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ABSTRACT Multi-agent reinforcement learning (MARL) for cooperative tasks has been extensively studied
in recent years. The balance of exploration and exploitation is crucial to MARL algorithms’ performance in
terms of the learning speed and the quality of the obtained strategy. To this end, we propose an algorithm
known as the weighted relative frequency of obtaining the maximal reward (WRFMR), which uses a weight
parameter and the action probability to balance exploration and exploitation and accelerate convergence to
the optimal joint action. For the WRFMR algorithm, each agent needs to share the state and the immediate
reward and does not need to observe the actions of the other agents. Theoretical analysis on the model of
WRFMR in cooperative repeated games shows that each optimal joint action is an asymptotically stable
critical point if the component action of every optimal joint action is unique. The box-pushing task, the
distributed sensor network (DSN) task, and a strategy game known as blood battlefield are used for empirical
studies. Both the DSN task and the box-pushing task involve full cooperation, while blood battle comprises
both cooperation and competition. The simulation results show that the WRFMR algorithm outperforms the
other algorithms regarding the success rate and the learning speed.

INDEX TERMS Multi-agent reinforcement learning, reinforcement learning, multi-agent system, repeated
game.

I. INTRODUCTION
Reinforcement learning (RL) is a prevalent method to opti-
mize a single agent’s strategy in a Markov Decision Process
(MDP). An agent can perceive the state with sensors, make
decisions, and execute actions through actuators. Some tasks
are naturally modeled as multi-agent systems (MASs) in
which the Markov property still holds from the view of cen-
tralized learning [1]. However, the joint action space grows
exponentially as the number of agents increases. Independent
learning [2]–[4], which does not need any agent to observe
the actions of the other agents, has been proposed to alleviate
the dimension curse of the joint action space. In independent
learning, each agent maintains a Q-value function that evalu-
ates the benefit of its own action. In this article, we concern
only independent learning algorithms.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ikramullah Lali .

The purpose of the MARL algorithms depends on the
nature of the task. In zero-sum games, the goal is to maximize
each agent’s reward while thinking of the other agents in a
pessimistic way [5]. In general-sum games, the goal is to
converge to the Nash equilibrium (NE) [6], [7]. In fully-
cooperative games, the goal is to maximize the sum of all
agents’ reward [8]–[12]. In addition, some algorithms can be
applied to mixed tasks [13]–[16]. In this article, we focus on
algorithms for fully cooperative tasks.

Two factors have to be considered when designing an
independent MARL algorithm for fully cooperative tasks.
First, the convergence to the optimal joint strategy is crucial
for an effective algorithm. Most of the existing results on
convergence analysis are limited to repeated games with two
agents and two actions. Theoretical results of the convergence
of MARL in repeated games with an arbitrary finite number
of agents and actions are not much. Second, the learning
speed is vital for an efficient algorithm. For an RL-based
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algorithm, a well-designed exploration and exploitation pol-
icy can improve the learning speed. Exploitation is to use
current information to generate a better solution. Exploration
is to explore the search space more thoroughly to avoid
falling into local optima. We propose an algorithm known
as the weighted relative frequency of obtaining the maximal
reward (WRFMR). The main contributions are as follows.
First, the WRFMR algorithm does not need any agent to
observe the actions of the other agents. Second, the decreas-
ing weight parameter and the action probability are used to
balance exploration and exploitation to improve the learning
speed. Third, we analyze the characteristics of the WRFMR
algorithm in repeated games with an arbitrary finite number
of agents and actions. Theoretical analysis shows that each
optimal joint action is an asymptotically stable critical point if
the component action of every optimal joint action is unique.
Empirical studies on repeated games and stochastic games
are also presented. The efficacy of the WRFMR algorithm
is studied through three fully cooperative tasks – the dis-
tributed sensor network (DSN) task, the box-pushing task,
and a strategic game known as blood battlefield. The results
show that theWRFMR algorithm outperforms the other algo-
rithms in terms of the success rate and the learning speed.
Joint action learner needs to estimate the Q-value of each
joint action, while independent learner needs to estimate the
Q-value of each component action.

A brief description of the other sections in this article is as
follows. Section II reviews the related work on MARL algo-
rithms. Section III introduces repeated games and stochastic
games. Section IV elaborates theWRFMR algorithm in detail
and presents a theoretical analysis of the characteristics of
the algorithm in repeated games with an arbitrary number
of agents and actions. Section V studies the efficacy of the
WRFMR algorithm over the other MARL algorithms in three
fully cooperative tasks – the distributed sensor network task,
the box-pushing task, and a strategy game known as blood
battlefield. Section VI gives the conclusion.

II. PREVIOUS WORK
In this section, the MARL algorithms for fully cooperative
games and general-sum games, and multi-agent deep rein-
forcement learning (MDRL) algorithms are reviewed respec-
tively. The MARL algorithms can belong to joint action
learner or independent learner. For joint action learner, each
agent can perceive the action of each of the other agents.
For independent action learner, each agent cannot observe the
actions of the other agents.

