
Received November 5, 2020, accepted November 25, 2020, date of publication November 30, 2020,
date of current version December 14, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3041432

A Comprehensive Analysis of the Android
Permissions System
IMAN M. ALMOMANI 1,2, (Senior Member, IEEE), AND AALA AL KHAYER1
1Security Engineering Laboratory, Department of Computer Science, Prince Sultan University, Riyadh 11586, Saudi Arabia
2Computer Science Department, King Abdullah II School for Information Technology, The University of Jordan, Amman 11942, Jordan

Corresponding author: Iman M. Almomani (imomani@psu.edu.sa)

This work was supported by the Security Engineering Laboratory, Prince Sultan University, Saudi Arabia, through the ARO: Android
Ransomware Ontology Research Project, under Grant SEED-CCIS-2020-64.

ABSTRACT Android is one of the most essential and highly used operating systems. Android permissions
system is a core security component that offers an access-control mechanism to protect system resources
and users’ privacy. As such, it has experienced continuous change over each Android release. However,
previous research on the permissions system has employed static analysis techniques. Furthermore, most of
these studies are outdated, covering older versions of Android. This paper aims to discuss the permissions
system intensively to provide a nutshell overview of the Android platform’s access-control mechanism.
The paper presents a comprehensive analysis of the Android permissions system since it was introduced
in 2008 until now, accompanied by a formal model of its components. The results of the analysis reveal
a continuous growth in the number of permissions since the original release—a growth of seven times
in some permission categories. A case study has been conducted for the last five years’ versions of the
top Android apps to examine the permissions system’s evolution and its attendant security issues from the
applications’ perspective. Some apps showed an increase in permissions usage of 73.33%by the 2020 release.
Additionally, the results of the case study contribute to the understanding of permissions deployment by both
vendors and developers. Finally, a discussion of the permission-based security enhancements discloses that
the Android permissions system faces various security issues. In general, this paper provides researchers and
academics an up-to-date, comprehensive, self-contained reference study of the Android permissions system.

INDEX TERMS Access control, analysis, android, android application, android security, API level, APK,
formal model, permission evolution, permission system, user privacy, security attack, survey.

I. INTRODUCTION
Android Operating System (OS) is the most popular platform
for mobile devices since it owns 74.5% of the market place.1

As a result, there is a significant increase in developing third-
party applications by individual developers and companies
to respond to this market shift. The most attractive features
of Android are its open-source and unrestricted applica-
tion market distribution. Consequently, allowing independent
developers to develop their own applications and distribute
them. Furthermore, the Android platform provides third-
party development with a large-scale application program-
ming interface (API) which enables applications to access the
system resources and device hardware.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yan Huo .
1https://gs.statcounter.com/os-market-share/mobile/worldwide

Android applications are installed as compressed Android
packages (APK) including all the required files, libraries,
and metadata for the apps to be executed. These APKs can
be installed from the market place by calling the Package
Manager system service [1]. For example, an application
can be installed from the Google market store through the
Google play application, an elevated permission app that
downloads the required application. Another method of call-
ing the Package Manager is copying the application’s APK to
the device and requesting Android OS to launch it. Addition-
ally, an advanced tool, Android Debug Bridge (ADB), can
be used to install applications through the Android Software
development kit (SDK) [2].

To protect user’s privacy,the Android platform enforces
application to request permissions to access sensitive infor-
mation [3], [4]. Therefore, to proceed with the app instal-
lation process, Android OS asks the user to grant the app’s

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 216671

https://orcid.org/0000-0003-4639-516X
https://orcid.org/0000-0003-0647-1009

I. M. Almomani, A. A. Khayer: Comprehensive Analysis of the Android Permissions System

required permissions explicitly. If the user rejects to grant
the permissions, the installation process will be canceled.
However, most users accept the permissions prompts without
fully understanding the listed permissions. As a result, some
applications might require extra permissions only to collect
user data, which can invade user privacy and increase mali-
cious acts [5]. Thus, Android security strongly depends on
the efficiency of its permission system mechanism.

Previous studies on the Android permissions system have
mainly investigated static analysis techniques to study spe-
cific permissions. However, these studies lack covering up-
to-date Android versions [6], [7]. Section II provides detailed
comparisons among related works illustrating their shortage
to fully present, explain, discuss, and model the Android
permissions system with all its components and versions.
Moreover, addressing new apps’ permissions usage and secu-
rity attacks threatening Android OS; were also missing.

This paper provides a comprehensive, well-structured
study and analysis of the Android platform’s permissions
system since it was introduced until now.Moreover, the paper
discusses the user-permissions model of Android, which
outlines how applications handle high-risk information and
resources. In this regard, the main contributions of this work
are as follows,

1) Present, discuss, and compare state-of-the-art in the field
of Android permissions system.

2) Conduct an up-to-date study of the Android permissions
system.

3) Make the first step towards an in-depth and comprehen-
sive analysis of the entire permissions system.

4) Build a formal model of the Android permissions sys-
tem. Thismodel allows performingmathematical check-
ing against security-related issues.

5) Demonstrate recent security flaws found in the Android
permissions system.

6) Validate the Android permissions system by conducting
a case study that includes a set of test apps. These apps
were used for analyzing the permissions evolution and
exposing the privacy and security issues.

7) Provide new datasets for Android OS. These datasets
include (a) the permissions of all categories in all
Android versions and API releases, (b) the permissions
of top leading Android applications by downloading
or/and revenue.

The rest of the paper is structured as follows. Section II
provides a summary and comparisons among current related
works analysing Android permissions system. An overview
of Android security structure has been discussed in section
III. Following that, section IV discusses the components
of the Android permissions system and proposes its formal
model. Section V analyzes the evolution of the Android
permissions system. Then, section VI presents the case study
and its results analysis. Section VII highlights the security
issues and enhancements of the Android permissions system.

Finally, the paper is concluded and possible future work is
presented in section VIII.

II. LITERATURE REVIEW
The permissions system is considered a cornerstone com-
ponent of the Android security model [8]. Consequently,
the misuse of Android permissions is considered a major
concern in the research community [9]–[11]. Several studies
have been conducted on the evolution of Android permissions
system [5]–[7], [12], [13]. Table 1 illustrates a summary and
comparisons among existing works analyzing the Android
permissions system.

The authors of [6] have performed an early investigation
on the permissions system to determine how the permis-
sions have grown. The study covers API levels 3 to 15 on
a set of 237 Android applications. They concluded that the
permissions system increased in complexity for both the
Android platform and its applications until 2012. Follow-
ing that, the authors of [7] investigated the evolution of the
permissions system until the Android platform version 23 in
2015. The rising consideration was about accessing sensitive
information by privileged third-party applications without
the user awareness, drove them to investigate the new run-
time permissions deeply. They discovered various security
concerns regarding the complexity of the run-time Android
permissions system that the community has to address.

