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ABSTRACT This article presents a multi-robot system that forms emergent space-time patterns. Inspired
by the theory of swarmalators, in which synchronization and swarming of agents are mutually coupled,
we propose a robot-suitable model for coordination in time and space. The approach is evaluated by
simulations and demonstrated as proof of concept using small robots and drones. The novel building blocks
comprise a time-discrete swarm aggregationmodel—which works robustly with low update rates in systems
with communication delays—and specific functions that couple this spatial model to a discrete temporal
coordination model, resulting in an overall discrete spatio-temporal coordination model.

INDEX TERMS Emergence, mobile robots, multi-agent systems, multi-robot systems, self-organization,
swarming, synchronization.

I. INTRODUCTION
Multiple robots performing a joint mission must coordinate
their behavior in time and space. Temporal coordination is
needed for robots to act in synchrony, e.g., to lift an object
or take photos simultaneously from different points of view.
Sometimes it is necessary to avoid synchrony rather than
achieving it, e.g., if mobile robots share a charging station.
Spatial coordination is required for mobile robots to avoid
collisions, form patterns in space, assemble, or spread out
for coverage.

Algorithms for coordination in multi-robot systems have
been proposed in a variety of applications on different func-
tional levels and using different approaches. One stream of
research intends to adapt approaches from self-organizing
systems found in nature. In this domain, synchronization
and other forms of temporal coordination are often mod-
eled using the theory of coupled oscillators [1], and spa-
tial coordination often relies on swarming and flocking [2].
These biologically-inspired algorithms are typically adaptive
to changes, robust against failures of single agents, and scal-
able with the cardinality of the system.

The key motivation of our research is that temporal and
spatial coordination have largely been treated independently
so far [3], both in theory and practice. Mobile robots would,
however, benefit from fusing the two to a unified model.
For example, robots could not only take photos of a point of
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interest simultaneously but also form a spatial pattern around
this point and take a sequence of photos sorted by the viewing
angle in a self-organizing manner. A mathematical model for
such a fusion, more specifically a bi-directional coupling of
synchronization and swarming, was recently introduced by
O’Keeffe, Hong, and Strogatz [3]. That article lays down
the theoretical foundations of agents called ‘‘swarmalators’’
(a neologism for swarming oscillators), but the model itself
is unsuited for mobile robots due to some assumptions that
do not hold for robotics, such as time-continuous coupling
between agents, an infinitely small agent size (no collisions),
and unconstrained movement mechanics. This is why we
adapted the original model and presented an initial proof
of concept to demonstrate the potential of swarmalators for
technical systems [4]. During the experiments we ran into
several problems related to constraints in robot mechanics
and wireless communications as well as the impact of delays
(see Appendix). These hurdles motivated us to further pursue
this path. Based on the lessons learned, the article at hand
presents the overall result. The robots acting according to our
approach are called ‘‘sandsbots’’ (a neologism for synchro-
nizing and swarming robots).

Themain contribution of this work is themodel suitable for
multi-robot systems that allows to form emergent space-time
patterns. It consists of two mutually coupled parts: temporal
coordination [5] and a novel swarm aggregation approach
with time-discrete interactions between agents. The proposed
model displays the following properties:
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• Has low communication requirements and guarantees
robust behavior in the presence of communication
delays and with a very low frequency of interactions
between agents (i.e., once each few seconds).

• Adapts the maximum speed of agents to the communi-
cation rate, allowing the agents to avoid collisions and
successfully form a pattern.

We verify the sandsbot model in both simulations and exper-
iments featuring small mobile ground robots and aerial
robots (drones), thus providing a proof of concept for robotic
swarmalators. To the best of our knowledge, this is the first
‘‘sync and swarm solution’’ robustly working in robot sys-
tems and creating emerging space-time patterns.

The article is structured as follows: Section II covers
related work. Section III introduces the discrete sync and
swarmmodel. Section IV shows the obtained spatio-temporal
patterns with order parameters used to distinguish them.
Sections V and VI present a simulation-based analysis and
an experimental proof of concept. Section VII concludes.

II. RELATED WORK
There is extensive literature on coordination in multi-agent
systems across many scientific disciplines. We focus here on
appliedwork inmobile robotics andwireless networks related
to self-organizing synchronization and swarming.

The use of pulse-coupled oscillator synchronization in
networked systems has been successfully demonstrated by
a number of research groups. Perez-Diaz et al. [6] showed
by experiments how the field of view and speed of
movement influences synchronization of mobile robots.
Brandner et al. [7] improved the precision of synchronization
in wireless networks by equalizing the oscillation frequencies
of the agents, where the algorithm was tested experimentally
with programmable radios. Trianni and Nolfi [8] used evo-
lutionary mechanisms to achieve synchronization in robot
swarms. Although the robots aim at performing a synchro-
nized movement, they do not interact in space, but only adjust
their behavior to the oscillations. The aforementioned imple-
mentations of temporal coordination mechanisms differ in
their communication interface. They use light [6], sound [8],
and radio [7]. All these works, in contrast to this publication,
focus only on the temporal coordination (phase interaction)
between robots and do not consider their spatial influence.