In fully cooperative games, the goal is to optimize the joint
strategy to obtain the maximum sum of all agents’ reward.
Team Q-learning [17] avoids the coordination mechanism by
assuming that all optimal joint actions are unique. Joint action
learner (JAL) [18] learns the Q-value of each joint action, and
needs each agent to construct models for its teammates to
promote coordination. Optimal adaptive learning (OAL) [19]
needs each agent to construct its teammates’ models, and use
the models to obtain the optimal joint action of each virtual

game on the top of each stage of the stochastic game. The
probability of maximum reward based on estimated gradient
ascent (PMR-EGA) [20] uses the gradient of the probability
of obtaining the maximum reward to each agent’s strategy.
The gradient information is estimated by the Q-value function
of the joint actions. PMR-EGA has been proven to con-
verge to the optimal joint action in repeated games with two
optimal joint actions that have different component actions.
Team Q-learning, JAL, OAL, and PMR-EGA belong to joint
action learner. Q-learning with aggregation (QA-Learning)
[21] reduces the complicacy tasks with large state space
by decomposing the task into more manageable sub-tasks,
and distributing agents between these sub-tasks, to promote
efficiency and enhance parallelization. The frequency of the
maximal reward Q-learning (FMRQ) [22] uses the frequency
of obtaining the maximal reward to update the strategy of
each agent. It uses the stability theory to analyze the con-
vergence of the algorithm in some specific repeated games.
QA-Learning and FMRQ belong to independent learner.

In general-sum games, the goal is to converge to the Nash
equilibrium. Some algorithms use the gradient information
to update each agent’s strategy, such as infinitesimal gradi-
ent ascent (IGA) [23], win or learn fast IGA (WoLF-IGA)
[24], generalized IGA (GIGA) [25], and GIGA-WoLF [26].
Convergence withModel Learning and Safety (CMLES) [27]
ensures targeted optimality for memory-bounded agents and
safety for any other set of agents. These algorithms belong to
JAL. The win or learn fast policy hill climbing (Wolf-PHC)
[24] converges to the Nash equilibrium in two-agent-two-
action repeated games by using the ‘Win or Learn Fast’ rule
to update each agent’s strategy. The exponential moving aver-
age (EMA) Q-learning [28] algorithm uses the exponential
moving average mechanism to update each agent’s strategy.
The policy gradient ascent with approximate policy predic-
tion (PGA-APP) [29] augments the basic gradient ascent
method through approximate policy prediction. PGA-APP
performs better than GIGA-WoLF in some stochastic games.
The max or minimax Q-learning (M-Qubed) [30] balances
best response, optimistic, and cautious learning biases to
make profitable compromises in general-sum games. WoLF-
PHC, EMA Q-learning, PGA-APP, and M-Qubed belong to
independent learner. Table 1 and Table 2 show the classifi-
cation of MARL algorithms according to two fundamental
classes (independent learner and joint action learner) and the
nature of the scenarios (cooperative scenarios and general-
sum scenarios) respectively.

MDRL becomes an emerging research area in RL com-
munity. In multi-agent deep deterministic policy gradient
(MADDPG) [31], each actor uses local observations to select
actions and each critic uses the global state to evaluate
the Q-value conditioned on the joint action. Counterfactual
multi-Agent policy gradients (COMA) [35] uses a central-
ized critic and addresses the multi-agent credit assignment
by using a counterfactual baseline. Value-decomposition
networks (VDN) [32] uses a linear value-decomposition
method where the global Q-functions is approximated by a
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TABLE 1. Classification of MARL algorithms according to independent learner and joint action learner.

TABLE 2. Classification of MARL algorithms according to cooperative scenarios and general-sum scenarios.

sum of local Q-functions. QMIX [33] uses a mixing net-
work to approximate the global Q-function by conflating
the local Q-functions and the global state in a non-linear
way. Lenient-DQN (LDQN) [34] applies leniency mecha-
nism with decaying temperature values to regulate policy
updates. To overcome the non-stationarity problem, finger-
print [36] disambiguates the age of the samples obtained from
the replay memory applying a fingerprint.

We propose theWRFMR algorithm for cooperative agents.
It has the following characteristics. First, compared with joint
action learner such as OAL and PME-EGA, the WRFMR
algorithm does not need each agent to observe the actions of
the other agents and therefore mitigates the curse of dimen-
sionality of the action space. Second, compared with FMRQ,
theWRFMR algorithm uses the weight parameters and action
probabilities to accelerate convergence to the optimal joint
action.