However, relatively little work has provided formal and
abstract modeling of the Android permissions system.
Among the earliest studies that provided formal modeling of
the Android permissions system were [17] and [18]. In [17],
the authors built the formal model by specifying the essential
components of the permissions scheme, including the interac-
tion between its components. Furthermore, they deployed the
suggested model to verify the security threats in the Android
system. The work of [18] developed the Sorbet framework,
an enforcement model that enables permissions to specific
security policies. Other recent modeling approaches focused
on abstracting the permission system for specific purposes,
such as the permission-based model for attack defense [19]
and language-based security analysis [20]. However, most
papers that implemented abstract models lack a compre-
hensive analysis covering the permissions system’s changes
throughout its published releases.

Other studies focused on a specific aspect of the Android
permissions system by studying a special type of permissions
[1], [14], [15] or analyzing the permissions for a particular
type of applications [16]. For example, the authors of [1]
investigated the security issues of the run-time permissions.
They conducted a deep analysis of the new permissionsmodel
introduced inAPI 23. However, the authors of [14] focused on
the dangerous permissions to detect malicious applications.
They defined a new algorithm called fine-grained danger-
ous permission (FDP), which uses dangerous permissions
to delineate the differences between benign applications and
malware applications. Furthermore, the analysis of the per-
missions system was conducted for a special kind of appli-

216672 VOLUME 8, 2020

I. M. Almomani, A. A. Khayer: Comprehensive Analysis of the Android Permissions System

TABLE 1. Summary and comparison among current works analysing Android permissions system.

VOLUME 8, 2020 216673

I. M. Almomani, A. A. Khayer: Comprehensive Analysis of the Android Permissions System

cations. The authors of [16] mainly focused on analyzing
the permissions system of the pre-installed application, appli-
cations provided by default from the device manufactur-
ers. They applied crowd-sourcing methods on applications
collected from approximately 200 vendors. After that, they
extracted a large set of custom defined permissions created
by the third-party developers and hardware vendors. They
concluded that such permissions could be misused to bypass
the Android permissions system to access sensitive system
resources and private data.

Somework focused on providing solutions and suggestions
to enhance the security of the Android permissions system
were presented in [5], [21]–[23]. A recent paper by [5] dis-
cussed the risk framework’s evaluation based on the identi-
fication of a minimum set of permissions to find a solution
for the over-privileged applications’ security issues. They
developed a framework, MPDroid, which performed a static
analysis to determine the minimum required permissions by
an application. Then, MPDroid identified the unnecessary
permissions called by the application to evaluate its unpriv-
ileged risk level. Olukoya et al. investigated the matching
between the requested permissions by an application with the
textual description provided to the user the usage of these per-
missions by the application [23]. The results showed that their
approach improved the accuracy of detecting mismatches
between the declared and the used application permissions.

In reference to the aforementioned work, it can be con-
cluded that there is a lack of a comprehensive and up-
to-date analysis of the Android permissions system. Fur-
thermore, the previous studies that proposed the Android
permissions system’s abstract modeling were either out-
dated or incomplete modeling of its entire components. Addi-
tionally, the previous research work mainly aimed to either
analyze a specific type of permissions; or analyze the per-
missions system for particular applications. In this work,
a nutshell analysis of the recent Android permissions system
was carried out, along with a discussion on the security
enhancements and issues. Moreover, a formal model of the
whole permissions system is proposed. Finally, a case study
that includes both pre-installed apps and third-party apps
was conducted to provide a deep analysis of the Android
permissions system from application perspectives.

III. ANDROID SECURITY STRUCTURE
Android platform is a Linux-based open-source operating
system for mobile applications developed by Open Handset
Alliance (OHA). As Figure 1 illustrates, Android platform
architecture consists of three main layers: application, mid-
dle, and kernel layer [21]. The Linux kernel is the core foun-
dation of Android platform, enabling other Android platform
components to perform basic functionalities such as device
drivers and low memory management [24]. On top of the ker-
nel layer, themiddle layer consists of theAndroid runtime and
Java API framework. Applications and services use Android
Runtime (ART) to manage the runtime processes on the
Android platform. ART is an optimized Java virtual machine

FIGURE 1. Android Platform Architecture.

for mobile devices. In Android 5.0 and higher, each applica-
tion runs within its own instance of the ART virtual machine
[25]. However, for older Android versions, prior to Android
5.0, Applications ran on Dalvik Java Virtual Machine (JVM).
Beside the ART, the middle layer also comprises of Java
API Framework which includes all Android APIs. At the top
of Android architecture, there is the application layer which
includes the system applications; set of Android core apps
and user & third-party applications.

A. ANDROID SANDBOX
Android OS takes advantage of using a Linux kernel to apply
security features such as process isolation and user-based
permission system. The process of isolation is enforced by
applying the application sandbox. As shown in Figure 1, each
Android platform application is separated from the system
and other apps since it runs on an isolated JVM. Upon execut-
ing the application, Android assigns each application a unique
Linux User ID (UID) and a new ART/DVM virtual machine
is forked [26].

For an interaction to occur, applications communicate with
each other are required to interact through an inter-component
communication (ICC) by passing Intent massages. An Intent
message is a trigger event for an activity or service to be
performed along with the required data which supports that
requested action. However, studies have shown that Android
ICC includes various security threats [27]. For example,
the exchange of Intent messages can be used to escalate the
privileges of malicious apps [28].

B. ANDROID APPLICATION COMPONENTS
Android applications are written in Java and compiled to
Dalvik byte-code. There are four types of Android application
components, including activities, services, content providers,
and broadcast receivers. Activities run in the foreground,
defining the interacting interface with the user. Typically,

216674 VOLUME 8, 2020

I. M. Almomani, A. A. Khayer: Comprehensive Analysis of the Android Permissions System

an Android application defines the main activity, which
includes sub-activities. The user interacts with these sub-
activities to perform a specific task. The second component
is the service, which does not have a screen user interface
since it runs in the background. Services remain active in
the background even if the application is not activated in the
foreground screen.

The content provider supplies the required data storage.
In addition to the required data storage, these providers are
used to share data between different applications. Each con-
tent provider uniquely identifies its data set via disclosing
a public Uniform Resource Identifier (URI). This data set
can be accessed or updated by other components or applica-
tions by using SQL queries. The broadcast receiver manage
the inter-communication between the application compo-
nents. Furthermore, they are responsible for the communica-
tion between the system and the components. The receivers
inform the application components of the received wide-
system broadcasts.

Each component of the application can be executed sep-
arately and interact with other components, and it can even
be instantiated by other applications as required. To accom-
plish the communication between these components, Android
platform uses Intents. These intents deliver data through
asynchronous messages. Furthermore, the intents are used
to create new instances at the recipient component. When a
component calls another component through an intent, it has
to explicitly specify the package and class name of the recip-
ient component or implicitly by specifying the action that the
intent is attempting to initiate at the recipient component.

