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ABSTRACT Increase in utilization of electric vehicles and penetration of Renewable Energy Sources (RES)
creates a greater impact on traditional power systems. Intermittent output from renewable energy resources
and uneven usage pattern of electric vehicles creates a greater impact on the economic operation of power
system. In this article, a stochastic Dynamic Economic Dispatch (DED) problem incorporating Commercial
Electric Vehicles (CEVs) and intermittent renewable energy resources is addressed. The charging pattern of
CEVs as well as intermittency of solar and wind resources creates a significant impact on power system peak
demand. The behaviour of these CEVs and RES in various seasons is considered and the same is tested on
a real time south Indian practical test system. An attempt is made to improve the swarm-based Moth Flame
Optimization (MFO), named as IMFO is developed and utilized for solving the considered problem. The
efficacy of the said method is tested and necessary validations are carried out in this article.

INDEX TERMS Economic dispatch, electric vehicles, improvedmoth flame optimization, renewable energy
sources, solar, wind.

NOMENCLATURE
Pi,t ,Psj,t ,Pwk,t ,Pevl,t Power produced by thermal,

solar, wind generation and CEVs
at t th time interval respectively.

Fi,t ,Fj,t ,Fk,t Fuel cost of thermal, solar and
wind generation at t th time inter-
val respectively.

ai, bi, ci Thermal generator cost coeffi-
cients.

ei, fi Valve point loading coefficients.
dj,t , dk,t , dl,t Direct cost of solar, wind and

CEVs at t th time interval.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhehan Yi .

Pd ,PL System demand and power loss in
MW.

τ Penetration level constraint.

Pmin,Pmax Minimum and Maximum generation
limits.

UR (i) ,DR (i) Up-rate and Down-rate of ith genera-
tor.

Bij,B0i,B00 Transmission loss coefficients.
VMPPT , IMPPT Voltage and Current at maximum

power point.
VOC , ISC Open circuit voltage and Short circuit

current of the PV panel.
SOCmin, SOCmax Minimum and Maximum limits of

State of Charge.
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Pch,Pdisch Charging and Discharging limits of
the CEVs.

PDcev Additional demand due to CEVs.
PT ,PS ,PW Thermal, Solar and Wind power gen-

erated respectively.
PG,PD,PL Total Power generated, Power demand

and Power Loss respectively.
FT ,FS ,FW ,TC Fuel cost of Thermal, Solar, Wind and

Total generation respectively.

I. INTRODUCTION
Economic Dispatch (ED) is a primary issue in the operation
and planning of modern power systems. In ED, the best com-
bination of generators is exploited for minimization of fuel
cost. Furthermore, ED helps in improvement of power system
security and reliability. To bridge the demand generation gap
ED has become an essential tool which involves quite a few
constraints. Besides this, addition of large-scale intermittent
energy sources (Solar and Wind) adds a lot more constraints
to the ED problem. With the increased number of constraints,
the problem of ED has become highly nonlinear, constrained
and complex.

For solving nonlinear problems heuristic optimization
techniques are widely used. Optimization techniques are
classified into classical, analytical and Meta heuristic meth-
ods. Various power system problems are solved using these
methods. Classical methods like Lambda Iteration Method
(LIM) [1], Linear Programming (LP) [2], Quadratic Program-
ming (QP) [3] and Gradient Method (GM) [4] are applied
to solve the ED problem. High computational time, large
number of iterations and poor constraint handling are the
drawbacks of these methods.

Whilst Meta heuristic methods do not ensure an optimized
global solution, they are widely implemented for solving ED
problem with a reasonable computational time. Traditional
ED problem has been solved using various optimization tech-
niques such as [5]–[22]. In [23], optimal economic dispatch is
solved using linear programming for a large test system. This
method considers a piecewise linear model of the network
for handling the various parameters of the network. In [24],
Chemical Reaction Optimization (CRO) is used for solving
various types of dispatch problems. Constraints like valve
point effect, Prohibited Operating Zone (POZ) and emission
are considered in the above-mentioned method and the effec-
tiveness of CRO is explained.

Recently researchers considered incorporation of RESs
in the existing ED problem. In [25], the problem of ED is
solved in the presence of high wind power and storage using
MBFA. Additionally, composite operating costs of wind
power are also introduced. Combined economic emission
dispatch (CEED) incorporating PEVs and RESs is employed
using PSO in [26]. It is inferred that the PEVs alone cannot
reduce the emission of greenhouse gases (GHGs); rather
the combination of PEVs and RESs can help in minimizing
the GHGs emission. Renewable energy based ED has been
implemented in [27]–[30], whereas emission parameter has

been additionally taken into account in [28], [31] and reserve
constraint is included in [32]. The wait and see approach to
estimate the wind speed is used and the estimations are incor-
porated with existing ED problem which makes it an entirely
different problem and the same is solved in [33]. Market
clearing mechanism-based ED considering wind and thermal
systems is presented in [34]. In [35], the ED incorporating
wind energy conversion system by considering the estimates
of wind power using weibull distribution model is projected.
ED considering spinning reserve of a system in the presence
of wind and thermal units is solved using CMA-ES technique
in [36].