III. PRELIMINARIES
A. STOCHASTIC GAMES
A Stochastic game is a tuple < S,A1, . . .An,T , r1, . . . rn >,
where n is the number of agents, S is the set of states, Ai is
the set of agent i′s actions, T is the state transition function,
and ri is the immediate reward of agent i. The set of joint
actions is denoted by A = A1×A2, . . . , ×An which consists
of the actions of all agents. The state transition function
T : S × A1 × A2, . . . , × An × S → [0, 1] is probability
distribution to transit to the next state s′ given the current
state s and the executed joint action a. The immediate reward
of agent i ri : S × A1 × A2, . . . , × An × S → R is
determined by the state s, the joint action a and the next
state s′. The global immediate reward is the sum of each
agent’s immediate reward, and is denoted by r =

∑n
i=1 ri.

The goal of fully cooperative stochastic games is to maximize
the following discounted cumulative reward at each time t

R (t) = r (t + 1)+ γ r (t + 2)+ γ 2r (t + 3)+ · · ·

=

K∑
k=0

γ kr (t + k + 1) (1)

where γ is the discount factor and is used to weigh the
importance of the future reward, K is the ending time of an
episode, and r(t+1) is the global immediate reward received
at time t + 1.

B. REPEATED GAMES
A repeated game is formed by a range of iterations of the
same stage game. In each stage game, agents choose their
own actions and a joint action is formed. According to the
selected joint action, each agent will receive a local imme-
diate reward. The global immediate reward is the sum of
each agent’s local immediate reward. In cooperative repeated
games, each agent receives a global immediate reward in each
stage game and optimizes its strategy to obtain the maximal
global immediate reward. The strategy of an agent is pure
if some action probability is one. Otherwise, the strategy is
mixed. The joint strategy is pure if the strategy of each agent
is pure. In this article, our aim is to obtain the optimal pure
joint strategy for cooperative repeated games. The payoff
matrix for a cooperative repeated game with two agents and
three actions is shown in Fig.1. In the payoff matrix, each
row represents an action of agent A, each column represents
an action of agent B, and each numerical value represents a
global immediate reward for both agents. If agentA selects the
second action (the second row) and agent B selects the first
action (the first column), both of them will receive a global
immediate reward of 2. The goal of each game is to obtain the
maximal global immediate reward marked with parentheses
in Fig.1.

IV. WRFMR ALGORITHM FOR COOPERATIVE AGENTS
A. FORMULATION OF THE WRFMR ALGORITHM
TheWRFMR algorithm is proposed to optimize performance
indices of full collaboration tasks. For WRFMR, each agent
needs to observe the states and the immediate rewards of
the other agents. Each agent does not need to observe the
actions of any other agent. The pseudo code of the WRFMR
algorithm for repeated games is shown in Algorithm 1. Each
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TABLE 3. Success rate in cooperative repeated games (runs = 100).

FIGURE 1. The payoff matrix of a cooperative repeated game with two
agents and three actions.

agent selects an action according to:

pij(t + 1) =
eQ

i
j(t)/T

|Ai|∑
l=1

eQ
i
l (t)/T

(2)

where pij(t + 1) represents the probability of agent i selecting
its j-th action, Qij(t) is the Q-value of the j-th action of
agent i, |Ai| is the number of agent i′s actions, and T is the
temperature parameter. After each game, the frequency of
obtaining the maximal immediate reward and the Q-function
of each agent will be updated. The Q-value updating rule is as
follows:

Qij(t + 1) = Qij(t)+ α[(1− β)u
i
j(t)− βp

i
j(t)] (3)

where α ∈ (0, 1) is the learning rate, β ∈ [0, 0.5) is
the weight parameter, and uij(t) is the relative frequency
of agent i selecting its j-th action. The weight parameter
and the action probability are used to balance exploration
and exploitation. The relative frequency uij(t) is defined as
follows:

uij(t) =
f ij (t)
|Ai|∑
k=1

f ik (t)

(4)

where f ij (t) represents the frequency of obtaining the max-
imal global immediate reward when agent i selects its j-
th action. The value of the frequency is small during the
early learning stage, so the relative frequency is used to
speed up the learning process. The frequency of obtaining
the maximal global immediate reward is estimated according
to

f ij (t+1)=


(1− αh)f ij (t) +αh if r ij (t) >ri_max(t)

(1− αl)f ij (t)+ αl if r ij (t)=ri_max(t)

(1− αl)f ij (t) if r ij (t) <ri_max(t)

(5)

Algorithm 1 The WRFMR Algorithm for Repeated Games

1: Initialize Qij(t), u
i
j(t), and f

i
j (t) for agent i to zero, for i =

1, 2, . . . , n, j = 1, 2, . . . , |Ai|.
2: repeat
3: for each agent i do
4: Select an action according to (2).
5: end for
6: for each agent i do
7: Observe the reward ri.
8: if ri ≥ ri_max then
9: ri_max = ri.
10: end if
11: for each action j do
12: Evaluate uij(t) and f

i
j (t) according to (4)-(6).

