.12820.

[17] G. Cordonnier, E. Galin, J. Gain, B. Benes, E. Guérin, A. Peytavie, and
M.-P. Cani, ‘‘Authoring landscapes by combining ecosystem and ter-
rain erosion simulation,’’ ACM Trans. Graph., vol. 36, no. 4, pp. 1–12,
Jul. 2017, doi: 10.1145/3072959.3073667.

[18] A. Peytavie, E. Galin, J. Grosjean, and S. Merillou, ‘‘Arches: A framework
for modeling complex terrains,’’ Comput. Graph. Forum, vol. 28, no. 2,
pp. 457–467, Apr. 2009, doi: 10.1111/j.1467-8659.2009.01385.x.

[19] B. Rusnell, D. Mould, and M. Eramian, ‘‘Feature-rich distance-based
terrain synthesis,’’ Vis. Comput., vol. 25, nos. 5–7, pp. 573–579,May 2009,
doi: 10.1007/s00371-009-0332-6.

[20] K. Golubev, A. Zagarskikh, and A. Karsakov, ‘‘Dijkstra-based Terrain
generation using advanced weight functions,’’ Procedia Comput. Sci.,
vol. 101, pp. 152–160, 2016, doi: 10.1016/j.procs.2016.11.019.

[21] H. Hnaidi, E. Guérin, S. Akkouche, A. Peytavie, and E. Galin, ‘‘Fea-
ture based terrain generation using diffusion equation,’’ Comput. Graph.
Forum, vol. 29, no. 7, pp. 2179–2186, Sep. 2010, doi: 10.1111/j.1467-
8659.2010.01806.x.

[22] E. Michel, A. Emilien, and M.-P. Cani, ‘‘Generation of folded Terrains
from simple vector maps,’’ Eurographics, vol. 2015, pp. 77–80, May 2015,
doi: 10.2312/egsh.20151019.

[23] G. A. Bradbury, I. Choi, C. Amati, K. Mitchell, and T. Weyrich,
‘‘Frequency-based controls for terrain editing,’’ in Proc. 11th Eur. Conf.
Vis. Media Prod., 2014, pp. 1–10, doi: 10.1145/2668904.2668944.

[24] F.-X. Talgorn and F. Belhadj, ‘‘Real-time sketch-based terrain gener-
ation,’’ in Proc. Comput. Graph. Int., 2018, pp. 13–18, doi: 10.1145/
3208159.3208184.

[25] J. Gain, P. Marais, and W. Straßer, ‘‘Terrain sketching,’’ in Proc.
Symp. Interact. 3D Graph. Games, 2009, pp. 31–38, doi: 10.1145/
1507149.1507155.

VOLUME 8, 2020 216505

http://dx.doi.org/10.1145/1822348.1822359
http://dx.doi.org/10.1145/1822348.1822359
http://dx.doi.org/10.1016/0169-2046(86)90038-1
http://dx.doi.org/10.1068/b060047
http://dx.doi.org/10.1109/TCIAIG.2011.2138707
http://dx.doi.org/10.1145/2000919.2000921
http://dx.doi.org/10.1109/CIG.2011.6032020
http://dx.doi.org/10.1109/CIG.2011.6032020
http://dx.doi.org/10.1007/978-3-642-24500-8_57
http://dx.doi.org/10.1111/j.1467-8659.2009.01612.x
http://dx.doi.org/10.1145/383259.383292
http://dx.doi.org/10.1007/s00371-012-0699-7
http://dx.doi.org/10.1111/cgf.12820
http://dx.doi.org/10.1145/3072959.3073667
http://dx.doi.org/10.1111/j.1467-8659.2009.01385.x
http://dx.doi.org/10.1007/s00371-009-0332-6
http://dx.doi.org/10.1016/j.procs.2016.11.019
http://dx.doi.org/10.1111/j.1467-8659.2010.01806.x
http://dx.doi.org/10.1111/j.1467-8659.2010.01806.x
http://dx.doi.org/10.2312/egsh.20151019
http://dx.doi.org/10.1145/2668904.2668944
http://dx.doi.org/10.1145/3208159.3208184
http://dx.doi.org/10.1145/3208159.3208184
http://dx.doi.org/10.1145/1507149.1507155
http://dx.doi.org/10.1145/1507149.1507155