To reduce the environmental pollution and promote clean
energy, accelerated usage of Electric Vehicles (EVs) over
Internal Combustion Engines (ICEs) is being promoted by
many countries. Government of India is promoting EVs and
provides incentives for effective usage of electric mobil-
ity systems. Despite of increased penetration of EVs, their
charging patterns will create a significant impact on peak
electricity demand. Consequently, it is very essential to study
the scheduling of EVs along with the generation units. A few
works reported in literature in this direction are studied and
the same are as follows. In [37]–[41], charging of EVs is
addressed in terms of valley filling. The works presented
so far do not try to handle the peak demand. In [42]–[44],
DED including PEVs is studied by considering various charg-
ing and discharging profiles. The method presented in [44]
solved the problem of DED in presence of EVs. However,
the authors did not consider the charging rate. By looking at
the literature on static/dynamic economic dispatch referred
in [1]–[36], it can be understood that the focus of all those
works is only to find out a better operating solution of the
generation units in the absence of electric vehicles in the
system. Further, by having a glance at the articles [37]–[44],
it can be understood that the penetration of the EVs into the
system has been taken into account by the researchers, but the
impact of CEVs on the optimal ED considering RES is less
attempted in the literature.

Taking into account the presented literature, it can be
established that the problem of static and dynamic economic
load dispatch in the presence of fixed and intermittent energy
sources has not been addressed adequately. On the other
hand, various works reported in the literature also focused
only on developing the optimal charging/discharging profile
for EVs considering their running patterns. By considering
the aforementioned statements, it can be understood that the
problem of EV and generation scheduling is being solved
individually. Therefore, in this work an attempt is being made
to bring in a comprehensive solution to the problem of static
and dynamic economic dispatch in the presence of large
fleet of commercial electric vehicles and renewable energy
resources.

A. CONTRIBUTIONS OF THE ARTICLE
• A new method namely smart charging method is pro-
posed for scheduling Commercial EVs.
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• An effective solution to DED incorporating RES and
CEVs is developed which reduces the cost and power
loss minimization.

• An improved version of MFO (IMFO) algorithm is pro-
posed, which is better than the existing MFO method.

The rest of this article is organized as follows. In section
2 mathematical formulation of DED including RES and
CEVs is presented. Later in section 3 Modelling of RES and
CEVs is discussed. In section 4 the results obtained using the
developed method are presented.

II. MATHEMATICAL FORMULATION OF DED PROBLEM
INCLUDING RES AND CEVs
The goal of ED problem is to minimize the generation cost
of all the units participating in dispatch while satisfying the
constraints posed on the generating units. Three different
kinds of ED problems are considered for the study. Firstly,
Static ED considering thermal generators is represented in
Eq 1. Second, Static ED considering thermal generators with
valve point effect represented in Eq 2. Finally, stochastic DED
considering CEVs and RES are represented in Eq 3 and 4.
The quadratic cost function for minimizing thermal gener-

ation cost is [45]

min
N∑
i=1

Fi (Pi) = min
N∑
i=1

(aiPi2 + biPi + ci) (1)

The quadratic cost function considering valve point effect is
given by [46]

min
N∑
i=1

Fi (Pi) = min
N∑
i=1

(aiPi2 + biPi + ci
+
∣∣ei × sin

(
fi ×

(
Pimin

− Pi
))∣∣)
(2)

The quadratic cost function for 24 hours time horizon consid-
ering solar and wind energy as well as CEVs is

min


T∑
t=1


N∑
i=1

Fi,t
(
Pi,t

)
+

m∑
j=1

Fj,t (Psj,t )

+

n∑
k=1

Fk,t (Pwk,t )+
p∑
l=1

dl,tPevl,t


 (3)

which can be rewritten in expanded form as

min


T∑
t=1


N∑
i=1

(aiPi,t2 + biPi,t + ci)+
m∑
j=1

dj,tPsj,t

+

n∑
k=1

dk,tPwk,t +
p∑
l=1

dl,tPevl,t


 (4)

Following constraints must be satisfied while solving the
problem
Power balance Constraint

N∑
i=1

Pi +
n∑
j=1

Psj +
n∑

k=1

Pwk = Pd + PL + Pch (5)

where power loss

PL =
n∑
i=1

n∑
j=1

PiBijPj +
∑
i∈j

B0i + B00 (6)

Generating Capacity Constraint

Pimin
≤ Pi ≤ Pimax (7)

Prohibited Operating zones POZ

Pi ∈


Pimin

≤ Pi ≤ Pi,1lb

Pi,k−1ub ≤ Pgi ≤ Pi,k lb

Pi,zi
ub
≤ Pi ≤ Pimax

 , k = 2, 3, . . .Zi (8)