13: Update Qij(t) according to (3).
14: end for
15: end for
16: until the predefined number of games have been played
17: return Q-value function for each agent

for the selected action aij at time step t and

f ig(t + 1) =

{
(1− αl)f ig(t) if r ij (t) > ri_max(t)

f ig(t) if r ij (t) ≤ ri_max(t)
(6)

for each of the action aig (g 6= j) at time step t . Among the
above, aij represents the j-th action of agent i, αh and αl(αl <
αh) are learning rates, r ij (t) is the immediate reward when
agent i selects aij, and ri_max(t) is the maximal immediate
reward obtained by agent i in history.

B. ANALYSIS OF THE WRFMR ALGORITHM
Theorem 1: In a cooperative repeated game with

n (n ≥ 2) agents and m (m ≥ 2) optimal joint actions,
each agent adopts the WRFMR algorithm. If the component
action of every optimal joint action is unique, then all of
the m optimal joint actions are asymptotically stable critical
points.

Proof: Let pij denote the probability of agent i select-
ing its corresponding component action of the j-th opti-
mal joint action i = 1, 2, . . . , n, j = 1, 2, . . . ,m, Qij
denote the Q-value of agent i’s corresponding component
action of the j-th optimal joint action. According to (2)
and (3), the probabilities of the component actions that
can never obtain the maximal global reward will gradu-
ally decrease to zero. The Q-value updating process of the
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WRFMR algorithm can be approximated by the follow-
ing differential equations when the value of α is infinitely
small.

Q̇ij = α[(1− β)

n∏
k=1(k 6=i)

pkj

m∑
w=1

(
n∏

k=1(k 6=i)
pkw)
− βpij]. (7)

According to the total derivative formula, the model of
WRFMR algorithm can be obtained as
follows:

dpij
dt

=

m∑
h=1

∂pij
∂Qih

dQih
dt

=

1
T e

Qij
T

m∑
k=1(k 6=j)

e
Qik
T

(
m∑
l=1

e
Qil
T )

2 · α[(1− β)

n∏
k=1(k 6=i)

pkj

m∑
w=1

(
n∏

k=1(k 6=i)
pkw)
−βpij]

+

m∑
h=1(h 6=j)

−e
Qij
T ·

1
T e

Qih
T

(
m∑
l=1

e
Qil
T )

2 · α[(1−β)

n∏
k=1(k 6=i)

pkh

m∑
w=1

(
n∏

k=1(k 6=i)
pkw)
−βpih]

=
1
T
αpij[(1− pij)((1− β)

n∏
k=1(k 6=i)

pkj

m∑
w=1

(
n∏

k=1(k 6=i)
pkw)
−βpij)

−

m∑
h=1(h 6=j)

pih((1− β)

n∏
k=1(k 6=i)

pkh

m∑
w=1

(
n∏

k=1(k 6=i)
pkw)
−βpih)]. (8)

Any critical point of the system described by (8) must
satisfy:

1
T
pij[(1− pij)((1− β)

n∏
k=1(k 6=i)

pkj

m∑
w=1

(
n∏

k=1(k 6=i)
pkw)
− βpij)−

m∑
h=1(h 6=j)

pih

((1− β)

n∏
k=1(k 6=i)

pkh

m∑
w=1

(
n∏

k=1(k 6=i)
pkw)
− βpih)] = 0. (9)

It is obvious that any pure joint strategy is a critical point.
By performing the following transformation:

pij =


p̄ij if j 6= m

1−
m−1∑
l=1

p̄il if j = m .
(10)

We obtain the following model from:

1
T
p̄ij[(1− p̄ij)

(

(1−β)
n∏

k=1(k 6=i)
p̄kj

m−1∑
w=1

(
n∏

k=1(k 6=i)
p̄kw)+

n∏
k=1(k 6=i)

(1−
m−1∑
l=1

p̄kl)

−βp̄ij)

−

m−1∑
h=1(h 6=j)

(p̄ih(

(1− β)
n∏

k=1(k 6=i)
p̄kh

m−1∑
w=1

(
n∏

k=1(k 6=i)
p̄kw)+

n∏
k=1(k 6=i)

(1−
m−1∑
l=1

p̄kl)

−βp̄ih))

−(1−
m−1∑
l=1

p̄il)(

(1− β)
n∏

k=1(k 6=i)
(1−

m−1∑
l=1

p̄kl)

m−1∑
w=1

(
n∏

k=1(k 6=i)
p̄kw)+

n∏
k=1(k 6=i)

(1−
m−1∑
l=1

p̄kl)

−β(1−
m−1∑
l=1

p̄il))] = 0

i = 1, 2, . . . , n, j = 1, 2, . . . ,m− 1. (11)

The Jacobin matrix J ∈ R(m−1)n×(m−1)n corresponding to any
of the m optimal joint actions is as follows:

J =



1
T
(2β − 1) 0 · · · 0

0
1
T
(2β − 1) · · · 0

...
...

. . .
...

0 0 · · ·
1
T
(2β − 1)


.

(12)

It can be seen that all the eigenvalues of J are (2β − 1)/T ,
since β is strictly less than 0.5, each of the m optimal joint
actions is an asymptotically stable critical point.