C. API CALLS
Android Platform provides large-scale application program-
ming interfaces (APIs) to support the third-party applica-
tion. These APIs enable the developer to access the sys-
tem’s features and resources such as user data, settings and
hardware. The structure of Android API is divided into two
parts, a library and an implementation of that API. The
API library is located in each application’s virtual machine,
while the implementation runs as a process in the system.
Those APIs reside in the Android Software Development Kits
(SDKs). As a result, they frequently change as the Android
OS evolves [29]. The main functionalities provided by the
API and changes can be found in the API documentation.

As depicted in Figure 2, Android handles the API calls in
threemain steps [25]. First, the API is called by an application
located in the library. Then, a private interface is invoked by
the library. Finally, the private interface initiates a remote
procedure call (RPC) request with the system. The system
process assigns a service to run the API.

D. ANDROID APPLICATIONS
Mainly, there are two categories of Android applications
system and user applications. The system applications are the
pre-installed apps in the system, and the device vendors pro-
vide them. The design and configurations of these application

FIGURE 2. API call handling by the Android system.

can be customized for a particular device model by the man-
ufacturers based on the vendors requirements. Whereas the
user applications, the third-party apps, can be downloaded
from various market stores such as Google Play, Anzhi, and
AppChina [30], [31]. The third-party applications are devel-
oped by individual developers, that can include benign and
malicious applications.

IV. ANDROID PERMISSION SYSTEM COMPONENTS AND
FORMAL MODELING
A core design of the security architecture of Android is
that no application can perform any operations that might
adversely affect the user, other applications, or the operating
system itself. Therefore, the application’s requests to access
components, sensitive data, and specific system features are
regulated by the Android permissions system. Table 2 shows
the evolution of the Android permissions system. For each
release, Table 2 displays the Android release code name,
version ranges, the API level ranges, the number of permis-
sions per protection level, and the total number of permissions
included in each release.

Permissions are uniquely defined as strings of characters
(e.g., android.permission.READ_SMS). If a permis-
sion is bounded to an object, the object can only be accessed
by another application after the permission is granted to the
application.

To formally analyze the architecture of the Android per-
mission system, an abstract model has been proposed. For-
malizing the Android system provides a more precise level
of evolution [32]. Furthermore, it underlines the differences
between the features of the Android versions. Additionally,

VOLUME 8, 2020 216675

I. M. Almomani, A. A. Khayer: Comprehensive Analysis of the Android Permissions System

TABLE 2. Android platform official releases.

TABLE 3. Equation notations and their meanings of the formal model.

the formal model can be used to expose the implementation
of predefined security properties [17], [18]. Table 3 dis-
plays equation notations and their meanings of the proposed
formal model. Each component of the Android application
composes of Active components (Cacv) and Passive compo-
nents (Cpas). The Active components (Cacv) interact with the
system or other application’s components such as services,
activities, and broadcast receivers.Whereas, the Passive com-
ponents (Cpas), such as the application content providers, only
receive requests. Thus, an Android application can be defined
as a combination of Active and Passive components, as in (1).

Androidapp = Cacv| Cpas (1)

A. MANIFEST FILE
Each application includes one Manifest file. The Android-
Manifest.xml file is located at the root folder of an
Android application. It contains the permissions used by the
app and metadata about the app. The application permissions
expected to be granted in order to access system or other apps

resources/data are labeled with <uses-permission> tag
in the AndroidManifest.xml file. Furthermore, the Android-
Manifest.xml file contains permissions reacquired by the
app to protect its own components. These permissions are
declared with the <permission> tag.

Moreover, the Manifest file contains the components
of the application. Each component of the application
must declare its basic properties, including the permissions
that the app uses. Since each application runs separately
in the Android platform, it needs to protect its compo-
nents by declaring specific permissions (Pdecl). Furthermore,
the application must define the requested permissions (Preq)
to access external resources. Upon each API call, the appli-
cation component has to check the permission granting status
(Pgrnt).

∃ interaction(Cacvx −→ Target(Cacv|Cpas)) ⇐⇒

Pdecl ∈ Target(Cacv|Cpas)& Preq ∈ Cacvx &Pgrnt = true

(2)

The permission control process is described in (2). There is
an interaction between a specific active component Cacvx and
its targeted component, whether it’s another active compo-
nentCacv or a passive oneCpas, if and only if, three conditions
are met. The targeted component declares the required per-
mission to access its resources Pdecl . Furthermore, the active
component Cacvx defines the requested permission in its
AndroidManifest.xml file as Preq. Finally, to accomplish the
interaction, the permission must be granted by the targeted
component.

B. PROTECTION LEVELS
The levels refer to the intended use of a permission, as well
as the consequences of using the permission. The stan-
dard permissions have a predefined protection level. Cur-
rently, Android platform supports three protection levels as

216676 VOLUME 8, 2020

I. M. Almomani, A. A. Khayer: Comprehensive Analysis of the Android Permissions System

FIGURE 3. Protection level flags and permission flags of Android Permission System.

described in (3). These protection levels are called the Base
Permission Level which can be defined as one of the follow-
ing types Normal (Nprm), Dangerous (Dprm), and Signature
protection level (Sprm).

BasePermissionType = Nprm |Dprm |Sprm (3)

1) Normal protection level (Nprm) presents a low risk to
Android applications. This type of permission does not
require explicit approval by the user since the system
automatically grants the access.

2) Dangerous protection level (Dprm) provides access to
the user’s private information, other applications oper-
ations, and device features. Applications requesting a
dangerous permission can only run the functionality of
that permission if the user explicitly permits it.

3) Signature protection level (Sprm) requires a comparison
of the certification between the requesting application
and the declaring application. These permissions can
only be granted if the same certification signs both
parties.

A fourth protection level is SignatureOrSystem (Ssprm),
which is granted to the requesting application if it is signed by
the same certificate of the system image. These permissions
are used by vendors who have multiple applications that
require sharing certain features of a common system image.
However, in Android 6.0, the SignatureOrSystem (Ssprm)
protection level was deprecated. Nevertheless, the permission
analysis of [33] shows that this type of permissions is still
used.

C. PERMISSION FLAGS
The behavior of a permission can be further controlled by
using protection level flags and permission flags by assigning
values to the fields protectionLevel and permissionFlags,
respectively, in the PermissionInfo class. The PermissionInfo
class is used to retrieve information regarding a specific

permission in the system. Each protection level consists of a
base type and can be followed by zero or more flags, as shown
in (4). If the protection level is not defined in theManifest file,
it will be assigned as a normal protection level by the system.

PermissionDeclaration = BasePermissionType

| (protectionLevelFlag |permissionFlag)∗

Where ∗ is zero or more occurrence. (4)

The protectionLevel attribute was deprecated in API level
28 and replaced with getProtection() and getProtection-
Flags(). However, protection level flags can still be used,
as shown in Figure 3. On the other hand, permission flags
were added in API level 17. The protection level flags and
the permission flags can only be used with the signature
protection level. Correspondingly, (5) declares that a flag
f can be assigned to a permission p, if and only if, that
permission is defined as Sprm type. Using flags with other
protection levels will cause a parsing error at manifest file.