Ramp Constraints

P(i,t) − P(i,t−1) ≤ UR(i)

P(i,t−1) − P(i,t) ≤ DR(i) (9)

Renewable Penetration Constraint n∑
j=1

Psj +
n∑

k=1

Pwk

 ≤ τ × Pd (10)

The constraints of CEVs are represented by following equa-
tions [47]
CEV(Battery) state of charge constraint

SOCmin ≤ SOCi,t ≤ SOCmax (11)

CEV(Battery) Power limits

pch,i,t ≤ pmax
ch,i

pdisch,i,t ≤ pmax
disch,i (12)

III. MODELLING OF RES AND SCHEDULING OF CEVs
The mathematical modelling of solar & wind energy
resources, and smart scheduling model for CEVs is discussed
in this section.

A. SOLAR ENERGY SYSTEM MODELING
Solar energy is the radiation from sun harnessed using mod-
ern techniques such as photovoltaic, solar heating and many
other methods. The obtained solar energy is variable due to
the stochastic nature of irradiance. For estimating the future
output of solar energy, stochastic nature is characterized
using probability distribution function. The preliminaries for
estimating the solar output are the historical data of chosen
location and rating of the PV panel.

Probability of Solar irradiance distribution is given by

fp(s, t) =
0(αt + βt )
0(αt )0(βt )

s(αt−1)(1− s)(βt−1) ∀
{
0 ≤ s ≤ 1
αt , βt ≥ 0

(13)

where

βt = (1− µt )
(
µt (1+ µt )

σt2
− 1

)
and αt =

µtβt

1− µt

s is a random variable of solar irradiance (kW/m2). µt , σt are
the mean and standard deviation.
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TABLE 1. Specifications of 220W Solar Panel.

The output power expected from the solar panel is given
by

P(s) = Po(s) ∗ fp(s) (14)

where, Po(s), fp(s) are power output and probability distribu-
tion of solar irradiance.

The total power output from a solar panel for a specified
time is

TP =

1∫
0

Po(s) ∗ fp(s)ds (15)

while

Po(s) = N ∗ FF ∗ Vy ∗ Iy (16)

The PV module characteristics can be obtained by

FF =
VMPPT ∗ IMPPT
VOC ∗ ISC

(17)

Vy = Voc − Kv ∗ Tcy (18)

Iy = s [Isc + Ki(Tcy − 25)] (19)

Tcy = TA + s
(
NOT − 20

0.8

)
(20)

where FF is the Fill Factor. The specifications of the solar
panel are given in Table 1.

B. WIND ENERGY SYSTEM MODELING
Wind energy is a process of generating electricity from wind
turbines. The wind energy is intermittent due to the proba-
bilistic nature of wind. For estimating the future output of
wind energy, stochastic nature is characterized using weibull
distribution function. The preliminaries for estimating the
wind output are the historical data of chosen location and
rating of the wind turbine.

Probability of wind speed distribution is given by

fv(v, t) =
kt
ct

(
vt
ct

)kt − 1

. exp

(
−

(
vt
ct

)kt )
∀

{
ct > 1
kt > 0

(21)

where

kt =
(
σvt

µvt

)−1.086
(22)

TABLE 2. Specifications of Wind Turbine.

ct =
µvt

0
(
1+ 1/

kt

) (23)

For a designed wind turbine, the power output corresponding
to wind speed is given by

Pwk,t =

Nv∫
v=1

Pwr ∗ fv(v, t) dv (24)

where

Pwr =


0 v < vin or v > vout
(a ∗ v3 + b ∗ Pr ) vin ≤ v ≤ vr
Pr vr ≤ v ≤ vout

(25)

where

a =
Pr

v3r − v
3
in

and b =
v3in

v3r − v
3
in

Here v, vr , vin, vout ,Pr ,Nv represents the wind speed, rated,
cut-in, cut-out speeds, rated power of wind turbine and Num-
ber of states in wind speed respectively. The specifications of
considered wind turbine are given in 2.

C. PROPOSED SMART STRATEGY FOR CHARGING THE
CEVs
Generally, the EV users tend to charge their vehicles immedi-
ately after they return home. But this method may not be ben-
eficial. This method can lead to high power loss, dip in volt-
age profile and may also lead to mal-operation in the network
due to congestion. This method is named as Dumb charging
method. It is always beneficial to charge the EVs (V2G) dur-
ing off-peak hours and supply power to the grid (G2V) during
peak hours. So, the EVs scheduling strategy is formulated
in such a way to ensure the priority-based demand sensitive
charging and discharging of EVs. This method is called as
Smart Charging Method. This model ensures effective load
management in such a way that stable voltage profile and
minimal power loss are achieved. In this method, the utility
and EV users will have a mutual interaction about the system
demand and further strategy on improving the system perfor-
mance is implemented. The methodology for scheduling con-
siders Peak to Average Ratio (PAR) of system load demand.
Generally, the PAR is defined as the ratio of peak demand to
average demand of the system. If the PAR of the system is
high, then it is required to operate the generators with high
fuel cost. Thereby, the overall cost for generation scheduling
will be increased.
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FIGURE 1. Smart charging strategy for charging the CEVs.