Some researchers exploit synchronization to control
swarm behavior. However, such approaches considered only
one-directional coupling so far. Hartbauer and Römer [9]
proposed a swarm of synchronized agents that uses the emit-
ted pulses for navigation. Robots close to the goal increase
their oscillation frequency so that the other agents follow
their signals. Christensen et al. [10] proposed a method for
detecting faulty agents in a swarm. The robots periodically
emit light. If the light on any agent is not detected in time,
that agent is considered to be broken and its task needs to
be taken over. A method proposed by Bezzo et al. [11] uses
synchronization to detect changes in the network topology,
which was shown to maintain the formation of robots.

In terms of spatial coordination, multi-robot researchers
are interested in different aspects of self-organization. Exam-
ples include swarm aggregation [12], flocking [13], and
pattern formation [14]. A widespread technique is to use
the theory of potential fields. One of the reasons why this
approach became popular is that it can be used to fulfill dif-
ferent tasks, like navigation [15], formation control [16], and
swarm aggregation, the last being most relevant to this work.
Gazi [17] provided a formulation of the artificial potential for
swarm aggregation and a controller that considers the dynam-
ics of agents. The stability of swarm aggregation based on
potential fields was analyzed by Fetecau et al. [18] and Gazi
and Passino [19]. Tanner et al. [20] proposed conditions that
need to be fulfilled by the potential to guarantee stable flock-
ing. In most articles, the potential and its gradient need to be
updated continuously or at least at a high rate. In this work,
we aim at reducing the update rate, which, however, might
in turn destabilize the swarm. Therefore, we use work by
Armijo [21] to determine the maximum safe speed of robots.

The mechanisms of synchronization of coupled oscillators
can be applied to stabilize collective motion of multiple
robots [22].Motivated by the application for underwater vehi-
cles, Sepulchre et al. [23] presented a method based on the
well-known Kuramoto model [24] that allows stabilization
of parallel and circular motion of self-propelled particles.
Gao and Wang [25] achieved similar results: stabilization
of parallel and circular motion but based on pulse coupling.
Depending on the desired behavior, they modify the phase
response of the agents. This solution is easier to achieve if
communication is restricted to discrete instants of time.

Although research on synchronization and swarming was
somehow connected for some time, the mathematical model
by O’Keeffe et al. [3] was presumably the first one taking
into account the mutual coupling of these two phenomena.
Their simulation results showed that agents using this uni-
fied model— the ‘‘swarmalators’’—can form five spatio-
temporal patterns, whose stability was analyzed in [26]. The
model assumes continuous, delay-free coupling, which is
impossible to achieve in multi-robot systems. Potential appli-
cations of the swarmalator model were presented byO’Keeffe
and Bettstetter [27]. Our preparatory work [4] for this article
was, as far as we know, the first to implement and showcase
a swarmalator model in an engineered system.

III. MODEL
Each sandsbot is modeled as an agent k ∈ {1, . . . ,N }. It has
an oscillator, whose value is represented by a phase 8k (t) ∈
[0, 2π ) evolving over time t . The time index t is skipped if not
needed. The phase difference between k and another agent j
with phase 8j is denoted by 8jk . The spatial position of an
agent is xk ∈ R2. The position difference vector from k to
j located at xj is xjk = xj−xk and the Euclidean distance
between them is

∥∥xjk∥∥.
The system dynamics can be outlined as follows. The

phases of different agents influence each other based on
certain rules (temporal coordination). For example, they may
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synchronize to a common value or ‘‘desynchronize’’ to differ-
ing ones. The positions of the agents influence each other as
well (spatial coordination). For example, agents may physi-
cally attract or repel each other based on the distance between
them. Most important for this work, the phases influence the
movement, and the positions influence the phase dynamics
(bidirectional coupling of temporal and spatial coordination).
For example, agents with similar phases may attract or repel
each other stronger, and close-by nodes may synchronize
faster. This leads to the emergence of a space-time pattern,
whose shape depends on the coupling parameters.

We describe how the system works with time-discrete
interactions and how time delays are incorporated into the
model design (Section III-A). Next, we show how the tem-
poral coordination model controls the phases (Section III-B)
and how the spatial aggregationmodel controls themovement
dynamics (Section III-C). Finally, we present how the tem-
poral and spatial coordination are coupled to create a unified
model (Section III-D).1

A. TIME-DISCRETE INTERACTIONS
Each agent must repeatedly share its state (phase and posi-
tion) with other agents. In real-world systems, these state
updates can occur only at discrete points in time, and each
message experiences processing and propagation delays.
Moreover, the fact that the phase 8k is constantly changing
and, if the agent is moving, the position xk is changing,
a simple sharing of the state would lead to the situation that
the up-to-date state is unknown to the receiver at the time of
reception. To tackle these issues, we split the phase into two
components: a discrete phase θk and an oscillatory part φk ,
formally8k = φk+θk . Each of them plays an important role
to enable robust interactions over a wireless medium.

The model of phase evolution is presented in Figure 1. The
discrete phase θk is exchanged between agents rather than the
overall continuous phase 8k . The value of θk remains con-
stant throughout a period T , so the message can be sent and
received by other agents before the value changes. To operate
on integer-valued phases, we introduce the phase level θ̂k ∈
{0, 1, . . . ,L − 1} with L being the number of phase levels.
The discrete phase is then defined as θk =

θ̂k
L 2π .

To maintain consistency, sandsbots operate in synchrony.
For this purpose, we use the oscillatory part φk ∈ [0, 2πL )
as the internal clock, which oscillates with period T and is
synchronized throughout the whole system. Such synchro-
nization can be achieved by established techniques, where our
implementation uses the Network Time Protocol (NTP). Each
oscillation cycle is split into three parts:
• Whenever φk = 0, the agent updates its state, computes
the predicted state (phase level and predicted position)
for the end of the oscillation cycle, and sends a message
containing this information.