∃ f ∈ p←→ p ∈ Sprm
(5)

D. PERMISSION GROUPS
Permission group (Gprm) is a logical categorization of the
app’s permissions. It is defined in the Manifest file as
<permission-group> tag. Then, permissions can be
added to this group by declaring an android:permissionGroup
element inside the <permission> tag. Figure 4 shows an
example of creating a permission group in the Manifest file.
Two permissions, SEND_SMS and RECEIVE_SMS, have
been added to the group SMS.

Android permissions system categorizes all dangerous
permissions to permission groups, as described in (6).
Accordingly, for all the permissions of type dangerous
(Dprm), a permission group exists where that permission (p)
belongs. Figure 5 shows that Android declares 11 Dangerous

VOLUME 8, 2020 216677

I. M. Almomani, A. A. Khayer: Comprehensive Analysis of the Android Permissions System

FIGURE 4. An illustrative example of Android grouping permissions.

FIGURE 5. Android dangerous permission groups.

permission groups. However, regardless of the protection
level, any permission can be added to a permission group.

∀ p ∈ Dprm −→ ∃ Gprm; p ∈ Gprm (6)

E. PERMISSION TREES
Even though the Android platform does not support the hier-
archical permissions, it provides permission trees encoding
mechanism. A permission tree is a name-space that defines a

family of permissions. This name-space represents a shared
prefix name of the permission’s family. The application that
defines the permission tree’s base-name owns all the permis-
sion names declared in this hierarchy. This prevents any other
app from using permission with the same name. In case of
conflict, the other application’s protection levels will be auto-
matically changed to signature protection level. Furthermore,
the permission tree provide the application with the ability
to dynamically add new custom permissions at runtime. For
instance, google’s APIs declare a name-space for each service
to dynamically add individual permissions at runtime.

F. PERMISSION ENFORCEMENT
When an application requests a permission, the system checks
the application’s API level and the target SDK version,
as illustrated in Figure 6. If the Application targeted SDK
version lower than 23, all permissions requested by the appli-
cation are granted at install-time. However, in Android 6.0,
the permissions granting process is divided into two lev-
els, install-time level (InT) and run-time level (RnT). The
install-time permissions granting includes Normal (Nprm),
Signature (Sprm) and SignatureorSystem (Ssprm) permissions,
as described in (7). If the user declines the install-time permis-
sion requests, the app installation will be abandoned. On the
other hand, the run-time requests used to explicitly ask the
user’s approval for the dangerous permissions (Dprm).

PrmGrnt =

{
∀ p ∈ {Nprm, Sprm, Ssprm} → InT (p)
∀ p ∈ {Dprm} → RnT (p)

(7)

Thus, if the application is running on an Android
6.0 device or higher, the system handles the permission grant-
ing as follows,
• The Normal permissions are granted automatically at
install-time.

• For the Signature permissions, the system immediately
grants the permissions if both applications are signed by
the same certificate, without the user approval. Other-
wise, the Signature permissions are granted at install-
time.

• In order for the system to grant aDangerous permission,
it first checks the permission group of the requested
permission. If the application has previously granted a
dangerous permission of that group, the system’s per-
mission is immediately granted without any interaction
with the user. On the other hand, if the permission group
has not granted a permission, the permission is requested
at the run-time by displaying a dialog to the user. If the
group permission approval is granted, only the requested
permission is given access by the system.

Permission Controller controls the run-time permission-
related handling. In Android 9 and lower, the functionalities
of the Permission Controller were embedded in the Package-
Installer package. However, in Android 10, This module was
separated from the Package Installer as an independent entity.

216678 VOLUME 8, 2020

I. M. Almomani, A. A. Khayer: Comprehensive Analysis of the Android Permissions System

FIGURE 6. Permission granting based on protection level.

FIGURE 7. Android Formal Model.

The Permission Controller controls the granting of run-time
permissions, permissions grouping, and permissions usage
tracking and roles.

The overall formal model of the Android permissions sys-
tem is summarized in Figure 7.

V. ANDROID PERMISSIONS SYSTEM EVOLUTION AND
ANALYSIS
This section presents the evolution of the permissions system
in Android OS since it was launched till now. The permis-
sions defined in each Android release for each API level

will be listed and compared based on their protection levels.
Moreover, the list of permissions added or deprecated in each
release will also be highlighted.

A. ANDROID PERMISSIONS DATASET
To analyze each API level’s permissions, a python script
was developed to scan the AndroidManifest file and extract
the permissions for each release from the developer web-
site.2 The script uses the <permission> tag to get all the
defined permissions in the AndroidManifest file. Subse-
quently, the protection level and the permission status of all
the fetched permissions for each corresponding API level are
stored in the dataset records. In this paper, all the API levels,
from API level 1 (2008) to API level 30 (2020), have been
studied. With each release upgrade, the previously replaced
permissions were not removed. Rather they were deprecated
to enable using them by existing applications.

The dataset resulted from the permissions extraction pro-
cess includes all added and deprecated permissions. This
dataset will be publicly available on the Security Engineering
laboratory (SEL) website.3

B. PERMISSIONS SYSTEM ANALYSIS
Table 2 and Figure 8 show that the total number of Android
permissions increases over the successive releases.

In API level 1, the total number of permissions was 73.
The net gain of the current Android version (API level
30) of 84 permissions resulted from adding 94 permissions
and deprecating 10 permissions. Moreover, the permissions
of types Dangerous, Normal, and SignatureOrSystem were
almost doubled since API level 1. In contrast, Signature-
based permissions were increased by around 7 times.

Generally, as depicted in Figure 8, the descending order of
protection levels in terms of the number of permissions per
level from API level 1 to API level 30 is: SignatureOrSystem,
Normal, Dangerous, and then Signature permissions. Except
for Signature permissions, that started to increase and exceed
other types of permissions from API level 22. The percentage
of increase in the case of Signature permissions reached
585.7% in API level 30 compared to API level 1.

Table 6 and Table 7 give a deep insight into the Android
permissions system by providing the (a) Exact list of per-
missions; Android developers started with, and (b) per-
missions that were added or deprecated in each succes-
sive release throughout the Android permissions system
lifetime. Table 6 lists all Dangerous, Normal, Signature,
and SignatureOrSystem permissions defined in Android
API level 1. Table 7 studies the permissions that were
added or deprecated in each protection category at each
API level. For example, API level 2 added one Nor-
mal permission to the list of permissions defined in API
level 1 named <CHANGE_WIFI_MULTICAST_STATE>.
Whereas, <UNINSTALL_SHORTCUTE> was the first

2https://developer.android.com/reference/android/Manifest.permission
3https://sel.psu.edu.sa/Research/datasets/2020_Permissions_API-30.php

VOLUME 8, 2020 216679

I. M. Almomani, A. A. Khayer: Comprehensive Analysis of the Android Permissions System

FIGURE 8. Permissions of protection levels over Android API evolution.