The main objective of scheduling EVs is minimizing PAR,
which is represented as follows

PAR =
Pd,peak
Pd,mean

(26)

It is very important to consider two constraints here. The EVs
scheduled can never be negative and also number of EVs to
be allotted at new time step cannot be greater than number of
EVs at initial step.

N∑
t=1

EVpit ≤ EVT (27)

where, EVpit is the number of EVs of type P to be shifted
from ith hour to t th hour and EVT is the total number of EVs
available for scheduling. The flowchart of EVs scheduling is
shown in Fig 1.

D. IMPROVED MOTH-FLAME OPTIMIZATION
Moth-Flame is a new optimization technique, proposed by
Seyedali Mirjalili [48] in 2015 for solving higher order multi
objective problems. An improved moth flame algorithm for
solving optimal power flow problem is presented in [49].
Moths basically belong to butterfly’s family. These insects
have a special navigation method named as transverse ori-
entation. Moths take off in a straight line for longer dis-
tances by maintaining a certain angle with moon [48]. The

FIGURE 2. Spiral Flying Path of Moths towards artificial light.

transverse orientation is helpful only when the distance is
very large. Generally, these Moths travel around the artificial
lights to converge towards light. The convergence towards
artificial light is as shown in Fig 2. The considered behavior
is mathematically formulated as an optimization technique
for problem solving. In this optimization, moths correspond
to candidate solutions and their position in free space cor-
responds to problem variables. The movement of moths is
multi-dimensional, since it is a population-based optimiza-
tion methodology. Both moths and flames correspond to
individual solutions in the space. The actual search agents are
moths whereas the flames are the finest positions obtained by
moths. The implemented mechanism helps in saving all the
better solutions without missing them in between. Although
moths and flames are individual solutions the way of treating
them differs in each iteration. A logarithmic spiral is used
for updating the positions around the flame which helps in
a guaranteed exploration and exploitation.

The steps involved for implementation of IMFO are as
follows.

Step 1: Initialize the number of moths X =

(X1,X2, . . .XN )T , where each moth represents ith unit power
generation. Update flames, dimension, lower bound and
upper bound of all variables.

Step 2: Create two matrices with a size of p x v, for posi-
tions of moths (M) and Positions of flames (F) respectively.
They are represented in equations 28 and 29.

M =



m1,1 m1,2 · · · · · · m1,v
m2,1 m2,2 · · · · · · m2,v
...

...
...

...
...

...
...

...
...

...

mp,1 mp,2 . . . . . . mp,v

 (28)

F =



F1,1 F1,2 · · · · · · F1,v
F2,1 F2,2 · · · · · · F2,v
...

...
...

...
...

...
...

...
...

...

Fp,1 Fp,2 . . . . . . Fp,v

 (29)

Step 3: Assume two arrays for storing corresponding fitness
values for the moths (FM), as well as flames (FF). They are
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represented in equations 30 and 31.

FM =


FM1
FM2
...

FMn

 (30)

FF =


FF1
FF2
...

FFn

 (31)

Step 4: A spiral flying path for the moths is created around
the light, is modeled using a logarithmic spiral and is given
by

Mi = S(Mi,Fj) = Di.ebt . cos(2π t)+ Fj (32)

whereas Di =
∣∣Fj −Mi

∣∣ is the distance between the ith moth
and jth flame and t is rand [-1, 1].

Step 5: Using adaptive mechanism, the number of flames
is reduced with increase in the number of iterations. The
equation for updating flame number is given by

FN = round
(
N − l ∗

N − 1
T

)
(33)

whereas l,N and T are the iteration number, maximum
flames and total number of iterations respectively.

Step 6: Update the Moth Positions using equation 32.

1) IMPROVED MOTH FLAME OPTIMIZATION
Now, random walk-based probability distribution is imple-
mented to bring the positions out of local optimum. The
random walk distribution equation is given by

Xt+1 = Xt + rnd(d)× Xt (34)

where

rnd(d) = 0.01×
r1× σ

|r2|
1
β

(35)

r1 and r2 are the random numbers in [0, 1] and β is a constant
and σ is given by

σ =

 0(1+ β)× sin(πβ2 )

0( 1+β2 )× β × 2

(
β−1
2

)


1
β

(36)

After the termination of iterations, the best moth is given back
as the finest estimate.