A. Pech et al.: Quantifiable Isovist and Graph-Based Measures for Automatic Evaluation of Different Area Types

[26] W. L. Raffe, F. Zambetta, and X. Li, ‘‘Evolving patch-based Terrains for
use in video games,’’ in Proc. 13th Annu. Conf. Genetic Evol. Comput.,
2011, pp. 363–370, doi: 10.1145/2001576.2001627.

[27] I. Antoniuk and P. Rokita, ‘‘Procedural generation of adjustable terrain for
application in computer games using 2Dmaps,’’ in Proc. Int. Conf. Pattern
Recognit. Mach. Intell., 2015, pp. 75–84, doi: 10.1007/978-3-319-19941-
2_8.

[28] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversar-
ial nets,’’ in Adv. Neural Inf. Process. Syst., 2014, pp. 2672–2680,
doi: 10.3156/jsoft.29.5_177_2.

[29] É. Guérin, J. Digne, É. Galin, A. Peytavie, C. Wolf, B. Benes, and
B.Martinez, ‘‘Interactive example-based terrain authoringwith conditional
generative adversarial networks,’’ ACM Trans. Graph., vol. 36, no. 6,
pp. 1–13, Nov. 2017, doi: 10.1145/3130800.3130804.

[30] R. J. Spick, P. Cowling, and J. A. Walker, ‘‘Procedural generation using
spatial GANs for region-specific learning of elevation data,’’ in Proc. IEEE
Conf. Games (CoG), Aug. 2019, pp. 1–8, doi: 10.1109/CIG.2019.8848120.

[31] A. Wulff-Jensen, N. N. Rant, T. N. Møller, and J. A. Billeskov, ‘‘Deep
convolutional generative adversarial network for procedural 3D landscape
generation based on DEM,’’ in Proc. Interactivity, Game Creation, Des.,
Learn., Innov., 2018, pp. 85–94, doi: 10.1007/978-3-319-76908-0_9.

[32] Qiu, Yue, and Liu, ‘‘Void filling of digital elevation models with a terrain
texture learning model based on generative adversarial networks,’’ Remote
Sens., vol. 11, no. 23, p. 2829, Nov. 2019, doi: 10.3390/rs11232829.

[33] J. Klein, S. Hartmann, M. Weinmann, and D. L. Michels, ‘‘Multi-scale
terrain texturing using generative adversarial networks,’’ in Proc. Int.
Conf. Image Vis. Comput. New Zealand (IVCNZ), Dec. 2017, pp. 1–6,
doi: 10.1109/IVCNZ.2017.8402495.

[34] J. Togelius, M. Preuss, and G. N. Yannakakis, ‘‘Towards multiobjec-
tive procedural map generation,’’ in Proc. Workshop Procedural Content
Gener. Games, 2010, pp. 1–8, doi: 10.1145/1814256.1814259.

[35] J. Olsen, ‘‘Realtime procedural terrain generation,’’ Univ. Southern
Denmark, Odense, Denmark, Tech. Rep. 2004.10.31, 2004. [Online].
Available: https://web.mit.edu/cesium/Public/terrain.pdf

[36] M. Frade, F. Fernandez de Vega, and C. Cotta, ‘‘Breeding terrains
with genetic terrain programming: The evolution of terrain genera-
tors,’’ Int. J. Comput. Games Technol., vol. 2009, pp. 1–13, Dec. 2009,
doi: 10.1155/2009/125714.

[37] M. Frade, F. F. De Vega, and C. Cotta, ‘‘Evolution of artificial terrains
for video games based on accessibility,’’ in Proc. Eur. Conf. Appl. Evol.
Comput., 2010, pp. 90–99, doi: 10.1007/978-3-642-12239-2-10.