1The unpublished contributions of this section aremainly in Sections III-C
and III-D and aspects related to spatial coordination in Section III-A.
Section III-B and parts of Section III-A are taken, in modified form, from [5],
to make this article self-contained and present the overall solution.

FIGURE 1. Phase of an agent 8k with its components θk and φk over
normalized time. Arrows show the moment a signal is emitted; the
numbers next to them represent the phase level. Figure taken from [5].

• For φk from 0 to a threshold φU ∈ [0, 2π/L), the agent
gathers messages containing states of the other ones.

• For φk from φU to the maximum value 2π/L, the agent
calculates the new update of its state based on the
received predicted states and its own predicted state.

The threshold φU can be chosen depending on the expected
delays and the computational effort of calculating a new
update (and thus the time needed). High values ensure that
even delayed messages are taken into account but leaves less
time to calculate the update; low values leave more time for
the calculations with the risk of missing some delayed mes-
sages. The predicted position is calculated based on the cur-
rent position, period length, and calculated velocity.

An agent can change its phase immediately but its position
only slowly by setting a new velocity. Thus, the output of the
sandsbot model (state update) consists of a new phase level
and velocity.

Our model assumes that messages suffer from delays and
takes these delays into account. If a message arrives before φk
reaches the threshold φU , the agent uses the up-to-date data to
calculate the next update (as messages contain a prediction,
not the past state). Messages that arrive after reaching the
threshold are dropped. This means that delays shorter than
TφU/ 2πL do not influence the performance. In our experi-
ments, the period length T and threshold φU are chosen based
on the measured latency in the network to ensure that the vast
majority of messages will be delivered before the threshold
φU is reached.

B. TEMPORAL COORDINATION
1) TEMPORAL PATTERNS
The sandsbots are required to arrange in three tempo-
ral patterns: synchronized where all agents have the same
phase, splay where the phases are evenly spaced, and clus-
tered where phases are arranged in evenly-spaced groups
of equal size. The model proposed in our work [5] is used
to achieve these patterns. Although phase levels differ in
some patterns, internal clocks are not influenced and remain
synchronized.
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IfM denotes the number of clusters, synchrony is achieved
for M = 1, the splay pattern for M = N , and clusters for
M ∈ {2, . . . ,N − 1}, where only clusters of equal size are
considered, i.e., M |N (M divides N ). The number of phase
levels should be chosen such that M | L, which allows to
maintain equal distances between clusters. These patterns are
called M-clusters. All three desired patterns are M -clusters
with synchrony and splay being the extreme cases.

The phase θk of an agent k can be written as a complex
number eiθk . A freely running oscillator is thus modeled as
rotating vector of unit length. In a system of N agents, the
m-th moment of the N phases is [23]

zm =
1
Nm

N∑
k=1

eimθk . (1)

The term mθk can be interpreted as the m-th harmonic of θk ,
and (1) is sometimes called complex-valued order parame-
ter [24] of the m-th harmonic [28].
The magnitude rm = |zm| reveals the state in which the

system is: The phases of the m-th harmonic are synchro-
nized if rm = 1

m and balanced if rm = 0. To achieve an
M -cluster, all phases of the firstM−1 harmonics are balanced
(∀m ∈ {1, . . . ,M − 1}. rm = 0) and the phases of the M -th
harmonic are synchronized (rM = 1

M ) [23]. To give some
examples, synchronized agents have r1 = 1, a two-cluster
pattern yields r1 = 0 and r2 = 1

2 , and a three-agent splay
pattern has r1 = r2 = 0 and r3 = 1

3 .

2) PHASE POTENTIAL AND COUPLING FUNCTIONS
Based on the order parameter, we define the potential Um =
N
2 Km r

2
m, similar as in [23], where Km is the coupling strength

of them-th harmonic. IfKm < 0 the potential reaches its min-
imum if the phases of the m-th harmonic are synchronized.
In contrary, if Km > 0 the phases of the m-th harmonic need
to be balanced for Um to be minimal. To have the firstM − 1
harmonics balanced and the M -th harmonic synchronized,
we set Km > 0 for m ∈ {1, . . . ,M − 1} and KM < 0.
The overall potential of an M -cluster is the sum U (M )

=∑M
m=1Um [23], which reaches its global minimum if eachUm

is minimized. For the given coupling strengths, this minimum
corresponds to theM -cluster pattern [23].

In a system of agents with continuous phases, the overall
potential can be minimized with gradient control [23]:

8̇k = ωk −
1
N
∂U (M )

∂8k
, (2)

where ωk is the agent’s natural frequency of oscillations.
The derivative can be defined as the sum of phase coupling
functions 0(8jk ) between the agents [23]:

∂U (M )

∂8k
=

N∑
j=1

0(8jk ) . (3)

This results in a phase coupling function being a linear com-
bination of the continuous couplings, similar to the Kuramoto

model [24], for the firstM phase harmonics [23]:

0(8jk ) =
M∑
m=1

Km
m

sin(m8jk ) . (4)

3) FROM CONTINUOUS TO DISCRETE PHASE COUPLING
The model presented until now is valid for continuous phase
and continuous time. For discrete phase θk and discrete time,
we propose a phase interaction function:

9k (θk ) =
1
N

N∑
j=1

0(θjk ) , (5)

which uses the same phase coupling function 0(·) but now
evaluated for discrete phase values.