C. EMPIRICAL STUDIES ON REPEATED GAMES
The convergence of the WRFMR algorithm in repeated
games is verified experimentally in this section. The aim is
to obtain the maximum global reward in repeated games with
n= 2, 3, 4, 5, 6, 7 agents andm= 2, 3, 4, 5 actions. The results
are averaged on 100 runs. The payoff matrix is randomly
generated for each run under the assumption of Theorem
1. If each agent converges to a pure strategy and the joint
strategy obtains the maximal global immediate reward, this
run is successful. Each agent’s strategy is considered to be a
pure strategy if the probability of choosing some action is no
less than 0.999. The WRFMR algorithm uses the parameters
T = 10, α = 0.01, αl = 0.1, αh = 0.6, and β = 0.1.
As shown in Table 3, the success rate is 100% in all cases.
TheWRFMR algorithm converges to one of the optimal joint
actions for all values of n and m. The simulation results are
consistent with Theorem 1.
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Algorithm 2 The WRFMR Algorithm for Stochastic Games

1: Initialize Qij(s), u
i
j(s), and f ij (s)for agent i to zero,

for i = 1, 2, . . . , n, j = 1, 2, . . . , |Ai|.
2: repeat
3: repeat
4: for each agent i do
5: Select an action according to (13).
6: end for
7: for each agent i do
8: Observe the next state s′ and the immediate

reward ri.
9: Record the tuple < s, ai, s′, ri >.
10: end for
11: until the episode is ended
12: for each agent i do
13: for each visited state s in the last episode do

Evaluate Ri(s) by the recorded tuples and (1).
14: if Ri(s) ≥ Ri_max(s) then

Ri_max(s) = Ri(s)
15: end if
16: for each action j do
17: Evaluate uij(s) and f

i
j (s) according to (15)-(17).

18: Update Qij(s) according to (14).
19: end for
20: end for
21: end for
22: until the predefined number of episodes have been

played
23: return Q-value function for each agent

D. WRFMR ALGORITHM FOR STOCHASTIC GAMES
TheWRFMR algorithm can be extended to solve cooperative
stochastic games. The pseudo-code is shown in Algorithm 2.
Each agent selects an action according to:

pij(s) =
eQ

i
j(s)/T

|Ai|∑
l=1

eQ
i
l (s)/T

(13)

where pij(s) represents the probability of agent i selecting its
j-th action at state s, Qij(s) is the Q-value of the j-th action
of agent i at state s. When an episode ends, the cumulative
global reward in each visited state is evaluated by (1). Then
the frequency of obtaining the maximal cumulative global
reward and the Q-value of each visited state action pair (s, ai)
for i = 1, 2, . . . , n are updated. The Q-value updating rule is
as follows:

Qij(s) = Qij(s)+ α[(1− β)u
i
j(s)− βp

i
j(s)] (14)

where uij(s)represents the relative frequency of agent i select-
ing its j-th action at state s, and is defined as follows:

uij(s) =
f ij (s)
|Ai|∑
k=1

f ik (s)

(15)

FIGURE 2. The 6-agent-12-vertex box-pushing task.

where f ij (s) represents the frequency of obtaining themaximal
cumulative reward when agent i selects its j-th action at state
s. It is estimated according to

f ij (s)=


(1− αh)f ij (s)+ αh if Rij(s)>Ri_max(s)

(1− αl)f ij (s)+αl if Rij(s)=Ri_max(s)

(1− αl)f ij (s) if Rij(s)< Ri_max(s)

(16)

for the selected action aij at state s and

f ig(s) =

{
(1− αl)f ig(s) if Rij(s) > Ri_max(s)

f ig(s) if Rij(s)≤ Ri_max(s)
(17)

for each of the action aig (g 6= j) at state s. Among the above,
Rij(s) is the cumulative global reward when agent i selects aij
at state s, and Ri_max(s) is the maximal cumulative reward
obtained by agent i at state s in history.

V. EMPIRICAL STUDIES FOR COOPERATIVE TASKS
In this section, the efficacy of the WRFMR algorithm is stud-
ied in three cooperative tasks – the box-pushing task, the DSN
task, and a game known as blood battlefield. The differences
of these tasks are as follows. First, the box-pushing task is
a stochastic game with a deterministic transition function,
while both the DSN task and blood battlefield are stochastic
games with a probabilistic transition function. Second, the
box-pushing task and the DSN task involve only cooperation,
while the blood battlefield comprises both cooperation and
competition.

A. TASK 1: BOX-PUSHING
The box-pushing task [37] is shown in Fig.2. Six boxes are
allocated in six vertices of a polygon with a total number
of 12 vertices. Each agent is responsible for pushing one box.
Each agent can select to push the box to one of its adjacent
vertices or stay still. The goal of this task is to coordinate the
six agents to distribute the boxes evenly. At the beginning of
each episode, the boxes locate in random positions. The state
variables include five relative positions to box 1. The number
of states is C5

11 × 5! = 55440. If all boxes are distributed
evenly, each agent obtains a reward of 10, otherwise, each
agent obtains a reward of −1.