2) IMPLEMENTATION OF IMPROVED MOTH FLAME
ALGORITHM FOR GENERATION SCHEDULING PROBLEM
The generation scheduling problem requires to solve the
quadratic cost function in association with various set of con-
straints. The methodology for this problem is implemented
using IMFO method. The flow chart of IMFO method for
generation scheduling in the presence of CEVs and RES is
shown in Fig. 3. The state of charge of CEVs is obtained from

FIGURE 3. Flow chart of Improved Moth Flame optimization.

the smart charging method for each interval considering the
overall system demand and PAR of the system. The output of
solar and wind resources is estimated using beta and Weibull
probability density function considering the historic data of
the site. So, the inputs for IMFO algorithm are the state of
charge of CEVs participating in generation scheduling and
the output from the solar & wind resources during the same
hour. In addition to this, it also requires the constraints of
thermal generators, capacity limits of solar & wind sources
and power limits of CEVs. Considering all the inputs and
constraints, it is required to initialize the population, control
variable limits and maximum iterations.

IV. RESULTS AND DISCUSSION
First, SED is implemented on 4 different test systems without
considering renewable energy resources and electric vehicles
to prove the superiority of IMFO algorithm. Next SED and
DED are implemented on a real time south Indian test system
considering the seasonal variation in RES. Further, a smart
scheduling strategy for charging the CEVs is proposed and
analyzed their impact on DED.The entire analyses were
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TABLE 3. Dispatch of 6 generator system considering Transmission loss.

FIGURE 4. Convergence curve for 6 generator system.

performed in MATLAB 2018b on a PC with 8gb RAM,
i5 processor.

A. SED WITHOUT CONSIDERING RES
SED is implemented on 4 different test systems using pro-
posed IMFO method without violating the operating con-
straints. The obtained results are compared with existing
MFO and other recent methods available in literature.

1) SIX GENERATOR SYSTEM
In this case, six generator system (IEEE 30 bus system) is
considered. Data for this system is obtained from [50]. The
objective function shown in equation 1 is solved using IMFO
with constraints stated in Equations 5,6,7,8. The results
obtained for this case are given in Table 3 and 4. SED of 6
generators is given Table 3 and is observed that the generation
is within the bounds and the power loss is minimal. While
incorporating valve point loading into the system, there is a
chance that the solution falls into local minima. So, various
metrics like minimum, maximum and mean cost, standard
deviation are compared with other methods and are given
in Table 4. This method delivers the optimal solution in
less time compared to many methods. The method requires
2000 evaluations which indicate least computational effort
than other methods. The power loss computed using this
method is 12.932 MW, which is the least compared to all
other methods reported in Table 4. The convergence curves
of proposed IMFO and MFO is plotted for cost minimization
objective and is shown in Fig 4. A smooth convergence curve

FIGURE 5. Convergence curve obtained for 3 generator system.

is observed in this case which shows the efficiency of the
method in delivering optimal solution.

2) THREE GENERATOR SYSTEM
Here, the case study is carried out in a 3-generator test
system with valve point effect for a demand of 850 MW.
The objective function represented in equation 2 is solved
using IMFO with constraints stated in equations 5, 7 and 8.
The cost coefficients for this system is available in [14]. The
dispatch schedule obtained for the case is P1=349.4662MW,
P2=400 MW, P3=100.5338 MW, which indicates that the
generators are scheduled between the prescribed minimum
and maximum limits. The cost obtained for the dispatch is
8220.93 $/hr which is less compared to other methods. Com-
parison of various metrics obtained by different optimization
methods for 50 trails is given in Table 5.
IMFO gives an approximately same cost for all the trails

and hence the standard deviation is very low. The time for
converging is 0.06 sec for 100 iterations which is reasonable.
Though f-CPSO [60] has a short run time, the cost prevailed
is considerably high compared to other methods. IMFO offers
the solution with 1500 evaluations. From the above compared
metrics, it can be said that IMFO gives enhanced results in
short computational time. Fig. 5 represents the convergence
curve obtained for three generator test system using existing
MFO and proposed IMFO methods. The MFO method con-
verges only after 45 iterations to achieve the minimal cost
whereas the IMFO method converges to nearly an optimal
value by 21st iterations itself. Also, the cost obtained using
IMFO method is better than the MFO method.

3) THIRTEEN GENERATOR SYSTEM
A case study is carried out on 13 generator system for
which the demand is 1800 MW. The data for this system
is obtained from [14]. The objective function represented
in Eqn 2 is solved using IMFO with constraints stated in
equations 5 - 8 and the results are given in Tables 6 and 7. It is
observed that the generators dispatch is within the operating
limits as well as the POZ constraint is also satisfied. The
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TABLE 4. Validation of various metrics for 6 generator test system.

TABLE 5. Validation of various metrics obtained by IMFO optimization.

TABLE 6. Real power dispatch for 13 generator system.

minimum cost achieved for this case is 17955.41 $/hr which
is less compared with other recent methods.

Further SED is repeated for 50 times and the comparison of
obtained generation cost is made with other recent methods
in Table 7, which indicates that IMFO gives the better cost in
very short computational time. It requires a smaller number
of evaluations for solving this problem which indirectly aids
in faster convergence. The convergence curves of IMFO and
MFO optimization techniques obtained for 13 generator test
system is given in Fig 6. This method converges to optimal
solution in less iteration. It is observed that the minimal cost
is obtained at 15th iteration and is settled at this point without
a prominent deviation.