We split the phase coupling function into two additive parts
based on the value of Km:

0(θjk ) = 01(θjk )+ 02(θjk ), (6)

01(θjk ) =
∑
m∈M1

Km
m

sin(mθjk ), (7)

02(θjk ) =
∑
m∈M2

Km
m

sin(mθjk ), (8)

withM1={m | Km ≤ 0} andM2={m | Km > 0}, which cor-
responds to M1 = {M} and M2 = {m | 1 ≤ m < M} for the
M -cluster pattern. 01 can be thought of as the phase attrac-
tion function that tries to synchronize harmonics belonging
to M1 whereas 02 is the phase repulsion function that bal-
ances the other phase harmonics. The split into attraction
and repulsion gives the phase coupling a similar structure as
the position coupling used for spatial coordination (14) and
enables us to combine the two models (Section III-D).

The discrete temporal coordination operates on the integer
phase levels. The phase interactions are usually too minor for
an agent to immediately jump to the next phase level, espe-
cially if the system is close to reaching the desired pattern.
Thus, each sandsbot integrates these interactions over time
and keeps them as phase level correction δθ̂k . Only if this
value is large enough to change the phase by a full level, the
phase level θ̂k is adjusted and the correction δθ̂k is reset.

There are multiple equilibrium states in such a dynamic
system. For example, the synchronized pattern is also an
equilibrium for the splay pattern because the agents belong-
ing to a certain phase cluster do not influence each other
(sin(θjk ) = 0) and each of them is equally influenced by the
agents outside the cluster. Therefore, a cluster formed once
will never break. The situation is different in a system with
continuous phases, where some noise is sufficient to disturb
and eventually break a cluster. In contrast, a system with
discrete phase is meant to prevent the influence of disrup-
tions (e.g., communication delays, oscillators imperfections,
noise). To break such unwanted clusters, we update the cor-
rection of the phase level θ̂k at time t as follows:

δθ̂k [t] = (1+ E)δθ̂k [t − 1]+ η −9k (θk [t]) (9)
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FIGURE 2. Shape of energy function for different sizes of clusters. The
term −εk denotes minimal energy. Figure taken from [5].

with noise η and state energy E . The energy also stabilizes
the desired M -cluster pattern. To achieve both breaking and
stabilization, we need positive E for agents in a cluster that
is either too big (more than N

M agents) or much too small (at
most N

2M agents) and negative E otherwise (for agents being
in a cluster of the target or almost target size). The shape of
energy function is given in Figure 2 for different cluster sizes.

Whenever the internal clock resets (φk = 0) the phase is
updated. The phase level θ̂ is always incremented by 1 and
the phase correction rounded towards 0 is applied:

θ̂k [t + 1] =
(
θ̂k [t]+ 1+ sgn(δθ̂k [t])

⌊∣∣δθ̂k [t]∣∣⌋)mod L .

(10)

If the rounded phase correction was non-zero, it is reset
(δθ̂k [t] = 0).
The presented temporal coordination model allows agents

to form synchronized, splay, and cluster patterns.

C. TIME-DISCRETE SPATIAL AGGREGATION
1) AGGREGATION, COLLISION AVOIDANCE, AND
DEMANDED VELOCITY
The locations of the agents and their dynamics is controlled
by an aggregation model based on potentials. The potential
created by each agent represents two counteracting forces:
attraction and repulsion. Attraction helps agents to gather;
repulsion preserves spacing to avoid collisions.

To guarantee collision-free operation, we use a safety area
around each agent. This area comprises a circular bounding
box with diameter d and an additional safety margin εd
defining the minimum distance that needs to be kept between
the bounding boxes of agents at all times. The safety area of
agent k is thus a circle of diameter d + εd centered at xk .
The potential at position x generated by the agent j is

(similar to [18]):

Vj(x) = ηattr

∥∥xj − x
∥∥2

2
− ηrep ln

(∥∥xj − x
∥∥− d), (11)

for non-overlapping bounding boxes (i.e.,
∥∥xj − x

∥∥− d>0),
and undefined if the bounding boxes overlap. The scaling fac-
tors ηattr and ηrep adjust the pattern size. In the repulsion part

of the potential, we take into account the distance between
bounding boxes to assure that the repulsion goes to infinity
if agents are close to collision (bounding boxes are almost
tangent). The potential of agent k can be described as the
average of the potentials created by other agents at this time:

Vk =
1
N

N∑
j=1
j6=k

Vj(xk ). (12)

Similar to temporal coordination, each agent aims at mini-
mizing its potential. In order to find this minimum we use the
gradient descent method. The demanded velocity of agent k
is defined as vdk = ∇Vk , which yields for (12):

vdk =
1
N

N∑
j=1
j6=k

∇Vj(xk ) , (13)

where the summands can be expressed as

∇Vj(xk ) = I1(xjk )− I2(xjk ) with (14)

I1(xjk ) = ηattr xjk , (15)

I2(xjk ) =
ηrep∥∥xjk∥∥ (∥∥xjk∥∥− d) xjk (16)

describing how strong agent k is attracted or repelled by the
other agents.