VOLUME 8, 2020 216325



H. Liu et al.: WRFMR: MARL Method for Cooperative Tasks

The rules of the box-pushing task are as follows. First, all
agents push the boxes simultaneously. Second, if two or more
boxes collide with each other, they will stay still. Otherwise,
they move successfully. A collision occurs when a box moves
to another box that chooses to stay still or has failed to move,
two boxes move to the same positions, or two adjacent boxes
move towards each other.

FMRQ [22], WoLF-PHC [24], EMA Q-learning [28],
and EAQR [12] are selected as comparison algorithms. The
results are averaged on 100 runs and each run includes L
learning episodes and 300,000 evaluation episodes. For the
WRFMR algorithm, the discount factor γ is set to 0.9, the
learning rates α = 0.01, αl = 0.15, αh = 0.6, and the
temperature parameter T follows:

T =

{
3 1 ≤ n < 0.4L
1 0.4L ≤ n ≤ L

where n represents the current episodes, and L represents
the total number of episodes. The weight parameter β is as
follows:

β =


0.4 1 ≤ n < 0.2L
0.1 0.2L ≤ n < 0.4L
0 0.4L ≤ n ≤ L.

For EMA Q-learning, γ = 0.9, ηw = 0.1, ηl = 0.001ηw,
ε = 0.6, and α follows:

α = αini −
αinin
1.05L

(18)

where αini = 0.2. For WoLF-PHC, γ = 0.9, δw = 0.003,
δl = 0.01, ε = 0.1, and α follows (18) with αini = 0.6. For
FMRQ α = 0.5, γ = 1.0, and T follows:

T =



0.7 1 ≤ n < L/6
0.6 L/6 ≤ n < L/5
0.5 L/5 ≤ n < L/3
0.2 L/3 ≤ n < L/2
0.1 L/2 ≤ n < 0.8L
0.05 0.8L ≤ n ≤ L.

| For EAQR, γ = 0.9, α = 0.7, and ε follows:

ε =



0.9 1 ≤ n < 0.2L
0.8 0.2L ≤ n < 0.4L
0.7 0.4L ≤ n < 0.6L
0.6 0.6L ≤ n < 0.8L
0.5 0.8L ≤ n ≤ L.

The performance metrics include the average success rate,
the average number of steps, and the standard deviation.
A successful episode uses minimal steps to complete the
task. We develop a program to obtain the actual minimal
number of steps in an episode. The average number of steps
and the standard deviation are shown in Table 4. Take the
WRFMR algorithm and L = 5,000,000 for example, 1.55
| 0.01 represents an average number of steps of 1.55 and

TABLE 4. Average steps and standard deviation for the 6-agent-12-vertex
box pushing task (runs = 100).

TABLE 5. Success rate for the 6-agent-12-vertex box pushing task (runs =

100).

FIGURE 3. Learning performance on average steps per episode in
box-pushing (runs = 100).

a standard deviation of 0.01. The performance of all algo-
rithms improves as L increases. The WRFMR algorithm and
WoLF-PHC perform well for all different values of L. WoLF-
PHC uses the smallest number of average steps and standard
deviation among all algorithms when L is 5,000,000. As L
increases, the WRFMR algorithm outperforms the WoLF-
PHC in terms of average steps. After 10,000,000 learning
episodes, the WRFMR algorithm uses 1.48 average steps per
episode. The average steps per episode in box-pushing task
are shown in Fig.3. In the initial learning stage, the learning
speed ofWRFMR is lower than that ofWoLF-PHC, EMAand
EAQR. However, after four million episodes, only WRFMR
continuously improves its performance. The average steps for
WRFMR drop off at 4000000-th learning episode, because
the joint strategy becomes more greedy as T varies at that
episode.

Table 5 shows the success rate. The success rates of FMRQ
with L = 5,000,000 is higher than the success rate of other
algorithms. The WRFMR algorithm has the highest learn-
ing speed. It obtains the highest success rate when L =
10,000,000. EMA Q-learning obtains the lowest success rate
for all values of L.

B. TASK 2: DISTRIBUTED SENSOR NETWORK
The goal of the DSN [38] task is to coordinate the sensors to
capture two targets in minimal time steps. Fig.4 shows a DSN
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TABLE 6. The action sets of the twelve sensors.

FIGURE 4. The DSN task with 12 sensors and 2 targets.

with twelve sensors and two targets. Each sensor is viewed as
an agent. The action set of each sensor is shown in Table 6.
The number of joint actions is 291,600. At each step, each
target has equal probability to move to one of four directions
(up, down, left, and right), or stay still. If a target tries to move
out of the grid or move to a cell that has been occupied by
another target, it fails and stays still. Each cell can be occupied
by at most one target.