4) SEVENTEEN GENERATOR TEST SYSTEM (REAL TIME
SOUTH INDIAN 86 BUS TEST SYSTEM)
The fourth test system considered for the study is a prac-
tical network in southern part of India, which consists of

FIGURE 6. Convergence curve obtained for 13 generator system.

17 generators, 86 buses and 131 transmission lines which
signifies the complexity of the network. The data for the test
system is obtained from [64]. The demand for the system is
1796.3 MW for the particular hour of study. Constraints such
as up reserve, down reserve and transmission loss are consid-
ered while solving the problem. From the obtained generation
schedule given in Table 8, it can be inferred that generators
operate in specified limits for satisfying the demand and
power loss. Minimum cost and power loss acquired in sat-
isfying the demand are 355439 $/hr and 48.12 MW.

5) SUMMARY
From the 4 case studies performed in the above sub-sections,
it is clearly evident that IMFO method is efficient in han-
dling various constraints such as POZ, valve point and other
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TABLE 7. Validation of various metrics by IMFO for 13 generator system.

TABLE 8. SED on Real Time South Indian 86 bus test system.

constraints for various sized complex test systems. Therefore,
all the further studies performed in this work are carried-out
using IMFO method.

B. SED IN SOUTH INDIAN 86 BUS SYSTEM
INCORPORATING RES
In this section, SED incorporating solar and wind resources
acting independently as well as jointly are performed on a real
time south Indian 86 bus test system.

1) SED IN SOUTH INDIAN 86 BUS SYSTEM INCORPORATING
SOLAR ENERGY
Vellore area (12.9165◦N , 79.1325◦E), Tamilnadu, India has
abundant solar irradiance throughout the year. The irradiance
data of a year for this region is considered for modeling of
solar farm [65]. Due to distinct variations of weather con-
ditions, the available data in the study period is segregated
into 4 seasons namely summer (May-July), autumn (August-
October), winter (November-January) and spring (February-
April). These seasons are again divided in to 24 segments
which correspond to hours of the day. Beta distribution func-
tion [66] is used for developing the probabilistic model of

FIGURE 7. Beta PDF for solar irradiance for a typical day in winter season.

solar farm. The specifications of the PV panel are taken
from [67].

In this study, modified South Indian 86 bus test system
incorporated with solar farm is considered for the analysis.
To control the penetration level of solar power in a system,
a parameter called penetration level constraint is introduced
in the problem. This parameter is assumed as 30% of the
system demand. A 540 MW Solar farm which corresponds
to 30 percent of the system demand is incorporated at bus
number 8 of the test system.

The output from solar panel is determined during the mid-
dle of the day in each season i.e (12th hour). The histogram
and expected power output for the same during winter season
are given in Fig’s 7 and 8. The solar power output during the
said interval is 314.736 MW.

For a uniform load demand of 1796.3MW, SED incorporat-
ing solar farm is implemented considering seasonal changes
in solar power output and a feed in tariff of 40 $/MW. SED
with and without considering solar farm has been analyzed
and the results are presented in Table 9. From the table 9, it is
evident that the operating cost and power loss will be reduced
with high penetration of solar energy.

2) SED IN SOUTH INDIAN 86 BUS SYSTEM INCORPORATING
WIND ENERGY
Kayathar area (8.9470◦N , 77.7738◦E), Tamilnadu, India has
abundant wind throughout the year. The wind speed data of
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FIGURE 8. Solar farm output at middle of the day.

TABLE 9. SED considering solar farm on real time 86 bus system.

a year for this region is considered for modeling of wind
farm [65]. The study period is divided into 4 seasons and
Weibull distribution function [45] is used for developing the
probabilistic model of wind farm.

In this study, modified South Indian 86 bus test system
incorporated with Wind farm is considered for the analysis.
A 540 MW Wind farm which corresponds to 30 percent of
the system demand is incorporated at bus number 10 of the
test system.

The output fromwind farm is determined during themiddle
of the day in each season i.e (12th hour). The histogram and
expected power output for the same during summer season
are given in Fig’s 9 and 10. The wind power output during
the said interval is 322.74 MW.

SED incorporating wind farm is performed on real
time 86 bus system with a load demand of 1796.3 MW.
The seasonal changes in wind power output are included
and a uniform feed in tariff of 40 $/MW is considered
for the analysis. The results for cases with and without

FIGURE 9. Weibull PDF for wind speed at 12th hour of the day in summer
season.

FIGURE 10. Wind farm output at middle of the day.