2) CONSIDERATION OF ROBOT CONSTRAINTS
The maximum speed vmax

k depends on physical and safety
constraints. The major physical constraint is the maximum
possible speed vmaxR

k of the robot platform in use. The safety
constraint can be formulated as

vmaxS
k =

minj6=k
(∥∥xjk∥∥)− d − εd

4T
. (17)

This constraint ensures that during one period each agent can
move at most a quarter of the gap between its own safety area
and the one of the closest neighbor. The distance between
safety areas of each pair of agents will change by not more
than half, which should not only guarantee that the agents
never collide but also that their bounding boxes do not come
closer than εd . When agents get very close to each other,
the repulsion between them is very high. It can be especially
risky if one agent is surrounded by a few other ones. The
safety constraint additionally slows down agents operating
in a close proximity, thus preventing rapid reactions if two
agents get close to each other. As a result of the constraints,
the maximum speed is vmax

k = min(vmaxR
k , vmaxS

k ). Based on
this, the velocity of agent k is

vk = min
(∥∥∥vdk∥∥∥ , vmax

k

)
·

vdk∥∥vdk∥∥ , (18)

and the position change during one oscillation cycle is

xk [t] = xk [t − 1]+ T vk [t − 1]. (19)

218756 VOLUME 8, 2020



A. Barciś, C. Bettstetter: Sandsbots: Robots That Sync and Swarm

3) MITIGATION OF PHYSICAL OSCILLATIONS
The simulation of this model shows an unwanted behavior:
sandsbots oscillate around their positions. To compensate this
phenomenon, we modify the maximum speed based on a
theorem introduced byArmijo [21], which states: If the gradi-
ent of function f is Lipschitz continuous— i.e., ∀x, y ∈ Df :
‖∇f (x)−∇f (y)‖ < λ ‖x − y‖, where Df is a domain of
f —gradient descent converges for step size s ≤ 1

2λ . Hence,
to avoid spatial oscillations, we introduce an additional term
s
∥∥vdk∥∥ in the velocity equation (18) to limit the speed of each

agent:

vk = min
(∥∥∥vdk∥∥∥, s ∥∥∥vdk∥∥∥, vmax

k

)
·

vdk∥∥vdk∥∥ , (20)

where

s =
1

2λT
(21)

is a step size calculated based on period length and the theo-
rem. This modification limits the speed to guarantee that the
step size is short enough for the gradient descent to converge.

By limiting the speed due to the safety constraint (17), we
guarantee that the minimum distance constraint

∀k, j
∥∥xjk∥∥ > d + εd (22)

is met. Hence, we can limit the domain of Vk , so that
∥∥∇2Vk

∥∥
is bounded above and the gradient is Lipschitz continuous
with the Lipschitz constant λ = ηattr − ηrep/ε2d .
This approach enables us to slow down the agent if the

demanded velocity would lead to oscillations. To achieve
faster convergence, the Lipschitz constant can be computed
for the gradient limited only to the neighborhood of the cur-
rent position, with the assumption that the agents can move
in any direction at its maximum speed.

D. COUPLING OF TEMPORAL AND SPATIAL
COORDINATION
We extend the above models to propose a time-discrete solu-
tion in which temporal and spatial coordination are mutually
coupled. The overall result is given in Box 1 used with the
interaction functions specified in Box 2.

1) INFLUENCE OF PHASE ON SPATIAL COORDINATION
First we introduce how phases influence the position inter-
actions. The demanded velocity of this phase-influenced
aggregation model has the following form (similar to [26]):

vdk =
1
N

N∑
j=1
j6=k

I1(xjk )F1(θjk )− I2(xjk )F2(θjk ), (23)

where functions F1(θjk ) = 1 + J1 cos(θjk ) and F2(θjk ) =
1 − J2 cos(θjk ) describe how the agents’ phase similarity
influences their spatial attraction and repulsion, respectively,
with parameters J1 and J2 defining the strength of these
influences. The attraction of agents with similar phases is

stronger than in the aggregation model if J1 > 0, it remains
unchanged for J1 = 0, and it is weaker if J1 < 0. We set
J2 = 0 to prevent collisions. Using a high J2 value could
cause agents with similar phases not to repel or even attract
each other, no matter how close they are, which could lead
to collisions.

Since the phases now influence the positions, the pre-
viously calculated step size (21) does not guarantee
oscillation-free convergence. The reason being that, once a
phase changes, attraction and thus velocity might change
significantly. There are two options to compensate for this
behavior: using more phase levels (L � M ) or keeping
the same number of phase levels and changing the step size.
We use the step size

s =
1

2λT
· G
(
Û (M )), (24)

where Û (M )
∈ [0, 1] is a normalized value of the potential,

which is 1 if U (M ) is maximal and converges to 0 when
agents’ phases reach the desired pattern. The function G(·)
defines how much phase potential should influence the step
size of the spatial aggregation. In this publication we use:

G
(
Û (M ))

= 1−
p
√
Û (M ) , (25)

which allows us to control which model has priority. High
values of p will make agents move slowly when their phases
have not formed the correct pattern yet. Low values will make
agents move dynamically even before the temporal pattern
has converged. We use p = M , which means: the more
clusters should be formed, the less dynamic the movements
are before the temporal pattern has converged.