Normal permission that was deprecated by API level 19.
The last three Dangerous permissions added to the Android
system in API level 29 were:
<ACTIVITY_RECOGNITION>,
<ACCESS_BACKGROUND_LOCATION>,
<ACCESS_MEDIA_LOCATION>.
The rest of all permissions’ updates in all API levels are

detailed in Table 7. The +number indicates the total permis-
sions were added by this level, whereas, -number indicates
the total permissions were deprecated by this level.

VI. CASE STUDY: APPLICATIONS-BASED PERMISSIONS
ANALYSIS
To investigate the evolution of Android permissions from
applications perspective, a case study has been conducted.
This study has chosen top applications used or installed
by mobile users to be analyzed and studied. These apps
were selected according to the Google Play website and the
leading app by revenue according to Statista report.4 Two
types of applications were considered; the pre-installed and
third-party applications. This section discusses the usage
of Android applications permissions across 100 versions
of 50 third-party apps and 50 pre-installed apps in the last
five years (between 2016 and 2020). The list of apps is shown
in Figure 9. The permissions requested by these apps were
deeply analyzed from different viewpoints.

Figure 10 presents the analysis results of the third-party
applications in the last five releases. The figure shows how

4https://www.statista.com/statistics/693959/leading-google-play-
communication-apps-worldwide-by-revenue/

FIGURE 9. Case Study Apps.

FIGURE 10. Third party apps permissions analysis.

the permissions were increased in all apps during the last five
years. Although the amount of increase among these apps
within the same year has varied, but the overall growth in the
number of permissions can be observed from one year to the
next.

216680 VOLUME 8, 2020

I. M. Almomani, A. A. Khayer: Comprehensive Analysis of the Android Permissions System

TABLE 4. Third party apps permission increase analysis.

FIGURE 11. Kakaotalk permissions analysis from 2016 to 2020.

Table 4 shows the difference in each permissions cate-
gory per app between the year 2016 and now. For example,
Instagram app: (a) reduced the number of SignatureOrSystem
permission by one, (b) increased the Signature andDangerous
permissions by one, and the Normal permissions by ten. So,
the overall increase percentage in comparison to 2016 release
is 68.75%. Another remarkable permissions increase can be
observed by Snapchat app, which reached 73.33%.
Figure 11 highlights the changes in the permissions list of

the Kakaotalk application, one of the leading communication
apps in the world by revenue in reference to 2020 statista’s
statistics4. The figure illustrates the updates in the four pro-
tection levels from year 2016 to 2020. It can be observed how
the number of permissions in all of them has been increased
throughout these 5 years. The percentage of increase (from
2016 to 2020) of Normal, Dangerous, Signature, SigOrSys-
tem permissions was 46.7%, 41.7%, 33.3% and 500%;
respectively.

On the other hand, Figure 12 shows the analysis of the
permissions updates in the pre-installed apps in the last
five years. Again, it can be observed that the permissions
requested by these apps were also increased in all categories
in each successive year.

In comparison to year 2016, the main increase in Chrome
app was for Dangerous and Normal permissions with per-
centages 33.3% and 35.7%; respectively. In Gmail app,
the Dangerous permission was increased by 100%. No sig-
nificant changes for GoogleClanedar app can be noticed.
GoogelDrive increased the the Normal permissions by 40%.

FIGURE 12. Pre-Installed apps permissions analysis.

FIGURE 13. Gmail permissions analysis.

GoogelMaps has reached 200% and 57.1 % increase in case
of SigOrSystem and Dangerous permissions, respectively.
GooglePhoto, GooglePlayMusic, GooglePlayServices and
GooglePlayStore have manily increased the SignatureOrSys-
tem permissions. YouTube increased all types of permissions
and reached 60% increase in case of Dangerous permissions.

Figure 13 presents the changes in the permissions list of the
Gmail application. Gmail increased all types of permissions.
The total increase in comparison to 2016 release reached
163.2%. Highest increase was observed in the Normal per-
missions with 233.33% and also the Dangerous permissions
were doubled.

Figure 14 provides a comparative analysis among all apps
under study, whether third-party or pre-installed apps. The
results stress the fact that not only Android permissions sys-
tem has introduced more permissions under all categories
since year 2008, but also the apps themselves are utilizing
more of these permissions in comparison with their previous
editions.

Table 5 lists more detailed analyses in the case of Normal
and Dangerous permissions in all apps. The table provides
(a) the percentage of app’s Normal permissions to the total
permissions requested by the app itself (b) the percentage of
app’s Normal permissions to the total Normal permissions

VOLUME 8, 2020 216681

I. M. Almomani, A. A. Khayer: Comprehensive Analysis of the Android Permissions System

FIGURE 14. All Apps permissions analysis.

TABLE 5. Normal and Dangerous permissions analysis of all apps.

defined by Android OS (c) the percentage of app’s Danger-
ous permissions to the total permissions requested by the
app itself (d) the percentage of app’s Dangerous permissions
to the total Dangerous permissions defined by Android OS.

Many interesting observations can be seen in the table
for some of the apps. For example, in terms of Normal
permissions, YouTube allocated 96.0% of its permissions

of type Normal. Also, YouTube used 51.1% of the Normal
permissions defined by Android OS. In terms of Dangerous
permissions, WhatsApp used 32% Dangerous permissions to
its overall permissions. Also, it used 53.3% of the Dangerous
permissions defined by Android OS in its latest release. The
rest of the percentages for all the apps are shown in Table 5.

VII. PERMISSION BASED SECURITY DISCUSSION
With the rapid rise of the Android OS functionality,
correspondingly, the vulnerabilities have been increased.
To reduce security issues, Google has restricted third-party
applications from invoking API’s system-level [34]. This
section highlights the permission-based security enhance-
ments, issues and implications.

A. PERMISSION-BASED SECURITY ENHANCEMENTS
Android OS enhances the protection level by limiting the
access of the third-party apps to the system resources. Con-
sequently, the new versions of Android explicitly require
placing permissions checks throughout the application [35].
Furthermore, as can be seen from the previous analysis of the
Android permissions system, there is a continuous depreca-
tion in the permissions. As a result, the out-dated applications
that depend on system permissions cannot work on the recent
versions of Android [34].

In Android 4, a new permission view has been introduced
by categorizing the permissions into groups. The groups
organize the permission display for the user. The user can
still view a brief description of each permission in the group.
However, one of the biggest enhancements in the security of
the permission system was introducing the run-time permis-
sions in Android 6.0. Run-time permissions provide the users
with the ability to control access for both Marshmallow and
pre-Marshmallow applications [34]. Furthermore, new access
control has been implemented in Android 8.0, where users

216682 VOLUME 8, 2020

I. M. Almomani, A. A. Khayer: Comprehensive Analysis of the Android Permissions System

TABLE 6. List of API level 1 permissions.

FIGURE 15. Implementation drawbacks and security attacks relation.

were implicitly required to grant permission to install appli-
cations from a non-first-party market store [36]. Recently,
in Android 10, the PermissionController module has been

created as a separate module that handles the permissions
updates.