[38] M. Andereck, Procedural Terrain Generation Based on Constraint Paths.
Columbus, OH, USA: The Ohio State Univ., 2014.

[39] R. M. Smelik, T. Tutenel, K. J. de Kraker, and R. Bidarra, ‘‘Declarative
terrain modeling for military training games,’’ Int. J. Comput. Games
Technol., vol. 2010, Jul. 2010, Art. no. 360458, doi: 10.1155/2010/360458.

[40] R. Smelik, K. Galka, K. J. DeKraker, F. Kuijper, and R. Bidarra, ‘‘Semantic
constraints for procedural generation of virtual worlds,’’ in Proc. ACM Int.
Conf. Proc. Ser., 2011, pp. 1–4, doi: 10.1145/2000919.2000928.

[41] R. Conroy-Dalton and N. Dalton, ‘‘OmniVista: An application for Isovist
field and path analysis,’’ in Proc. 3rd Int. Space Syntax Symp., 2001.

[42] A. Van Bilsen and R. Poelman, ‘‘3D visibility analysis in virtual worlds:
The case of supervisor,’’ in Proc. 9th Int. Conf. Construct. Appl. Virtual
Reality (CONVR), 2009, p. 5.

[43] U. Pyysalo, J. Oksanen, and T. Sarjakoski, ‘‘Viewshed analysis and visual-
ization of landscape voxel models,’’ in Proc. 24th Int. Cartographic Conf.,
Santiago, Chile, vol. 15, 2009, pp. 1–15.

[44] D. Fisher-Gewirtzman and I. A. Wagner, ‘‘Spatial openness as a practical
metric for evaluating built-up environments,’’ Environ. Planning B, Plan-
ning Des., vol. 30, no. 1, pp. 37–49, Feb. 2003, doi: 10.1068/b12861.

[45] P. P.-J. Yang, S. Y. Putra, andW. Li, ‘‘Viewsphere: A GIS-based 3D visibil-
ity analysis for urban design evaluation,’’ Environ. Planning B, Planning
Des., vol. 34, no. 6, pp. 971–992, Dec. 2007, doi: 10.1068/b32142.

[46] N. S. Dalton, R. C. Dalton, P. Marshall, I. Peverett, and S. Clinch, ‘‘Three
dimensional isovists for the study of public displays,’’ in Proc. 10th Int.
Space Syntax Symp., 2015, pp. 13–17.

[47] A. Rodriguez, D. B. Ehlenberger, P. R. Hof, and S. L. Wearne, ‘‘Rayburst
sampling, an algorithm for automated three-dimensional shape analysis
from laser scanning microscopy images,’’ Nature Protocols, vol. 1, no. 4,
pp. 2152–2161, Nov. 2006, doi: 10.1038/nprot.2006.313.

[48] A. Pech, ‘‘Evolving gameplay elements into virtual terrains,’’ Ph.D. dis-
sertation, Edith Cowan Univ., Joondalup WA, Australia, 2018.

[49] M. Newman, Networks: An Introduction. Oxford, U.K.: Oxford Univ.
Press, Mar. 2010.

[50] S. R. Lay, Convex Sets. New York, NY, USA: McGraw-Hill, 1964.

[51] N. Metropolis and S. Ulam, ‘‘The Monte Carlo method,’’
J. Amer. Stat. Assoc., vol. 44, no. 247, pp. 335–341, Sep. 1949,
doi: 10.1080/01621459.1949.10483310.

[52] G. Peter Lepage, ‘‘A new algorithm for adaptive multidimensional
integration,’’ J. Comput. Phys., vol. 27, no. 2, pp. 192–203, 1978,
doi: 10.1016/0021-9991(78)90004-9.

[53] Savage: The Battle for Newerth, S2 Games, Kalamazoo, MD, USA, 2003.
[54] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and

I. H. Witten, ‘‘The WEKA data mining software: An update,’’ ACM
SIGKDD Explorations Newslett., vol. 11, no. 1, pp. 10–18, 2009.