2) INFLUENCE OF POSITION ON TEMPORAL
COORDINATION
The phase interactions are modified in a similar way.
We enable the distance between agents to influence coupling
of each phase harmonic:

9k (θk ) =
1
N

N∑
j=1
j6=k

01(θjk )31(xjk )+ 02(θjk )32(xjk ), (26)

where the functions 31 and 32 define how the distance
between agents influences their phase attraction and repul-
sion, respectively. We use the following form of these
functions:

31(xjk ) = 1+ P
εd + d∥∥xjk∥∥ ; (27)

32(xjk ) = 1− P
εd + d∥∥xjk∥∥ . (28)

The parameter P ∈ [−1, 1] quantifies the strength of influ-
ence of distance between agents on their phase coupling.
For positive P, when agents move closer to each other, their
phase attraction is amplified and their phase repulsion is
weakened. If P = 0, the positions do not influence the
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FIGURE 3. Spatio-temporal patterns and parameter values for which they were obtained. The color map used for visualization of phases is shown
on the left.

phases. The influence of spatial proximity is strongest at the
shortest distance between agents (εd + d) and decreases with
increasing distance.

Box 1: Sandsbots model

vdk =
1
N

N∑
j=1
j6=k

I1(xjk )F1(θjk )− I2(xjk )F2(θjk )

vk =
vdk∥∥vdk∥∥ ·min

(∥∥∥vdk∥∥∥ , s ∥∥∥vdk∥∥∥ , vmax
k

)
xk [t + 1] = xk [t]+min(s,T )vk

9k (θk ) =
1
N

N∑
j=1
j6=k

01(θjk )31(xjk )+ 02(θjk )32(xjk )

δθ̂k [t] = (1+ E)δθ̂k [t − 1]+ η −9k (θk [t])

θ̂k [t+1]=
(
θ̂k [t]+1+sgn(δθ̂k [t]) ·

⌊∣∣∣δθ̂k [t]∣∣∣⌋) mod L

δθ̂k [t] = 0 if phase was corrected

Box 2: Interaction functions

I1(xjk ) = ηattrxjk

I2(xjk ) = ηrep
xjk∥∥xjk∥∥ (∥∥xjk∥∥− d)

F1(xjk ) = 1+ J1 cos(θjk )
F2(xjk ) = 1− J2 cos(θjk )

01(θjk ) =
∑
m∈M1

Km
m

sin(mθjk )

02(θjk ) =
∑
m∈M2

Km
m

sin(mθjk )

31(xjk ) = 1+ P
εd + d∥∥xjk∥∥

32(xjk ) = 1− P
εd + d∥∥xjk∥∥

IV. SPATIO-TEMPORAL PATTERNS
We now show that the sandsbot model is able to reproduce
the patterns of the continuous sync and swarm model [3].
Some patterns are modified to guarantee they will emerge
regardless of the initial conditions (static phase wave) or to
control their properties (static async, splintered phase wave).
Such an approach allows to adjust the pattern for a specific
task that needs to be executed. We show the position and
phase of each agent, where the phase is indicated by a color.
The color map is presented on the left side of Figure 3.

A. PATTERNS
In the static sync pattern (Figure 3a), all agents synchronize
their phases and gather evenly distributed on a disk. This state
is formed if J1 > −1, K > 0,M = 1, and P ≥ 0.

The static async pattern distributes the agents on a disk
as well, but their phases are now asynchronous and similar
phases spread in space. Using the parameters of the original
model [3] for this state (K < 0, J1 < 0) and keeping
M = 1, the discrete phase levels make the obtained pattern
unstable with phases constantly changing. Thus, we introduce
a controlled version of this pattern (Figure 3b) in which we
specify the number of clustersM to be created (1 < M < N )
and set K > 0, J1 < 0, and P < 0. Agents with different
phases attract each other more and they try to form clusters,
but phase interaction between agents is stronger if they are
more distant from each other. Agents form M clusters in the
phase domain and each phase cluster spreads on a disk.

The static phase wave (Figure 3c) formed by our model
looks similar to the one in [3]. The agents form an annulus and
sort their uniformly distributed phases. Sandsbots can form
this pattern regardless of their initial conditions, contrary to
the original model [3], in which phase coupling does not exist
in this pattern. This pattern appears for K > 0, J1 > 0,
M = N , and P > 0. In a special case of this pattern (called
ring phase wave in [26]) the agents are placed on a circle.

The splintered phase wave of [3] splits the agents in space
into clusters with similar phases. The clusters are positioned
on a ring. The number of clusters formed depends on the ini-
tial conditions, and the agents keep changing phases slightly
and move within their clusters. Similarly to static async,
we propose a controlled version, in which we specify the
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number of clusters and set K > 0, J1 > 0, and P > 0. Agents
cluster in the phase domain, are placed on a ring, and split
into clusters based on their phase. After reaching this pattern,
the positions and phases remain unchanged.

Agents in the active phase wave form a ring and keep
changing their phase while they travel around the ring to
get close to the ones having a similar phase. This pattern is
achieved for K < 0, J1 > 0, M = 1, and P > 0. As we
do not control the number of clusters directly here, Û (M )

never converges to 0. Therefore, to speed up the formation,
the influence of the phase potential on the step size s might
be disabled (G = 1). Although we focus on stationary pat-
terns, we reproduce this pattern for the sake of completeness,
to show that it is possible to obtain similar behavior with
discrete phase, but do not analyze it further.

B. ORDER PARAMETERS
Three parameters are used to characterize the different
space-time patterns and to distinguish them formally.

1) SYNCHRONIZATION ORDER PARAMETER
Recall from Section III-B that the magnitude r1 of the com-
plex order parameter, simply denoted r in the following, is a
measure of synchrony. It can be used to distinguish static sync
(r = 1) from other patterns, as static phase wave (splay state
in the phase domain), static async, and splintered phase wave
(clustered states in the phase domain) are special cases of the
balanced phase state (r = 0).