B. PERMISSION-BASED SECURITY ISSUES
Even though the security of Android permission system
seems protected, the continues enhancements introduce vari-
ous security issues and drawbacks [10], [11], [14]. Regardless
of the Android version, the access enforcement in Android
platform is subject to the API targeted level. Consequently,
the application may abuse this system feature to boost its
privileges [1]. For example, if an application targets an API
level before Android 6.0, it will be granted all its permis-
sions, including the dangerous ones, at install-time. Another
issue that threatens Android security is the over-privileged
apps [28]. An application may over claim permission even
though the application does not use this particular requested
permission.

However, due to these security weaknesses, the Android
OS is vulnerable to various security attacks including, but not

VOLUME 8, 2020 216683

I. M. Almomani, A. A. Khayer: Comprehensive Analysis of the Android Permissions System

TA
B

LE
7.

Li
st

of
A

PI
le

ve
l2

-3
0

pe
rm

is
si

on
s.

216684 VOLUME 8, 2020

I. M. Almomani, A. A. Khayer: Comprehensive Analysis of the Android Permissions System

TA
B

LE
7.

(C
on

tin
ue

d.
)L

is
t

of
A

PI
le

ve
l2

-3
0

pe
rm

is
si

on
s.

VOLUME 8, 2020 216685

I. M. Almomani, A. A. Khayer: Comprehensive Analysis of the Android Permissions System

limited to, collision attack, permission escalation attack,
Time of Check and Time of Use (TOCTOU) attack,
and Ransomware attack. Figure 15 shows the relationship
between the implementation drawbacks and the security
attacks.

a) Collision attack occurs when two applications are
assigned with the same User ID. The User ID attribute
is the unique package name, and it is located in the
AndroidManifest.xml file. Two or more applications
can access each others’ granted permission if they
are assigned with the same User ID and signed by
the same certificate [37]. For example, application
A and B share the same User ID, Shared_User_ID.
Application A is granted a permission to READ_SMS
and CALL_PHONE while application B has the
permission to use CAMERA. Consequently, both
apps can use all the three aforementioned permis-
sions since they are sharing the same User ID,
Shared_User_ID [38].

b) Escalation attack. When two applications collaborate
to access sensitive data or system resources without
explicitly requesting permissions [39]. For instance,
the component (cmpB) of application B is granted
permission to access the resources of application A.
Hence, application C can collaborate with application
B to transitively access the resources of application A.
Once application B grants application C access to one
of its component, application C can access resources
of application A via component (cmpB).

c) TOCTOU attack. Due to the absence of the Android
permission system’s naming restriction, any two per-
missions that share the same name are considered
equivalent albeit they belong to different apps [40].
Suppose an application A is granted a permission
p1 which access critical system resources. However,
a malicious app B might declare a permission p2 with
same name of p1. As a result, the malicious app B
can use the permission p2 to access the critical sys-
tem resources.

d) Ransomware attack. The misuse of Android per-
missions and API packages makes Android appli-
cations and their users vulnerable to ransomware
attacks. Ransomware attacks can lock or encrypt
Android users’ devices or/and data and ask for ransom
to release the data/control back to the users [41],
[42]. Mainly, the permissions requested to imple-
ment such attack are related to the victim device that
include SYSTEM_ALERT_WINDOW, WAKE_LOCK,
and KILL_BACKGROUND_PROCESS [43].

C. SECURITY IMPLICATIONS
The security implications of the Android permissions system
can be discussed from two perspectives; developers and end-
users [44]. The developer’s responsibility in protecting the
Android application against the risk of security issues arises
in two circumstances (1) when the application requires access

to the system resources and (2) when it communicates with
third-party apps. In both cases, the developer is required to
define the corresponding permissions manually in the Mani-
fest file. However, the developer may accidentally leave the
application’s components exposed to be used by third-party
applications unprotected by any permission or assign it to
improper permission. Consequently, leaving the application
vulnerable to harmful malicious attacks and put the applica-
tion’s reputation at risk. A large number of research studies
discussed the development mistakes that put the applications
at risks and how they can be avoided [12].
On the other hand, the end-user is handled a major role

in the Android permissions system’s implementation mech-
anism. Involving the end-user in making decision regarding
filtering the applications needs to be carefully investigated.
Currently, end-users have a minor understanding of permis-
sion warnings [45]. Subsequently, to improve the user-based
permission system’s efficiency, there is an urgent need to
educate the end-user of the security implications of the per-
missions system [44]. Nonetheless, selectively allowing or
denying permissions by the end-user is significantly affected
by the user experience [45]. In general, the display system of
the permissions dialog is not very user-friendly which makes
it quite difficult for the user to understand the risks associated
with these permissions. The permissions granting process can
be improved by using a simpler visualization approach that
a normal user can understand to help him/her make proper
decisions. In this context, Google has carefully designed
the permissions dialog to prevent the user’s confusion [46].
Nevertheless, more efforts need to put in this regard.
Furthermore, the run-time permissions introduced by

AndroidOS enables the end-user to control permission access
in the real context of the application. For instance, a LOCA-
TION permission will be requested only when the applica-
tion needs to access the device location. As a result, this
approach improves the user’s understanding of the requested
permission.

VIII. CONCLUSION
To control access to sensitive data and system resources,
the Android platform enforces a permission-based mech-
anism. However, in an effort to enhance efficiency and
improve flexibility, the Android permissions system has been
thoroughly updated in each release. This paper presents
a detailed overview of the Android permissions system
along with a formal model of system components and
relationships.
This study began with a review of all permissions from the

first release of Android OS until the current one, including
all permissions at different protection levels (Normal, Dan-
gerous, Signature, or SignatureOrSystem) that have been
added or deprecated in each release at each API level. Recent
related works were presented, discussed, and compared in
this research. Additionally, a formal model to describe the
components of the Android permissions system and their
functionality was also proposed.

216686 VOLUME 8, 2020

I. M. Almomani, A. A. Khayer: Comprehensive Analysis of the Android Permissions System

After the analysis of all releases of the Android permis-
sions system, a case study was conducted to analyze the top
applications in various versions. This analysis was aimed at
examining changes in the permissions system and its security
flaws during the last five years. Additionally, the investigation
of permission-based security enhancement reveals several
security threats that may open the OS to various attacks, such
as collision attack, escalation attack, TOCTOU attack and
ransomware attack.

In conclusion, this research provides a comprehensive,
self-contained reference study of the Android permissions
system. It provides a history and an update on the status of
Android permissions. In addition to a formal definition of its
components, a comparative analysis of the permissions sys-
tems across top Android apps will be shared with the research
community, along with the results and datasets generated in
this paper.

In future research, the impact on the security of Android
users and vendors of using Android permissions at different
protection levels might be studied more thoroughly. Other
permission systems on other mobile OSes could be investi-
gated, such as that of iOS. Moreover, further studies could
investigate more if the defined permissions of the existing
apps are fully utilized by them; or they are classified as over-
privileged apps. These studies can consider different cate-
gories and analyze the percentages and types of permissions
used by these over-privileged apps and their impact on the
security of the users’ devices and data.