[55] J. Cohen, ‘‘A coefficient of agreement for nominal scales,’’ Educ.
Psychol. Meas., vol. 20, no. 1, pp. 37–46, Apr. 1960, doi: 10.1177/
001316446002000104.

[56] J. R. Landis and G. G. Koch, ‘‘The measurement of observer agreement
for categorical data,’’ Biometrics, vol. 33, no. 1, p. 159, Mar. 1977, doi: 10.
2307/2529310.

[57] K. Perlin, ‘‘An image synthesizer,’’ ACM SIGGRAPH Comput. Graph.,
vol. 19, no. 3, pp. 287–296, Jul. 1985, doi: 10.1145/325165.325247.

ANDREW PECH received the B.Sc. (Hons.)
and Ph.D. degrees in computer science from
Edith Cowan University, Perth, WA, Australia,
in 2013 and 2018, respectively.

Since 2019, he has been a Software Developer
with Micromine, Intuitive Mining Solutions,
Nedlands, WA, Australia. His research interest
includes procedural content generation for com-
puter games. He was a recipient of the Aus-
tralian Postgraduate Award Scholarship from the
Australian Government.

CHIOU PENG LAM received the Ph.D. degree
in computer vision from Curtin University, Perth,
WA, Australia, in 1995.

From 1995 to 1997, she was a Postdoctoral
Research Fellow with Curtin University. In 1997,
she was a Lecturer with Murdoch University, WA,
Australia. She is currently an Associate Profes-
sor in software engineering with the School of
Science, Edith Cowan University. She has more
than 110 refereed publications to date. Together

with her collaborators, she has developed computational intelligence-based
techniques for addressing problems in data mining, defense, bioinformatics,
and search-based software testing. Her research interests include pattern
recognition, evolutionary algorithms, and software testing.

MARTIN MASEK (Member, IEEE) received the
B.E. degree in information technology engineering
and the Ph.D. degree in computer vision from
The University of Western Australia, Perth, WA,
Australia, in 1998 and 2004, respectively.

From 2003 to 2005, he was an Associate Lec-
turer with the School of Electrical, Electronic, and
Computer Engineering, The University of West-
ern Australia. In 2005, he joined as a Lecturer of
computer science with Edith Cowan University,

Perth, where he was promoted to a Senior Lecturer in 2008, where he has
been an Associate Professor since 2018. His research interests include the
development of computer vision, artificial intelligence, and computer game
technology to solve problems in areas, such as health, education, and defense.

216506 VOLUME 8, 2020

http://dx.doi.org/10.1145/2001576.2001627
http://dx.doi.org/10.1007/978-3-319-19941-2_8
http://dx.doi.org/10.1007/978-3-319-19941-2_8
http://dx.doi.org/10.3156/jsoft.29.5_177_2
http://dx.doi.org/10.1145/3130800.3130804
http://dx.doi.org/10.1109/CIG.2019.8848120
http://dx.doi.org/10.1007/978-3-319-76908-0_9
http://dx.doi.org/10.3390/rs11232829
http://dx.doi.org/10.1109/IVCNZ.2017.8402495
http://dx.doi.org/10.1145/1814256.1814259
http://dx.doi.org/10.1155/2009/125714
http://dx.doi.org/10.1007/978-3-642-12239-2-10
http://dx.doi.org/10.1155/2010/360458
http://dx.doi.org/10.1145/2000919.2000928
http://dx.doi.org/10.1068/b12861
http://dx.doi.org/10.1068/b32142
http://dx.doi.org/10.1038/nprot.2006.313
http://dx.doi.org/10.1080/01621459.1949.10483310
http://dx.doi.org/10.1016/0021-9991(78)90004-9
http://dx.doi.org/10.1177/001316446002000104
http://dx.doi.org/10.1177/001316446002000104
http://dx.doi.org/10.2307/2529310
http://dx.doi.org/10.2307/2529310
http://dx.doi.org/10.1145/325165.325247