At the beginning of an episode, each target has an energy
value of three. The energy of a target is reduced by one if the
target is focused by at least three sensors. If a target’s energy
is decreased to zero, it is captured and wiped out from the
cells. The state variables contain the number of uncaptured
targets and the positions of both the targets. The state space
contains 43 elements. If both the targets are captured or 300-
time steps have elapsed, an episode ends.

The reward function is defined as follows. If a target is
captured, each of the three sensors involved in the capture
is rewarded by 10. If four sensors capture the target, the
sensors with the largest indexes receive a reward of 0. The
action of focus produces an immediate reward of -1, and
no focus produces an immediate reward of 0. For the DSN
task, the actual maximal cumulative reward is 42, and the
minimal number of time steps is 3. A success is obtained if a
cumulative reward of 42 is obtained in an evaluation episode.

The results are averaged on 100 runs, and each run includes
L learning episodes and 50,000 evaluation episodes. The
WRFMR algorithm uses the parameters γ = 0.9, α = 0.01,

αl = 0.1, αh = 0.8, T = 8, and β follows:

β =

{
0.1 1 ≤ n < 0.2L
0 0.2L ≤ n ≤ L.

For FMRQ, γ = 0.9, α = 0.2, T follows:

T =



0.02 1 ≤ n < 0.2L
0.015 0.2L ≤ n < 0.4L
0.01 0.4L ≤ n < 0.6L
0.005 0.6L ≤ n < 0.8L
0.002 0.8L ≤ n ≤ L.

For EMA Q-learning, γ = 0.9, ηw = 0.1, ηl = 0.001ηw,
k = 2, ε = 0.2, and α follows (18) with αini = 0.7. For
WoLF-PHC, γ = 0.9, δw = 0.003, δl = 0.01, ε = 0.2, and α
follows (18) with αini = 0.7. For EAQR, γ = 0.9, α = 0.2,
α follows (18), and ε follows:

ε =



0.9 1 ≤ n < 0.2L
0.8 0.2L ≤ n < 0.4L
0.7 0.4L ≤ n < 0.6L
0.6 0.6L ≤ n < 0.8L
0.5 0.8L ≤ n ≤ L.

Table 7 shows the success rate. Compared with the other
algorithms, the WRFMR algorithm obtains a higher suc-
cess rate. After 3,000,000 episodes, the WRFMR algorithm
obtains a success rate of 100%. The success rate of FMRQ
rises as L increases, but it learns slower than the WRFMR
algorithm. Besides, the learning speed is a great advantage
of the WRFMR algorithm. The average number of steps per
episode in the DSN task is shown in Fig.5. We can see that
WRFMR converges more quickly than other algorithms. The
average steps for WRFMR did not drop off at 4000000-th
learning episode, because the optimal joint strategy has been
obtained before T varies.

The average cumulative reward is shown in Table 8. All
the algorithms except WoLF-PHC obtain more cumulative
reward as L increases. The WRFMR algorithm is the only
one that obtains the optimal average cumulative reward of 42,
which is consistent with the results of the success rate and the
worst case is presented in Table 9.

The average number of steps is presented in Table 10, and
the worst case is presented in Table 11. The WRFMR algo-
rithm overwhelms the other algorithms in terms of the steps.
After 3,000,000 episodes, the WRFMR algorithm obtains
3.01 steps to capture both the targets.

To verify the statistical significance of the results in Table 8
and Table 10, we conduct a one-way analysis of variance
(ANOVA). As shown in Table 12, p-values are less than 0.05,
and F is greater than F-critical, which indicates that there a
statistically significant difference between the results of all
groups. In addition, we conduct a one-tailed t-test at 0.05
significance level for average steps and average cumulative
reward. The p-value for t-test between WRFMR and each
of the other algorithms is presented in Table 13. A p-value

VOLUME 8, 2020 216327



H. Liu et al.: WRFMR: MARL Method for Cooperative Tasks

FIGURE 5. Learning performance on average steps per episode in DSN
(runs = 100).

TABLE 7. Success rate for the DSN task (runs = 100).

TABLE 8. Average cumulative reward and standard deviation for the DSN
task (runs = 100).

TABLE 9. Minimal cumulative reward for the DSN task (runs = 100).

less than 0.05 indicates that there a statistically significant
difference between the WRFMR algorithm and the other
algorithms.

The comparison MARL algorithms did not obtain the best
performance for several reasons. FMRQ and EAQR learn
slowly because it consumes too much time to obtain the
estimate of the probability of obtaining the maximum reward.
Its poor performance in average steps might be because the
punishment induced by the discount factor is not enough.
As forWoLf-PHC and EMAQ-learning, theymight converge
to the NE at each stage, but the NE is not the optimal one that
obtains the maximal cumulative reward.

C. TASK 3: BLOOD BATTLEFIELD
Blood battlefield is a strategic game that involves both coop-
eration and competition. In this game, each player commands

TABLE 10. Average steps and standard deviation for the DSN task (runs =

100).

TABLE 11. Maximal steps for the DSN task (runs = 100).

a team to fight against another player who commands another
team. Each team has two gunners and four riflemen. The goal
is to eliminate all the units of the opponent team and survive
the battle.