ACKNOWLEDGMENT
This work was supported by the Security Engineering Lab-
oratory, Prince Sultan University, Saudi Arabia, through
the ARO: Android Ransomware Ontology Research Project,
under Grant SEED-CCIS-2020-64.

REFERENCES
[1] E. Alepis and C. Patsakis, ‘‘Unravelling security issues of runtime per-

missions in android,’’ J. Hardw. Syst. Secur., vol. 3, no. 1, pp. 45–63,
Mar. 2019.

[2] K. S. Noori and A. A. Fahad, ‘‘Factors affecting application launch time
with Android OS,’’ Iraqi J. Sci., pp. 1791–1797, Jul. 2020.

[3] M. Hatamian, ‘‘Engineering privacy in smartphone apps: A tech-
nical guideline catalog for app developers,’’ IEEE Access, vol. 8,
pp. 35429–35445, 2020.

[4] M. Alenezi and I. Almomani, ‘‘Abusing Android permissions: A security
perspective,’’ in Proc. IEEE Jordan Conf. Appl. Electr. Eng. Comput.
Technol. (AEECT), Oct. 2017, pp. 1–6.

[5] J. Xiao, S. Chen, Q. He, Z. Feng, and X. Xue, ‘‘An Android application risk
evaluation framework based on minimum permission set identification,’’ J.
Syst. Softw., vol. 163, May 2020, Art. no. 110533.

[6] X.Wei, L. Gomez, I. Neamtiu, andM. Faloutsos, ‘‘Permission evolution in
the Android ecosystem,’’ in Proc. 28th Annu. Comput. Secur. Appl. Conf.,
2012, pp. 31–40.

[7] Y. Zhauniarovich and O. Gadyatskaya, ‘‘Small changes, big changes: an
updated view on the Android permission system,’’ in Proc. Int. Symp.
Res. Attacks, Intrusions, Defenses. Cham, Switzerland: Springer, 2016,
pp. 346–367.

[8] R.Wang, Z.Wang, B. Tang, L. Zhao, and L.Wang, ‘‘SmartPI: Understand-
ing permission implications of Android apps from user reviews,’’ IEEE
Trans. Mobile Comput., vol. 19, no. 12, pp. 2933–2945, Dec. 2019.

[9] S. Alsoghyer and I. Almomani, ‘‘On the effectiveness of application per-
missions for Android ransomware detection,’’ in Proc. 6th Conf. Data Sci.
Mach. Learn. Appl. (CDMA), Mar. 2020, pp. 94–99.

[10] J. Huang, W. Huang, F. Miao, and Y. Xiong, ‘‘Detecting improper
behaviors of stubbornly requesting permissions in Android applications,’’
IJ Netw. Secur., vol. 22, no. 3, pp. 381–391, 2020.

[11] G. L. Scoccia, A. Peruma, V. Pujols, I. Malavolta, and D. E. Krutz,
‘‘Permission issues in open-source Android apps: An exploratory study,’’
in Proc. 19th Int. Work. Conf. Source Code Anal. Manipulation, Sep. 2019,
pp. 238–249.

[12] G. L. Scoccia, A. Peruma, V. Pujols, B. Christians, and D. Krutz, ‘‘An
empirical history of permission requests and mistakes in open source
Android apps,’’ in Proc. IEEE/ACM 16th Int. Conf. Mining Softw. Reposi-
tories (MSR), May 2019, pp. 597–601.

[13] M. S. Saleem, J.Misic, andV. B.Misic, ‘‘Examining permission patterns in
Android apps using kernel density estimation,’’ inProc. Int. Conf. Comput.,
Netw. Commun. (ICNC), Feb. 2020, pp. 719–724.

[14] X. Jiang, B. Mao, J. Guan, and X. Huang, ‘‘Android malware detection
using fine-grained features,’’ Sci. Program., vol. 2020, pp. 1–13, Jan. 2020.

[15] X. Liu, Y. Leng, W. Yang, W. Wang, C. Zhai, and T. Xie, ‘‘A large-scale
empirical study on Android runtime-permission rationale messages,’’ in
Proc. IEEE Symp. Vis. Lang. Hum.-Centric Comput. (VL/HCC), Oct. 2018,
pp. 137–146.

[16] J. Gamba, M. Rashed, A. Razaghpanah, J. Tapiador, and N. Vallina-
Rodriguez, ‘‘An analysis of pre-installed Android software,’’ 2019,
arXiv:1905.02713. [Online]. Available: http://arxiv.org/abs/1905.02713

[17] W. Shin, S. Kiyomoto, K. Fukushima, and T. Tanaka, ‘‘A formal model
to analyze the permission authorization and enforcement in the Android
framework,’’ in Proc. IEEE 2nd Int. Conf. Social Comput., Aug. 2010,
pp. 944–951.

[18] E. Fragkaki, L. Bauer, L. Jia, and D. Swasey, ‘‘Modeling and enhancing
Android’s permission system,’’ in Proc. Eur. Symp. Res. Comput. Secur.
Berlin, Germany: Springer, 2012, pp. 1–18.

[19] K. Javed andM. Tariq, ‘‘Formal modeling of security concerns in android,’’
Lgurjcsit, vol. 4, no. 1, pp. 33–37, 2020.

[20] W. Khan, M. Kamran, A. Ahmad, F. A. Khan, and A. Derhab, ‘‘For-
mal analysis of language-based Android security using theorem proving
approach,’’ IEEE Access, vol. 7, pp. 16550–16560, 2019.

[21] S. Kumar, R. Shanker, and S. Verma, ‘‘Context aware dynamic permission
model: A retrospect of privacy and security in Android system,’’ in Proc.
Int. Conf. Intell. Circuits Syst. (ICICS), Apr. 2018, pp. 324–329.

[22] F.-H. Hsu, N.-C. Liu, Y.-L. Hwang, C.-H. Liu, C. S. Wang, and
C.-Y. Chen, ‘‘DPC: A dynamic permission control mechanism for Android
third-party libraries,’’ IEEE Trans. Dependable Secure Comput., early
access, Aug. 27, 2020, doi: 10.1109/TDSC.2019.2937925.

[23] O. Olukoya, L. Mackenzie, and I. Omoronyia, ‘‘Security-oriented view
of app behaviour using textual descriptions and user-granted permission
requests,’’ Comput. Secur., vol. 89, Feb. 2020, Art. no. 101685.

[24] H. Shukla, ‘‘A survey paper on Android operating system,’’ J. Gujarat Res.
Soc., vol. 21, no. 5, pp. 299–305, 2019.

[25] H. Cai and B. G. Ryder, ‘‘A longitudinal study of application struc-
ture and behaviors in Android,’’ IEEE Trans. Softw. Eng., early access,
Feb. 19, 2020, doi: 10.1109/TSE.2020.2975176.

[26] S. Kumar and S. K. Shukla, ‘‘The state of Android security,’’ in Cyber
Security in India. Singapore: Springer, 2020, pp. 17–22.