2) SWARMING ORDER PARAMETER
Three types of spatial arrangement occur: circle (ring phase
wave), disk (static sync, static async), and annulus (splintered
phase wave, static phase wave). To distinguish them formally,
we propose to use the normalized variance of the distances dk
of the agents from their centroid, i.e.,

V =
σd

σd ′ (R)
=

1
N

N∑
k=1

(dk − µd )2

σd ′ (R)
, (29)

and call it swarming order parameter V ∈ R+0 . The term
µd is the mean distance from the centroid. For normalization,
we use the variance of the distance d ′ from the center of a disk
with radius R to a point chosen uniformly at random from this
disk, where we assume that the radius is R = maxk (dk ).

We observe the following: Agents placed on a circle yield
V = 0, agents on an annulus have 0 < V < 1, and
agents distributed on a disk lead to V > 1. If the disk is
fully occupied (i.e., the agents are tightly packed, minimum
distances are not preserved), V is equal to 1, but in practice it
is higher due to the minimum distance constraint (22).

3) CORRELATION BETWEEN ANGULAR POSITION AND
PHASE
To express the correlation between the phases θk and the
angular positions γk of the agents, we use the order parameter

S = max(S+, S−) with [3]

S± =
1
N

∣∣∣∣∣
N∑
k=1

ei(γk±θk )
∣∣∣∣∣ , (30)

which varies from 0 (no correlation) to 1 (perfect correlation).
The angular position is γk = arctan(yk/xk ) with the coor-
dinates xk and yk with respect to the centroid of the whole
swarm. Perfect correlation occurs in the static phase wave.

V. SIMULATION-BASED ANALYSIS
A. SETUP
The sandsbot model is analyzed in more detail with a
simulation implemented in Python. We first study how to
form patterns with the discrete model in perfect condi-
tions. The imperfections of robots and issues associated
with communication are not taken into account. Agents are
connected without delays and packet loss. This leads to
full knowledge about phase levels and positions of other
agents and perfect synchronization of the clocks. The agents
can move freely in space, the only constraint being their
maximum speed. Real-world issues related to communica-
tion, movement constraints, and hardware imperfections are
addressed later in our proof of concept with robotic platforms
(Section VI).

All agents start with random phase levels and random
positions in a 10m × 10m square both drawn from the uni-
form distribution. The initial positions are redrawn until they
meet the minimum distance constraint (22). The clocks φk
are synchronized and δθ̂k = 0. Simulations are run with
T = 0.125 s, εd = 0.1m, d = 0.2m, and vmaxR

= 0.2m/s,
where this choice of values is motivated by capabilities of
robots and aims at simulating a setup similar to the experi-
mental one.

B. RESULTS
1) ORDER PARAMETERS
The plots in Figure 4 show for each of the static patterns
how the three order parameters evolve over time. In each plot,
three moments are marked (dashed black line) for which the
corresponding space-time patterns are shown below. These
moments are chosen to depict the starting condition, process
of pattern formation, and the final pattern.

The plots confirm that for all patterns the order parame-
ters converge to the values described in Section IV-B. This
shows that the introduced combination of order parameters
can serve as a tool to distinguish the patterns. The splintered
phase wave (Figure 4d) forms very slowly. However, the state
similar to the final pattern is formed much earlier. Around
t = 130 s agents already form the correct temporal pattern
and the clusters are placed on a ring. After that, the inter-
actions between agents are minimal and the clusters slowly
rotate to reach their final positions.
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FIGURE 4. Convergence of order parameters and snapshots of the system showing the process of pattern forming.

2) IMPACT OF PERIOD LENGTH ON PATTERN
CONVERGENCE
We now analyze the impact of the period length T and thus
the frequency of message exchange on the convergence time
and capabilities of the model. Sandsbots are compared to
swarmalators with interaction functions from [26]. To ensure
fair comparison, we add collision avoidance and maximum
speed to the swarmalator model (as done in [4]).

A comparison is possible only for the static sync pattern as
it is the sole pattern emerging identically in both models. The
static async pattern and splintered phase wave with sands-
bots differ significantly from their theoretical counterparts.
The static phase wave now involves phase interactions and

forms regardless of the initial conditions although it might
converge more slowly.

We observed that sandsbots successfully form the static
sync pattern even with very long periods (T = 5 s), but
forming takes significantly longer compared to short peri-
ods (T = 0.1 s). In contrary, with swarmalators (originally
continuous in nature), increasing the period leads to destabi-
lization and physical oscillations (T = 1 s) and eventually
prevents forming the pattern all together (T = 5 s).

It is assumed that the pattern is formed when all agents
move slower than 1mm/s. The relationship between T and
convergence time is presented in Figure 5. The swarmalator
model with T = 0.1 s (as used in the simulations in [3])
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serves as a baseline. It can be observed that for very short
periods (in the order of 0.1 s) the convergence time is similar
to the one obtained with the swarmalator model and grows for
increasing period length. If the pattern needs to be formed fast
but at the same time the network load should be minimized,
the following technique can be used: start with a short period
(in the order of 0.1 s) to form the pattern and then increase it
to keep the pattern stable.

FIGURE 5. Relationship between period length and convergence time and
the number of exchanged messages for static sync pattern.