TABLE 10. Profit analysis integrating wind generation in south Indian
86 bus system.

incorporation of wind farm are presented in Table 10. It can
be noticed that the wind power output is highly variable. So,
the thermal generation also gets continuously varied from
season to season noticeably. This seasonal change in wind
power output heads to significant change in operating cost of
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TABLE 11. Analysis on South Indian 86 bus system with solar and wind
farms.

thermal generating units. The cost of generation is reduced
by 30.45% in summer season which is remarkably high. The
operating cost is reduced in other seasons also. The power
loss is decreased to a maximum of 32.13 MW in summer
season from a base value of 48.24 MW. It is also observed
that integration of wind power at bus number 10 helps in
simultaneous reduction of thermal generation, power loss and
operating cost of the system.

3) SED IN SOUTH INDIAN 86 BUS SYSTEM INCORPORATING
BOTH SOLAR AND WIND FARMS
In this study, South Indian 86 bus system incorporating solar
and wind farms all together is considered for the study. The
solar farm is located at bus number 85 and wind farm at bus
number 10 respectively. The installed capacities of the plants
are chosen in such a way that the output from both the farms
will not exceed 30 percent of the base demand of the test
system. The installed capacities of solar and wind farms are
360MWand 180MWrespectively. The analysis is performed
at 12th hour of the day. It is observed that the output from the
solar farm is high compared to wind output for the considered
interval. Here a feed on tariff of 40 $/MW is considered for
purchasing power from renewable power producers.

SED incorporating solar and wind farms is performed
on real time south Indian 86 bus system having a demand
of 1796.3 MW. Considering the seasonal variations from
solar and wind energy resources, the analysis is carried out
and obtained results are furnished in Table 9. For instance,
in winter season the expected output from the solar and wind
energy resources are 65.53% and 10.02% respectively. It can
be inferred that the output from the wind energy resource is
very low for the considered interval. Simultaneous allocation
of solar and wind resources in the system helps in reducing

FIGURE 11. Comparison of power loss in South Indian 86 bus system.

FIGURE 12. Comparison of reduction in thermal generation in various
seasons.

TABLE 12. Comparison of on power loss and operating cost in real time
86 bus system.

the power loss as well as operating cost of the system. The
thermal power generation depends on output obtained from
the renewable energy sources. If the output from these sources
is high, dependency on thermal power generation is reduced.
The comparison of power loss reduction for various seasons
is shown in Fig 11. It is observed that the power loss has been
significantly reduced to a minimum of 23.99% compared to
base case. The maximum power loss reduction is observed in
summer season for the considered time interval.

4) COMPARISON OF SED RESULTS WITH AND WITHOUT
CONSIDERING RES IN REAL TIME 86 BUS SYSTEM
In this section, a comparison between optimal choices of
two sources solar and wind is presented. The output power
from solar and wind resources are not uniform throughout the
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FIGURE 13. Power for each hour in real time South Indian 86 bus system.

FIGURE 14. Typical Load curve of real time South Indian 86 bus system
for various seasons.

year. For instance, consider the thermal generation utilization
without and with renewable sources are shown in Fig 12.
From the figure, it can be understood that usage of ther-
mal generation is significantly reduced with incorporation
of renewable energy sources. Whereas if we consider the
case of renewable energy sources, for a given time interval
the output from solar farm is high compared to wind farm.
Further, if both the sources are simultaneously considered in
a suitable proportion, the deficit from the wind farm can be
overcome in the considered interval of time. It may be noted
that in some other interval of time output from solar farmmay
be low compared with wind farm. In this regard, a suitable
proportion of renewable energy sources in the system is very
important and also it is more effective to use both solar and
wind resources jointly rather than independently.

C. DED WITHOUT CONSIDERING RES AND CEVs
DED is implemented on real time South Indian 86 bus test
system [64] using IMFO method. The power loss obtained
for a typical day is shown in Fig 13. The simulated results
are compared with other methods available in literature and
shown in Table 12. From the results it can be understood that
the proposed method is superior to existing methods.

FIGURE 15. Hourly solar output estimated using beta distribution
function.

FIGURE 16. Hourly Wind output estimated using weibull distribution
function.

TABLE 13. DED incorporating Solar and Wind resources in various
seasons.

D. DED ON SOUTH INDIAN 86 BUS UTILITY
CONSIDERING RES
DED is performed on real time South Indian 86 bus test
system, without and with renewable power generation for
a typical day in various seasons. The load curve represent-
ing seasonal variations is shown in Fig 14. Solar and wind
resources are connected at bus 10 and bus 85 respectively.
The expected hourly output from solar and wind resources is
shown in Fig’s 15 and 16 respectively.

DED is performed on south Indian 86 bus system con-
sidering the thermal and renewable power generation. The
generation scheduling, fuel costs and power loss for a typical
day in various seasons are given in Table 13. A comparison
of percentage reduction in fuel cost and power loss after
incorporating RES are given in Table 14. There is a significant
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TABLE 14. Comparative analysis of Cost and power loss without and with renewable sources.

reduction in operating cost as well as power loss, if RES is
scheduled in conjunction with thermal generation. Further it
is to be kept in mind that the output from these sources is
subjective to weather conditions and there is a possibility of
either increase or decrease in output compared to the expected
values.