[27] M. A. El-Zawawy, E. Losiouk, and M. Conti, ‘‘Do not let next-
intent vulnerability be your next nightmare: Type system-based approach
to detect it in Android apps,’’ Int. J. Inf. Secur., vol. 6, pp. 1–20,
Mar. 2020.

[28] A. K. H. Hussain, M. Kakavand, M. Silval, and L. Arulsamy, ‘‘A novel
Android security framework to prevent privilege escalation attacks,’’ Int.
J. Comput. Netw. Inf. Secur., vol. 12, no. 1, pp. 20–26, Feb. 2020.

[29] M. Fazzini, Q. Xin, and A. Orso, ‘‘Automated API-usage update for
Android apps,’’ in Proc. 28th ACM SIGSOFT Int. Symp. Softw. Test. Anal.
(ISSTA), 2019, pp. 204–215.

[30] I. Almomani and A. Khayer, ‘‘Android applications scanning: The guide,’’
in Proc. Int. Conf. Comput. Inf. Sci. (ICCIS), Apr. 2019, pp. 1–5.

[31] I. Almomani and M. Alenezi, ‘‘Android application security scanning
process,’’ in Telecommunication Systems, I. A. Alimi, P. P. Monteiro,
and A. L. Teixeira, Eds. Rijeka, Croatia: IntechOpen, 2019, p. 3,
doi: 10.5772/intechopen.86661.

[32] J. He, T. Chen, P. Wang, Z. Wu, and J. Yan, ‘‘Android multitasking mecha-
nism: Formal semantics and static analysis of apps,’’ in Proc. Asian Symp.
Program. Lang. Syst. Cham, Switzerland: Springer, 2019, pp. 291–312.

[33] J. Gajrani, M. Tripathi, V. Laxmi, G. Somani, A. Zemmari, andM. S. Gaur,
‘‘Vulvet: Vetting of vulnerabilities in Android apps to thwart exploitation,’’
Digit. Threats: Res. Pract., vol. 1, no. 2, pp. 1–25, Jul. 2020.

VOLUME 8, 2020 216687

http://dx.doi.org/10.1109/TDSC.2019.2937925
http://dx.doi.org/10.1109/TSE.2020.2975176
http://dx.doi.org/10.5772/intechopen.86661

I. M. Almomani, A. A. Khayer: Comprehensive Analysis of the Android Permissions System

[34] R. Sikder, S. Khan, S. Hossain, and W. Z. Khan, ‘‘A survey on Android
security: Development and deployment hindrance and best practices,’’
Telkomnika, vol. 18, no. 1, pp. 485–499, 2020.

[35] W. Enck, ‘‘Analysis of access control enforcement in android,’’ in Proc.
25th ACM Symp. Access Control Models Technol., Jun. 2020, pp. 117–118.

[36] L. Verderame, D. Caputo, A. Romdhana, and A. Merlo, ‘‘On
the (Un)Reliability of privacy policies in Android apps,’’ 2020,
arXiv:2004.08559. [Online]. Available: http://arxiv.org/abs/2004.08559

[37] S. S. Joshi and R. Sharma, ‘‘A review of Android security system,’’ Int.
J. Sci. Res. Eng. Trends, vol. 1, pp. 615–619, Dec. 2019.

[38] Y. Amirgaliev, B. Sayazhan, and Y. Bakbergen, ‘‘Android security issues,’’
Suleyman Demirel Univ., Kaskelen, Kazakhstan, Tech. Rep. 20.51, 2018,
p. 125.

[39] L. Shen, H. Li, H. Wang, and Y. Wang, ‘‘Multifeature-based behavior of
privilege escalation attack detection method for Android applications,’’
Mobile Inf. Syst., vol. 2020, pp. 1–16, Jun. 2020.

[40] M. Deypir, ‘‘Entropy-based security risk measurement for Android mobile
applications,’’ Soft Comput., vol. 23, no. 16, pp. 7303–7319, Aug. 2019.

[41] S. Alsoghyer and I. Almomani, ‘‘Ransomware detection system for
Android applications,’’ Electronics, vol. 8, no. 8, p. 868, Aug. 2019,
doi: 10.3390/electronics8080868.

[42] H. Faris, M. Habib, I. Almomani, M. Eshtay, and I. Aljarah, ‘‘Optimizing
extreme learning machines using chains of salps for efficient Android
ransomware detection,’’ Appl. Sci., vol. 10, no. 11, p. 3706, May 2020,
doi: 10.3390/app10113706.

[43] J. W. Hu, Y. Zhang, and Y. P. Cui, ‘‘Research on Android ransomware
protection technology,’’ in J. Phys., Conf. Ser., vol. 1584, no. 1, 2020,
Art. no. 012004.

[44] A. K. Jha andW. J. Lee, ‘‘Analysis of permission-based security in Android
through policy expert, developer, and end user perspectives,’’ J. UCS,
vol. 22, no. 4, pp. 459–474, 2016.

[45] N. Momen, S. Bock, and L. Fritsch, ‘‘Accept–Maybe–decline: Introducing
partial consent for the permission-based access control model of android,’’
in Proc. 25th ACM Symp. Access Control Models Technol., Jun. 2020,
pp. 71–80.

[46] D. Wermke, N. Huaman, Y. Acar, B. Reaves, P. Traynor, and S. Fahl,
‘‘A large scale investigation of obfuscation use in Google play,’’ in Proc.
34th Annu. Comput. Secur. Appl. Conf., Dec. 2018, pp. 222–235.

IMAN M. ALMOMANI (Senior Member, IEEE)
received the bachelor’s degree in computer sci-
ence from United Arab Emirates in 2000, master’s
degree in computer science from Jordan in 2002,
and the Ph.D. degree in wireless network secu-
rity from De Montfort University, U.K., in 2007.
She was an Associate Professor and the Head of
the Department of Computer Science Department,
The University of Jordan, Jordan. She is currently
an Associate Professor in Cybersecurity, the Asso-

ciate Director of the Research and Initiatives Centre, and the Leader of the
Security Engineering Laboratory, Prince Sultan University, Riyadh, Saudi
Arabia. Her research interests include wireless networks and security, mainly
wireless mobile ad hoc networks, wireless sensor networks, multimedia
networking, security issues in wireless networks, electronic learning, and
mobile learning. She has several publications in the above-mentioned areas
in a number of reputable international and local journals and conferences.
She is also a Senior Member of the IEEE WIE. She is in the organizing and
technical committees for a number of local and international conferences.
She also serves as a reviewer and a member of the editorial board in a number
of international journals.

AALA AL KHAYER received the B.E. degree in
information technology engineering from SVU
University, Damascus, in 2017, and the bache-
lor’s degree in software engineering from Prince
Sultan University (PSU), Riyadh, Saudi Arabia,
in 2018. She is currently a Research Engineer with
the Security Engineering Laboratory, PSU. Her
research interests include software engineering,
networks security, malware analysis, multimedia
networking, and computer vision.

216688 VOLUME 8, 2020

http://dx.doi.org/10.3390/electronics8080868
http://dx.doi.org/10.3390/app10113706