The property values of both the units are presented in
Table 14. A live unit can choose to attack only one live
opponent unit at each step. The damage caused by a unit is
determined by the unit’s AD (attack damage) and HR (hit
rate). All units of both sides act simultaneously at each step.
If the HP (hit point) value of a unit is below zero, the unit
is wiped out. The player wins the battle if at least one unit
survives and all units of the other player are eliminated. A tie
happens if all units of both sides are eliminated at the same
step. An episode ends if one player wins the game, a tie
happens, or 100 time steps have elapsed.

The state vector is expressed as s = [h1, . . . h6, k1, . . . k6]T,
where hi represents the HP of the i-th opponent unit, and
kl ∈ {live,dead}represents the state of its l-th teammate. The
number of states is 44 × 72 × 26 = 802, 816. The number of
available actions for each unit depends on the number of live
opponent units. The reward function is described as follows:
if a unit is eliminated, the opponent player receives a reward
of 2; when an episode ends, the winner receives a reward
of 10 while the loser receives a reward of 10. If a tie occurs
or 100 time steps have elapsed, both players receive a reward
of 0. The WRFMR algorithm uses the parameters α = 0.01,
αl = 0.05, αh = 0.8, T = 0.5, γ = 1, and β follows:

β =

{
0.4 1 ≤ n < 0.2L
0 0.2L ≤ n ≤ L

FMRQ and EAQR use more memory than our computing
resources and cannot perform this task on our computer,
so the approximate frequency of obtaining maximal cumu-
lative reward is also used for FMRQ and EAQR to avoid
recording large amounts of data. For FMRQ, α = 0.1, αl =
0.1, αh = 0.8, T = 0.6, and γ = 1. For EMA Q-learning,
α = 0.1, ε = 0.2, ηw = 0.1, ηl = 0.001ηw, and γ = 0.9. For
WoLF-PHC, δw = 0.003, δl = 0.01, γ = 0.9, α = 0.1, and
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TABLE 12. Results of one-way ANOVA analysis for average steps and average cumulative reward for DSN task.

TABLE 13. Results of one-tailed T-Test (0.05 significance) for average steps and average cumulative reward for the DSN task.

FIGURE 6. Win rate of each algorithm (after 1,000,000 learning episodes).

TABLE 14. Properties of units in blood battlefield.

ε = 0.2. For EAQR, γ = 1, α = 0.1, αl = 0.1, αh = 0.6,
and ε = 0.3.

The results are averaged on 100 runs, and each run
includes 1,000,000 learning episodes and 1,000,000 evalua-
tion episodes. Fig.6 shows the win rates of four algorithms
against each other. The ties are not considered. The WRFMR
algorithm gains the highest win rate against FMRQ, EMA
Q-learning,WoLF-PHC, and EAQR. TheWRFMRalgorithm
performs slightly better than FMRQ. However, its win rate
against FMRQ is apparently higher than the win rate of
FMRQ against it. The win rates of both EMA Q-learning and
WoLF-PHC are not high because the Nash equilibrium is not
the optimal strategy in this game.

To verify the efficacy of the WRFMR algorithm, we visu-
alize a match between it (team 1) and FMRQ (team 2).
As shown in Fig.7, the actions of the units are indicated by
arrows. The arrow with a solid line represents a hit from
team 1, and the arrow with a dotted line represents a hit
from team 2. For example, the leftmost rifleman of team 2 is
attacked by two riflemen and a gunner of team 1 at step 0,
and only one rifleman hits successfully. Thus the true damage
taking by the target is 0 + 0 + 2 = 2. The target’s HP is

FIGURE 7. A game played by the WRFMR algorithm (team 1) and the
FMRQ algorithm (team 2) (after 1,000,000 learning episodes).

reduced by 2. At each step, several units of team 1 concentrate
fire to attack the same opponent unit. By contrast, the fire
of team 2 is scattered on more opponent units. Team 2 is
outnumbered after step 2, and is finally defeated by team 1 at
step 5. The WRFMR algorithm performs well in all three
stochastic games, which indicates that the WRFMR algo-
rithm can converge to one of the optimal cumulative global
rewards in many cases.

VI. CONCLUSION
This article aims to solve the coordination problem in fully
cooperative MASs. We propose the WRFMR algorithm to
obtain the maximal global reward. The decreasing weight
parameter and the action probability are used to balance
exploration and exploitation to improve the learning speed.
Theoretical analysis on the model of the WRFMR algo-
rithm for cooperative repeated games indicates that if the
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component action of every optimal joint action is unique,
then all optimal joint actions are asymptotically stable critical
points. The efficacy of the WRFMR algorithm is also stud-
ied empirically through three cooperative tasks. The results
show that the WRFMR algorithm performs better than other
algorithms in the box-pushing task, the DSN task, and blood
battlefield in terms of the success rate and the learning speed.
In the future, the convergence of the algorithm will be further
studied.
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