Figure 5 also shows the number of exchangedmessages for
different period lengths. An interesting observation is that for
very short periods (0.1 s and 0.2 s) the number of exchanged
messages required to form the pattern is much higher than for
longer periods. This happens because the robots could travel
safely with their maximum speed for a time longer than the
period, but they are forced to exchange data anyway. It means
that the pattern formation for such short periods is inefficient
in terms of the number of exchanged messages. For longer
periods, the number ofmessages grows slowlywith the period
length due to the adaptive speed limit (20).

VI. EXPERIMENTAL VALIDATION
Finally, we validate the feasibility of the sandsbots model
with two robot platforms. First, we use Crazyflie drones
(Figure 6) to check whether the simple model of robot
dynamics is sufficient and whether the discrete model works
correctly even with imperfect estimation of future posi-
tions. Second, we use Pololu Balboa self-balancing robots
(Figure 10) to see how the model behaves under realistic
communication conditions with non-deterministic delays and
message drops. We describe the setup for each platform
and the results achieved in practical experiments. In each
experiment, robots start from arbitrary positions with ran-
dom phases.

A. CRAZYFLIES
Eight Crazyflies are controlled by a server, which acquires
the positions of all from an Optitrack motion capture system.

FIGURE 6. Crazyflie.

FIGURE 7. Static sync: Crazyflies forming the pattern.

This guarantees that full information is available without
delay to calculate state updates for each agent, thus allowing
us to omit potential communication problems. At the same
time, the movement dynamics of the agents is realistic. At the
beginning of each oscillation cycle (i.e., whenever φk = 0)
the server transmits new velocity and color to visualize the
phase on a ring of RGBW light-emitting diodes (LEDs)
attached to each robot. This experiment is run with the fol-
lowing parameters: T = 0.5 s, εd = 0.1m, d = 0.3m and
vmaxR

= 0.2 m/s. Because of a constrained communication
interface we use ω = 2

L s
−1, which means that the velocity

and color are updated twice per second.
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FIGURE 8. Static sync: Convergence of order parameters and snapshots
of the system showing the process of pattern forming with Crazyflies.

All patterns are successfully formed by the Crazyflies.
Figure 7 shows an exemplary pattern. Similar to the results
of simulations, we studied how the order parameters converge
for this pattern (Figure 8).

B. BALBOAS
For further evaluation— taking into account both movement
dynamics and realistic communication—we use a robot
swarm platform based on Pololu Balboa robots. The main
computer is a Raspberry Pi 3B+. Robots communicate via
IEEE 802.11bg operating in ad-hoc mode, which enables
them to join and leave without any infrastructure or single
point of failure. From the software perspective, the com-
munication is realized in the ROS 2 framework (Eloquent
Elusor release) using the Data Distribution Service (DDS)
communication standard, which applies a Real-Time Publish
Subscribe (RTPS) protocol (we use eProsima Fast RTPS).
The robots communicate in best-effort mode with multicast
enabled to reduce communication load.

The robots need to know their positions. Outdoors they
could use a satellite-based positioning system, but as our
demonstrator operates indoors, we utilize an Optitrack
motion capture system. To ensure that the demonstrator will
be easily transferable to real-world applications (including
outdoors), the robots use the motion capture system in the
same way as they would use an outdoor solution: each robot
acquires only its own position and ignores messages sent to
other agents. Each robot visualizes its phase level by the hue
of the color of an LED strip attached to the bumpers.

The wireless channel is only used to exchange the states
(phase levels and positions), where each robot receives mes-
sages from all others. The signaling effort depends on the
natural frequency of oscillations. In our experiments, each
robot sends eight messages per second (we use ω = 8

L s−1).
The total number of agents and the number of agents with

the same phase level are unknown to the robots. For an update

of phase correction and velocity, the number of messages
received during the last oscillation cycle is assumed to be the
number of agents. Therefore, if the messages are significantly
delayed or dropped, it can have an impact on the convergence
and stability of the desired pattern.

The same parameters as in the simulation are used:
T = 0.125 s, εd = 0.1m, d = 0.2m, and vmaxR

= 0.2 m/s.

FIGURE 9. Static phase wave: Balboa robots forming the pattern.

FIGURE 10. Static phase wave: Convergence of order parameters and
snapshots of the system showing the process of pattern forming with
Balboa robots.

The Balboas acting as sandsbots are able to successfully
form the patterns. A snapshot from a system forming the
static phase wave is shown in Figure 9. The convergence of
order parameters for this pattern is presented in Figure 10.
The pattern might get disturbed due to the non-deterministic
communication delays and message drops (as happened at
78 s), but it quickly recovers.

VII. CONCLUSION AND OUTLOOK
Our time-discrete model for ‘‘sync and swarm’’ suited
for multi-robot and drone systems successfully creates the
emergent space-time patterns of swarmalator theory [3].
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TABLE 1. Sandsbots — challenges.

It features controlled versions of static async and splintered
phase wave with a specified number of clusters. These modi-
fications enable us to create predictable patterns which can be
employed in specific missions. Sending synchronized peri-
odic updates makes the system robust when messages get
delayed.

Future work on sandsbots includes the analysis of stability
and robustness against message losses and the design of algo-
rithms for automatic choice of parameters (e.g., to achieve a
desired pattern size for certain applications). Another direc-
tion is to apply the concept of mode switching [29] for
coupled temporal-spatial coordination.

APPENDIX
PROBLEMS WITH ROBOTIC APPLICATIONS OF
SWARMALATOR MODEL
See Table 1.
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