E. DED ON SOUTH INDIAN 86 BUS UTILITY
CONSIDERING CEVs AND RES
In this section, the impact of CEVs on DED in presence of
RES is studied in detail. The considered South Indian 86 bus
test system is a heavily loaded network, which has a peak
demand near to the thermal limits of transmission lines. The
primary objective of this work is to allocate the additional
demand due to CEVs at off peak hours so that the peak hour
congestion is reduced.

The following assumptions are made to analyze the perfor-
mance of the study.

• The CEVs considered in the study are primarily public
transport vehicles which are used to ferry passengers
from one location to the other. Therefore, it is assumed
that the CEVs operate from 06.00 AM, 07.00 AM and
08.00 AM respectively in 3 groups.

• BYD k9 model e-buses (CEVs) are assumed to be oper-
ated in the study and each CEV will cover an average
driving distance of 120 km (3 trips x 40 km) by the end
of scheduled trip per day.

• Charging Station (CS) infrastructure available for charg-
ing these CEVs allows a maximum of 500 EVs to be
charged in couple of hours. So, it requires a total of 6
hours per day to charge all CEVs.

• In order to facilitate charging for all the CEVs, each
vehicle is allowed to charge only once per day (other
than trip hours).

• It is also assumed that the system consists of a 3-way
communication channel between the CEVs, CS and the
power utility. This allows the CS to monitor various
system parameters as well as the scheduled trip time.
Further, it is also assumed that the data is transferred
from one location to the other without any delay.

The specifications of considered CEV model are given
in Table 15. The CEVs are charged in groups in 2 ways.
An intelligent method to charge CEVs by considering the
network demand. If the CEVs are charged immediately after
completing their scheduled trips without considering the

TABLE 15. Specifications of BYD k9 model CEV (e-Bus).

TABLE 16. Time slots for allocating CEV load in various seasons.

network demand, then the method is called as dumb charging
method since it can lead to congestion during the peak hours
as it will not refer to the system demand or any other param-
eters before scheduling. The other method is smart charging
methodwhich considers the system demand, CEVs SOC level
and time left for next trip. This gives an appropriate time
slot for each CEV to charge before it leaves for the trip.
The allocation of CEV load with proposed smart and dumb
charging method is shown in Fig 17. This method allocates
the CEVs charging schedule from 2nd hour to 7th hour i.e.
off-peak hours of the specified day. The dumb charging hours
and smart charging hours of the CEVs are determined by the
algorithm and the same is presented in Table 16.

Further, DED is performed on South Indian 86 bus sys-
tem considering the charging patterns obtained from dumb
and smart charging methods. The results are presented
in Tables 17 and 18. In Table 17, DED considering of RES and
CEVs dumb charging pattern load is presented for 4 seasons.
Later in Table 18, DED is performed with smart charging
method. A comparison of both the studies indicate that smart
charging method of CEVs contributes to reduction in power
loss and generation cost.

Lastly, by comparing the data presented in Table 17 and 18
it can be understood that the there is a difference in the total
generation cost for all the seasons as well as the power loss.
The savings in operating cost per day in each season is shown
in Fig 18. To make a comparison it can be said that the
total cost of generation for the considered 4 seasonal days
due to the adoption of dumb and smart charging methods
is about 32.925 and 32.862 million $ respectively. Hence,
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FIGURE 17. Dumb charging and Smart charging method of allocating CEVs load in various seasons.

TABLE 17. DED of south Indian 86 bus system with integration of RES
and CEV by Dumb Charging.

TABLE 18. DED of south Indian 86 bus system with integration of RES
and CEV by Smart Charging.

it can be said that the reduction in the generation cost due
to the implementation of smart charging method is about
62,951 $ for the considered 4 days, which is substantial. Also,
by looking at the total power lost for 4 days it can be said
that the lost power due to the implementation of dumb and
smart charging methods is around 4408 MW and 4390 MW
respectively. Therefore, it can be said that there is a reduction
in the power loss due to the implementation of smart charging
method and the same amounts to 18 MWwhich is once again
interesting.

FIGURE 18. Saving in operating cost per day by Smart charging method of
allocating CEVs.

V. CONCLUSION
In this article, a DED problem in presence of CEVs and RES
is solved. Initially, Static ED without RES is performed on
various test systems using IMFO technique and the results
are compared with existing methods. Later SED and DED are
performed on a real time south Indian test system considering
the impact of solar and wind resources. The output from
solar and wind resources is estimated for a desired location
using probabilistic methods. The estimated solar and wind
outputs are considered for generation scheduling along with
the thermal power. Later DED is performed on a real time
south Indian test system considering the dumb and smart
charging pattern of CEVs as well as the RES. With the
proposed coordinated charging strategy of CEVs and proper
installation of RES, a significant reduction in the operating
cost and power loss can be achieved. Further, the future
scope of this work can be on developing suitable economic
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dispatch models considering the impact of different types
of electric vehicles,different charging times and appropriate
forecast models.
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